Abstract
This paper recounts the origins of the λx family of calculi of explicit substitution with proper variable names, including the original result of preservation of strong β-normalization based on the use of synthetic reductions for garbage collection. We then discuss the properties of a variant of the calculus which is also confluent for “open” terms (with meta-variables), and verify that a version with garbage collection preserves strong β-normalization (as is the state of the art), and we summarize the relationship with other efforts on using names and garbage collection rules in explicit substitution.
This is a preview of subscription content, access via your institution.
References
Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. J. Funct. Program. 1(4), 375–416 (1991)
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1999)
Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics, revised edn. North-Holland (1984)
Benaissa, Z.E.A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions which preserves strong normalisation. Rapport de Recherche 2477, INRIA, Lorraine, Technôpole de Nancy-Brabois, Campus Scientifique, 615 rue de Jardin Botanique, BP 101, F-54600 Villers lès Nancy. http://www.loria.fr/ lescanne/PUBLICATIONS/RR-2477.PS (1995)
Bezem, M., Klop, J.W., de Vrijer, R.: Term Rewriting Systems. Cambridge University Press, known as the “TeReSe” book (2003)
Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Technische Universiteit Eindhoven, iPA Dissertation Series 1997-05 (1997)
Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalisation. Theor. Comp. Sci. 211(1–2), 375–395 (1999)
Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: CSN ’95—Computing Science in the Netherlands, Koninklijke Jaarbeurs, pp. 62–72. Utrecht (1995)
Bonelli, E., Kesner, D., Ríos, A.: A de Bruijn notation for higher-order rewriting. In: RTA 2000—11th International Conference on Rewriting Techniques and Applications. Lecture Notes in Computer Science, pp. 62–79, no. 1833. Springer-Verlag, Norwick (2000)
de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation with application to the Church–Rosser theorem. Koninklijke Nederlandse Akademie van Wetenschappen, Series A, Mathematical Sciences 75:381–392, also chapter C.2 of (Nederpelt et al. 1994) (1972)
Church A.: The Calculi of Lambda-Conversion. Princeton University Press, Princeton, NJ (1941)
Church, A., Rosser, J.B.: Some properties of conversion. Trans. AMS 39, 472–482 (1935)
Curien, P.L.: An abstract framework for environment machines. Theor. Comp. Sci. 82, 389–402 (1991)
Curien, P.L., Hardin, T., Lévy, J.J.: Confluence properties of weak and strong calculi of explicit substitutions. J. ACM 43(2), 362–397 (1996)
Curry, H.B., Feys, R.: Combinatory Logic, vol. I. North-Holland (1958)
David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit substitution. Math. Struct. Comput. Sci. 11(1), 169–206 (2001)
Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1), 69–116. Corrigendum: 4(3), 409–410 (1987)
Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B., chap. 6, pp. 244–320. Elsevier (1990)
Di Cosmo, R., Kesner, D., Polonovski, E.: Proof nets and explicit substitutions. Math. Struct. Comput. Sci. 13(3), 409–450 (2003)
Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965 (2007). doi:10.1016/j.ic.2006.12.002
Fernández, M., Mackie, I.: Closed reductions in the lambda-calculus. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL ’99—13th International Workshop on Computer Science Logic. Lecture Notes in Computer Science, vol. 1683, pp. 220–234. Springer-Verlag, Madrid (1999)
Fernández, M., Mackie, I., Sinot, F.R.: Lambda-calculus with director strings. Appl. Algebra Eng. Commun. Comput. 15(6), 393–437 (2005)
Hardin, T.: Confluence results for the pure strong categorical logic CCL; λ-calculi as subsystems of CCL. Theor. Comp. Sci. 65, 291–342 (1989)
Kamareddine, F., Nederpelt, R.P.: On stepwise explicit substitution. Int. J. Found. Comput. Sci. 4(3), 197–240 (1993)
Kesner, D.: Confluence properties of extensional and non-extensional λ-calculi with explicit substitution. Theor. Comp. Sci. 238(1–2), 183–220 (2000)
Kesner, D.: The theory of explicit substitutions revisited. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007—Computer Science and Logic. Lecture Notes in Computer Science, vol. 4646, pp. 238–252. Springer-Verlag, Lausanne (2007)
Kesner, D.: A theory of explicit substitutions with safe and full composition. Logical Methods in Computer Science 5(3:1), 1–29 (2009). http://www.lmcs-online.org/ojs/viewarticle.php?id=480
