Skip to main content
Log in

Landscape Taphonomy Predictably Complicates Demographic Reconstruction

  • Research
  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Accurately reconstructing past human population dynamics is critical for explaining major patterns in the human past. Demand for demographic proxies has driven hopeful interest in the “dates-as-data” approach, which models past demography by assuming a relationship between population size, the production of dateable material, and the corpus of radiocarbon dates produced by archaeological research. However, several biases can affect assemblages of dates, complicating inferences about population size. One serious but potentially addressable issue centers on landscape taphonomy — the ways in which geologic processes structure the preservation and recovery of archaeological sites and/or materials at landscape scales. Here, we explore the influence of landscape taphonomy on demographic proxies. More specifically, we evaluate how well demographic proxies may be corrected for taphonomic effects with either a common generalized approach or an empirically based tailored approach. We demonstrate that frequency distributions of landforms of varying ages can be used to develop local corrections that are more accurate than either global corrections or uncorrected estimates. Using generalized scenarios and a simulated case study based on empirical data on landform ages from the Coso Basin in the western Great Basin region, we illustrate the way in which landscape taphonomy predictably complicates “dates-as-data” approaches, propose and demonstrate a new method of empirically based correction, and explore the interpretive ramifications of ignoring or correcting for taphonomic bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attenbrow, V., & Hiscock, P. (2015). Dates and demography: Are radiometric dates a robust proxy for long-term prehistoric demographic change? Archaeology in Oceania, 50(2), 29–35.

    Google Scholar 

  • Bailey, G., & Cawthra, H. C. (2023). The significance of sea-level change and ancient submerged landscapes in human dispersal and development: A geoarchaeological perspective. Oceanologia, 65(1), 50–70.

    Article  Google Scholar 

  • Ballenger, J. A. M., & Mabry, J. B. (2011). Temporal frequency distributions of alluvium in the American Southwest: Taphonomic, paleohydraulic, and demographic implications. Journal of Archaeological Science, 38(6), 1314–1325.

    Article  Google Scholar 

  • Balsera, V., Díaz-del-Río, P., Gilman, A., Uriarte, A., & Vicent, J. M. (2015). Approaching the demography of late prehistoric Iberia through summed calibrated date probability distributions (7000 - 2000 cal BC). Quaternary International, 386(C), 208–211.

    Article  Google Scholar 

  • Bamforth, D. B., & Grund, B. (2012). Radiocarbon calibration curves, summed probability distributions, and early Paleoindian population trends in North America. Journal of Archaeological Science, 39(6), 1768–1774.

    Article  Google Scholar 

  • Banning, E. B. (2002). Archaeological Survey. Springer Science + Business Media.

    Book  Google Scholar 

  • Barberena, R., Méndez, C., & de Porras, M. E. (2017). Zooming out from archaeological discontinuities: The meaning of mid-Holocene temporal troughs in South American deserts. Journal of Anthropological Archaeology, 46, 68–81.

    Article  Google Scholar 

  • Barton, C. M., Bernabeu, J., Aura, J. E., Garcia, O., & La Roca, N. (2002). Dynamic landscapes, artifact taphonomy, and landuse modeling in the western Mediterranean. Geoarchaeology, 17(2), 155–190.

    Article  Google Scholar 

  • Bettis, E. A., & Benn, D. W. (1984). An archaeological and geomorphological survey in the central Des Moines River Valley, Iowa. Plains Anthropologist, 29(105), 211–227.

    Article  Google Scholar 

  • Bettis, E. A., & Mandel, R. D. (2002). The effects of temporal and spatial patterns of Holocene erosion and alluviation on the archaeological record of the Central and Eastern Great Plains, U.S.A. Geoarchaeology, 17(2), 141–154. https://doi.org/10.1002/gea.10006

    Article  Google Scholar 

  • Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S., & Stevens, C. (2017). Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proceedings of the National Academy of Sciences, 114(49), E10524–E10531.

    Article  Google Scholar 

  • Bevan, A., & Crema, E. R. (2017). rcarbon: Methods for calibrating and analysing radiocarbon dates. https://CRAN.R-project.org/package=rcarbon

  • Bird, D., Freeman, J., Robinson, E., Maughan, G., Finley, J. B., Lambert, P. M., & Kelly, R. L. (2020). A first empirical analysis of population stability in North America using radiocarbon records. The Holocene, 30(9), 1345–1359.

    Article  Google Scholar 

  • Bluhm, L. E., & Surovell, T. A. (2019). Validation of a global model of taphonomic bias using geologic radiocarbon ages. Quaternary Research, 91(1), 325–328.

    Article  Google Scholar 

  • Borejsza, A., Frederick, C., Alatorre, L. M., & Joyce, A. (2014). Alluvial stratigraphy and the search for preceramic open-air sites in highland Mesoamerica. Latin American Antiquity, 25(3), 278–299.

    Article  Google Scholar 

  • Borrero, L. A. (2014). Regional taphonomy. In C. Smith (Ed.), Encyclopedia of Global Archaeology. Springer.

    Google Scholar 

  • Box, G. E. (1979). Robustness in the strategy of scientific model building. In R. L. Launer & G. N. Wilkinson (Eds.), Robustness in Statistics (Vol. 1, pp. 201–236). Academic Press.

    Chapter  Google Scholar 

  • Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.

    Article  Google Scholar 

  • Bronk Ramsey, C. (2017). Methods for summarizing radiocarbon datasets. Radiocarbon, 59(6), 1809–1833.

    Article  Google Scholar 

  • Bronk Ramsey, C. (2020). OxCal. Oxford. https://c14.arch.ox.ac.uk/oxcal.html

  • Broughton, J. M., & Weitzel, E. M. (2018). Population reconstructions for humans and megafauna suggest mixed causes for North American Pleistocene extinctions. Nature Communications, 9(1), 5441.

