Journal of Automated Reasoning

, Volume 50, Issue 2, pp 203–210 | Cite as

On Rewriting Rules in Mizar

Open Access
Article

Abstract

This paper presents some tentative experiments in using a special case of rewriting rules in Mizar (Mizar homepage: http://www.mizar.org/): rewriting a term as its subterm. A similar technique, but based on another Mizar mechanism called functor identification (Korniłowicz 2009) was used by Caminati, in his paper on basic first-order model theory in Mizar (Caminati, J Form Reason 3(1):49–77, 2010, Form Math 19(3):157–169, 2011). However for this purpose he was obligated to introduce some artificial functors. The mechanism presented in the present paper looks promising and fits the Mizar paradigm.

Keywords

Proof assistant Natural deduction Computer algebra system Term rewriting Mizar 

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  2. 2.
    Caminati, M.B.: Basic first-order model theory in Mizar. J. Form. Reason. 3(1), 49–77 (2010)MathSciNetMATHGoogle Scholar
  3. 3.
    Caminati, M.B.: Preliminaries to classical first-order model theory. Form. Math. 19(3), 157–169 (2011)Google Scholar
  4. 4.
    Davis, M.: Obvious logical inferences. In: Proceedings of the Seventh International Joint Conference on Artificial Intelligence, pp. 530–531 (1981)Google Scholar
  5. 5.
    Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. J. ACM 27, 758–771 (1980). doi:10.1145/322217.322228 MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Form. Reason., Special Issue: User Tutorials I 3(2), 153–245 (2010)MATHGoogle Scholar
  7. 7.
    Korniłowicz, A.: How to define terms in Mizar effectively. In: Grabowski, A., Naumowicz, A. (eds.) Computer Reconstruction of the Body of Mathematics. Studies in Logic, Grammar and Rhetoric, vol. 18(31), pp. 67–77. University of Białystok (2009)Google Scholar
  8. 8.
    Naumowicz, A., Byliński, C.: Improving Mizar texts with properties and requirements. In: A. Asperti (ed.) MKM-2004. LNCS, vol. 3119, pp. 290–301. Springer, Berlin Heidelberg (2004)Google Scholar
  9. 9.
    Naumowicz, A., Korniłowicz, A.: A brief overview of Mizar. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Proc. 22nd International Conference, TPHOLs, Munich, Germany. LNCS, vol. 5674, pp. 67–72. Springer, Berlin Heidelberg (2009)Google Scholar
  10. 10.
    Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27, 356–364 (1980). doi:10.1145/322186.322198 MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J. (ed.) 16th International Conference on Term Rewriting and Applications, RTA’05. Lecture Notes in Computer Science, vol. 3467, pp. 453–468. Springer (2005)Google Scholar
  12. 12.
    Rudnicki, P.: Obvious inferences. J. Autom. Reasoning 3(4), 383–393 (1987). doi:10.1007/BF00247436 MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Rudnicki, P., Trybulec, A.: Mathematical knowledge management in Mizar. In: Proc. of MKM 2001 (2001)Google Scholar
  14. 14.
    Shostak, R.E.: An algorithm for reasoning about equality. Commun. ACM 21, 583–585 (1978). doi:10.1145/359545.359570 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of InformaticsUniversity of BiałystokBiałystokPoland

Personalised recommendations