Kesner, D., Lengrand, S.: Resource operators for the λ-calculus. Inf. Comput. 205, 419–473 (2007)
Klop, J.W.: Term rewriting systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, chap. 1, pp. 1–116. Oxford University Press (1992)
Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. Theor. Comp. Sci. 121, 279–308 (1993)
Landin, P.J.: The mechanical evaluation of expressions. Comput. J. 6, 308–320 (1964)
Lang, F., Rose, K.H.: Two equivalent calculi of explicit substitution with confluence on meta-terms and preservation of strong normalization (one with names and one first order). Presented at WESTAPP ’98—The First International Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs (Tsukuba, Japan) (1998). http://www.inrialpes.fr/vasy/people/Frederic.Lang/westapp98.ps.gz
Lescanne, P.: From λσ to λυ: a journey through calculi of explicit substitutions. In: POPL ’94—21st Annual ACM Symposium on Principles of Programming Languages, pp. 60–69. Portland, Oregon (1994)
Lins, R.D.: A new formula for the execution of catgorical combinators. In: CADE ’86—Conference on Automated Deduction. Lecture Notes in Computer Science, vol. 230, pp. 89–98. Springer-Verlag (1986)
Lins, R.D.: Partial categorical multi-combinators and Church–Rosser theorems. J. Univers. Comput. Sci. 10(7), 769–788 (2004)
Melliès, P.A.: Typed λ-calculi with explicit substitution may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G.D. (eds.) TLCA ’95—Int. Conf. on Typed Lambda Calculus and Applications. Lecture Notes in Computer Science, pp. 328–334, no. 902. Springer-Verlag, Edinburgh (1995)
Mitschke, G.: Eine algebraische Behandlung von λ-K-Kalkül und Kombinatorischer Logik. PhD thesis, Rheinischen Friedrich-Wilhelms U., Bonn, Germany (1970)
van Raamsdonk, F.: Confluence and Normalization for Higher-order Rewriting. PhD thesis, Amsterdam University (1996)
Revesz, G.: Axioms for the theory of lambda-conversion. SIAM J. Comput. 14(2), 373–382 (1985)
Ritter, E.: Characterising explicit substitutions which preserve termination. In: Girard, J.Y. (ed.) TLCA ’99—Int. Conf. on Typed Lambda Calculus and Applications. Lecture Notes in Computer Science, pp. 325–339, no. 1581. Springer-Verlag, L’Aquila (1999)
Ritter, E., de Paiva, V.: On explicit substitution and names (extended abstract). In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP ’97—24th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 1256, pp. 248–258. Springer-Verlag, Bologna (1997)
Rose, K.H.: Explicit cyclic substitutions. In: Rusinowitch, M., Rémy, J.L. (eds.) CTRS ’92—3rd International Workshop on Conditional Term Rewriting Systems. Lecture Notes in Computer Science, pp. 36–50, no. 656. Springer-Verlag, Pont-a-Mousson (1992)
Rose, K.H.: Explicit substitution – tutorial & survey. Lecture Series LS–96–3, BRICS, Dept. of Computer Science, University of Aarhus, Denmark (1996). ftp://ftp.brics.dk/LS/96/3/BRICS-LS-96-3.ps.gz
Rose, K.H.: Operational reduction models for functional programming languages. PhD thesis, DIKU, Univ. of Copenhagen (1996). http://www.diku.dk/OLD/publikationer/tekniske.rapporter/rapporter/96-01.pdf, DIKU report 96/1
Rose, K.H., Bloo, R., Lang, F.: On explicit substitution with names. IBM Research Report RC24909, IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA (2009). http://domino.research.ibm.com/library/cyberdig.nsf/reportnumber/rc24909
Rosen, B.K.: Tree-manipulating systems and Church–Rosser theorems. J. ACM 20(1), 160–187 (1973)
Santo, J.E.: Delayed substitutions. In: Baader, F. (ed.) RTA 2007—18th International Conference on Term Rewriting and Applications. Lecture Notes in Computer Science, vol. 4533, pp. 169–183. Springer-Verlag, Paris (2007)
Urbanm, C.: How to prove false using the variable convention. Poster at the occasion of Prof. Mike D. Gordon’s 60th birthday (2008). Available from http://www4.in.tum.de/~urbanc/Publications/mike-poster-08.pdf
Urban, C.: Nominal techniques in Isabelle/HOL. J Autom Reasoning 40(4), 327–356 (2008)
Yokouchi, H., Hikita, T.: A rewriting system for categorical combinators with multiple arguments. SIAM J. Comput. 19(1), 78–97 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rose, K.H., Bloo, R. & Lang, F. On Explicit Substitution with Names. J Autom Reasoning 49, 275–300 (2012). https://doi.org/10.1007/s10817-011-9222-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-011-9222-5
Keywords
- Explicit substitution
- Preservation of strong normalization
- Confluence
- Open terms