Journal of Automated Reasoning

, Volume 46, Issue 1, pp 43–80 | Cite as

ABox Abduction in the Description Logic \(\boldsymbol{\mathcal{ALC}}\)

  • Szymon KlarmanEmail author
  • Ulle Endriss
  • Stefan Schlobach


Due to the growing popularity of Description Logics-based knowledge representation systems, predominantly in the context of Semantic Web applications, there is a rising demand for tools offering non-standard reasoning services. One particularly interesting form of reasoning, both from the user as well as the ontology engineering perspective, is abduction. In this paper we introduce two novel reasoning calculi for solving ABox abduction problems in the Description Logic \(\mathcal{ALC}\), i.e. problems of finding minimal sets of ABox axioms, which when added to the knowledge base enforce entailment of a requested set of assertions. The algorithms are based on regular connection tableaux and resolution with set-of-support and are proven to be sound and complete. We elaborate on a number of technical issues involved and discuss some practical aspects of reasoning with the methods.


Description logic Abduction Non-standard reasoning services Semantic tableaux Resolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliseda-Llera, A.: Seeking Explanations: Abduction in Logic, Philosophy of Science and Artificial Intelligence. PhD thesis, ILLC Disertation Series, University of Amsterdam (1997)Google Scholar
  2. 2.
    Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214 (1981)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)Google Scholar
  4. 4.
    Baader, F., Nutt, W.: Basic description logics. In: Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook: Theory, Implementation, and Applications, pp. 47–100. Cambridge University Press (2003)Google Scholar
  5. 5.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1–82. Elsevier Science Publishers B.V. (2001)Google Scholar
  6. 6.
    Bada, M., Mungall, C., Hunter, L.: A call for an abductive reasoning feature in OWL-reasoning tools toward ontology quality control. In: Proceedings of the 5th International Workshop OWL: Experiences and Directions 2008 (OWLED’08 Karlsruhe) (2008)Google Scholar
  7. 7.
    Bibel, W.: On matrices with connections. J. ACM 28(4), 633–645 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bienvenu, M.: Complexity of abduction in the EL family of lightweight description logics. In: Proceedings of KR2008, 11th International Conference on Principles of Knowledge Representation and Reasoning (2008)Google Scholar
  9. 9.
    Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, pp. 1–82. Elsevier (2006)Google Scholar
  10. 10.
    Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A uniform tableaux-based approach to concept abduction and contraction in ALN. In: Proceedings of the 2004 International Workshop on Description Logics (DL2004) (2004)Google Scholar
  11. 11.
    Cox, P.T., Pietrzykowski, T.: Causes for events: their computation and applications. In: Proceedings of the 8th International Conference on Automated Deduction, pp. 608–621 (1986)Google Scholar
  12. 12.
    Elsenbroich, C.: Instinct for Detection. PhD thesis, Department of Computer Science, King’s College London (2005)Google Scholar
  13. 13.
    Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontologies. In: Grau, B.C., Hitzler, P., Shankey, C., Wallace, E. (eds.) Proceedings of the OWLED’06 workshop on OWL: Experiences and Directions 2006, vol. 216 (2006)Google Scholar
  14. 14.
    Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof procedure for abductive logic programming with constraints. In: Alferes, J.J., Leite, J. (eds.) Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA-2004). LNAI, vol. 3229, pp. 31–43. Springer-Verlag (2004)Google Scholar
  15. 15.
    Espinosa Peraldi, S., Kaya, A., Melzer, S., Möller, R., Wessel, M.: Multimedia interpretation as abduction. In: International Workshop on Description Logics (DL-2007) (2007)Google Scholar
  16. 16.
    Flach, P., Kakas, A. (eds.): Abduction and Induction: Essays on their relation and integration. Kluwer Academic Publishers (2000)Google Scholar
  17. 17.
    Gabbay, D.M.: Elementary Logics: A Procedural Perspective. Prentice Hall Europe, UK (1998)Google Scholar
  18. 18.
    Gabbay, D.M., Olivetti, N.: Goal-directed proof theory. Applied Logic Series, vol. 21. Kluwer Academic Publishers (2000)Google Scholar
  19. 19.
    Gabbay, D.M., Woods, J.: Advice on abductive logic. Log. J. IGPL 14(2), 182–219 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) International Joint Conference on Automated Reasoning, IJCAR’2001, pp. 701–705 (2001)Google Scholar
  21. 21.
    Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 101–178. Elsevier Science Publishers B.V. (2001)Google Scholar
  22. 22.
    Hähnle, R., Murray, N., Rosenthal, E.: Linearity and regularity with negation normal form. Theor. Comp. Sci. 328(4), 325–354 (2004)zbMATHCrossRefGoogle Scholar
  23. 23.
    Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: The International Semantic Web Conference 2008 (ISWC 08) (2008)Google Scholar
  24. 24.
    Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) Proceedings of the 2nd Int. Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98). Lecture Notes in Artificial Intelligence, vol. 1397, pp. 307–312. Springer (1998)Google Scholar
  25. 25.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings of the Tenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 57–67 (2006)Google Scholar
  26. 26.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  27. 27.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Kalyanpur, A., Parsia, B., Grau, B.C.: Beyond asserted axioms: Fine-grain justifications for OWL-DL entailments. In: Proceedings of the International Workshop on Description Logics DL’06, (2006)Google Scholar
  29. 29.
    Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. J. Autom. Reason. 40(2–3), 89–116 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Klarman, S.: ABox Abduction in Description Logic. Master’s thesis, ILLC, University of Amsterdam. (2008)
  31. 31.
    Loveland, D.W.: Automated theorem proving: a logical basis. Fundamental Studies in Computer Science, vol. 6. North-Holland Publishing (1978)Google Scholar
  32. 32.
    Mayer, M.C., Pirri, F.: First order abduction via tableau and sequent calculi. Bull. IGPL 1(1), 99–117 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Mayer, M.C., Pirri, F. Propositional abduction in modal logic. Journal of the Interest Group in Pure and Applied Logics 3(6), 907–919 (1995)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Möller, R., Neumann, B.: Ontology-based reasoning techniques for multimedia interpretation and retrieval. In: Kompatsiaris, Y., Hobson, P. (eds.) Semantic Multimedia and Ontologies: Theory and Applications. Springer (2008)Google Scholar
  35. 35.
    Motik, B., Shearer, R., Horrocks, I.: Optimized reasoning in description logics using hypertableaux. In: Pfenning, F. (ed.) Proceedings of the 21st Conference on Automated Deduction (CADE-21), vol. 4603, pp. 67–83 (2007)Google Scholar
  36. 36.
    Paul G.: Approaches to abductive reasoning: an overview. Artif. Intell. Rev. 7(2), 109–152 (1993)CrossRefGoogle Scholar
  37. 37.
    Quine, W.V.O.: On cores and prime implicants of truth functions. Am. Math. Mon. 66(9), 755–760 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of IJCAI-91, 12th International Joint Conference on Artificial Intelligence, pp. 466–471. Sidney, AU (1991)Google Scholar
  39. 39.
    Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies. J. Autom. Reason. 33(3), 317–349 (2007)CrossRefGoogle Scholar
  40. 40.
    Schurz, G.: Models of Abductive Reasoning. TPD Preprint 1, University of Düsseldorf (2002)Google Scholar
  41. 41.
    Tammet, T.: Resolution Methods for Decision Problems and Finite-Model Building. PhD thesis, Göteborg University (1992)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Szymon Klarman
    • 1
    Email author
  • Ulle Endriss
    • 2
  • Stefan Schlobach
    • 1
  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations