Skip to main content
Log in

A Decision Procedure for Linear “Big O” Equations

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Let F be the set of functions from an infinite set, S, to an ordered ring, R. For f, g, and h in F, the assertion f = g + O(h) means that for some constant C, |f(x) − g(x)| ≤C |h(x)| for every x in S. Let L be the first-order language with variables ranging over such functions, symbols for 0, +, −, min , max , and absolute value, and a ternary relation f = g + O(h). We show that the set of quantifier-free formulas in this language that are valid in the intended class of interpretations is decidable and does not depend on the underlying set, S, or the ordered ring, R. If R is a subfield of the real numbers, we can add a constant 1 function, as well as multiplication by constants from any computable subfield. We obtain further decidability results for certain situations in which one adds symbols denoting the elements of a fixed sequence of functions of strictly increasing rates of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apt, K.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  2. Avigad, J., Donnelly, K.: Formalizing O notation in Isabelle/HOL. In: Basin, D., Rusinowitch, M. (eds.) Automated Reasoning: Second International Joint Conference, IJCAR 2004, pp. 357–371. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  3. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem (to appear in ACM Transactions on Computational Logic)

  4. Avigad, J., Friedman, H.: Combining decision procedures for the reals. Logical Methods in Computer Science 2(4:4), 1–42 (2006)

    MathSciNet  Google Scholar 

  5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development: Coq’art: The Calculus of Inductive Constructions. Springer, Berlin Heidelberg New York (2004)

    MATH  Google Scholar 

  6. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Environment for Higher-order Logic. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  7. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Addison-Wesley, Reading, MA (1994)

    MATH  Google Scholar 

  8. Hall Jr., M.: Combinatorial Theory, 2nd ed. Wiley, New York (1986)

    MATH  Google Scholar 

  9. Karmarkar, N.: A new polynomial time algorithm for linear programming. Combinatorica 4, 373–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-aided Reasoning: An Approach. Kluwer, Boston (2000)

    Google Scholar 

  11. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36, 450–461 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-order Logic. Springer, Berlin Heidelberg New York (2002)

    MATH  Google Scholar 

  13. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In: Proceedings of the 11th International Conference on Automated Ceduction (CADE), pp. 748–752. Springer, Berlin Heidelberg New York (1992)

    Google Scholar 

  14. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Dover, Mineola, NY (1998) (Corrected reprint of the 1982 original, Prentice-Hall, New Jersey)

    MATH  Google Scholar 

  15. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5, 3–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weispfenning, V.: Parametric linear and quadratic optimization by elimination. Technical report MIP-9404, Universität Passau (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Avigad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avigad, J., Donnelly, K. A Decision Procedure for Linear “Big O” Equations. J Autom Reasoning 38, 353–373 (2007). https://doi.org/10.1007/s10817-007-9066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-007-9066-1

Keywords

Navigation