  • Brown, W. A. (2015). Through a filter, darkly: Population size estimation, systematic error, and random error in radiocarbon-supported demographic temporal frequency analysis. Journal of Archaeological Science, 53, 133–147.

    Article  Google Scholar 

  • Bryson, R., Bryson, R., & Ruter, A. (2006). A calibrated radiocarbon database of late Quaternary volcanic eruptions. Earth Discussions, 1(2), 123–134.

    Article  Google Scholar 

  • Buchanan, B., Collard, M., & Edinborough, K. (2008). Paleoindian demography and the extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences, 105(33), 11651–11654.

    Article  Google Scholar 

  • Burger, O., Todd, L. C., & Burnett, P. (2008). The behavior of surface artifacts: Building a landscape taphonomy on the High Plains. In L. L. Scheiber & B. J. Clark (Eds.), Archaeological Landscapes on the High Plains (pp. 203–236). University Press of Colorado.

    Google Scholar 

  • Carleton, W. C., & Groucutt, H. S. (2021). Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. The Holocene, 31(4), 630–643.

    Article  Google Scholar 

  • Carney, M., & Davies, B. (2020). Agent-based modeling, scientific reproducibility, and taphonomy: A successful model implementation case study. Journal of Computer Applications in Archaeology, 3(1), 182–196.

    Article  Google Scholar 

  • Chaput, M. A., Kriesche, B., Betts, M., Martindale, A., Kulik, R., Schmidt, V., & Gajewski, K. (2015). Spatiotemporal distribution of Holocene populations in North America. Proceedings of the National Academy of Sciences, 112(39), 12127–12132.

    Article  Google Scholar 

  • Chiverrell, R. C., Thorndycraft, V. R., & Hoffmann, T. O. (2011). Cumulative probability functions and their role in evaluating the chronology of geomorphological events during the Holocene. Journal of Quaternary Science, 26(1), 76–85.

    Article  Google Scholar 

  • Clevis, Q., Tucker, G. E., Lock, G., Lancaster, S. T., Gasparini, N., Desitter, A., & Bras, R. L. (2006). Geoarchaeological simulation of meandering river deposits and settlement distributions: A three-dimensional approach. Geoarchaeology, 21(8), 843–874.

    Article  Google Scholar 

  • Codding, B. F., Brenner Coltrain, J., Louderback, L., Vernon, K. B., Magargal, K. E., Yaworsky, P. M., et al. (2022). Socioecological dynamics structuring the spread of farming in the North American Basin-Plateau Region. Environmental Archaeology, 27(4), 434–446. https://doi.org/10.1080/14614103.2021.1927480

    Article  Google Scholar 

  • Codding, B. F., Roberts, H., Eckerle, W., Brewer, S. C., Medina, I. D., Vernon, K. B., & Spangler, J. S. (2023). Can we reliably detect adaptive responses of hunter-gatherers to past climate change? Examining the impact of Mid-Holocene drought on Archaic settlement in the Basin-Plateau Region of North America. Quaternary International. In press. https://doi.org/10.1016/j.quaint.2023.06.014

    Book  Google Scholar 

  • Collard, M., Edinborough, K., Shennan, S., & Thomas, M. G. (2010). Radiocarbon evidence indicates that migrants introduced farming to Britain. Journal of Archaeological Science, 37(4), 866–870.

    Article  Google Scholar 

  • Contreras, D. A., & Meadows, J. (2014). Summed radiocarbon calibrations as a population proxy: A critical evaluation using a realistic simulation approach. Journal of Archaeological Science, 52, 591–608.

    Article  Google Scholar 

  • Crema, E. R. (2022). Statistical inference of prehistoric demography from frequency distributions of radiocarbon dates: A review and a guide for the perplexed. Journal of Archaeological Method and Theory, 29(4), 1387–1418.

    Article  Google Scholar 

  • Crema, E. R., & Bevan, A. (2021). Inference from large sets of radiocarbon dates: Software and methods. Radiocarbon, 63(1), 23–39.

    Article  Google Scholar 

  • Crema, E. R., Bevan, A., & Shennan, S. (2017). Spatio-temporal approaches to archaeological radiocarbon dates. Journal of Archaeological Science, 87, 1–9.

    Article  Google Scholar 

  • Crema, E. R., Habu, J., Kobayashi, K., & Madella, M. (2016). Summed probability distribution of 14C dates suggests regional divergences in the population dynamics of the Jomon Period in eastern Japan. PLoS ONE, 11(4), e0154809.

    Article  Google Scholar 

  • Crema, E. R., & Kobayashi, K. (2020). A multi-proxy inference of Jōmon population dynamics using Bayesian phase models, residential data, and summed probability distribution of 14C dates. Journal of Archaeological Science, 117, 105136.

    Article  Google Scholar 

  • Crema, E. R., & Shoda, S. (2021). A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLoS One, 16(5), e0251695.

    Article  Google Scholar 

  • Crombé, P., & Robinson, E. (2014). 14C dates as demographic proxies in Neolithisation models of northwestern Europe: A critical assessment using Belgium and northeast France as a case-study. Journal of Archaeological Science, 52, 558–566.

    Article  Google Scholar 

  • Culleton, B. J. (2008). Crude demographic proxy reveals nothing about Paleoindian population. Proceedings of the National Academy of Sciences, 105(50), E111.

    Article  Google Scholar 

  • d’Alpoim Guedes, J. A., Crabtree, S. A., Bocinsky, R. K., & Kohler, T. A. (2016). Twenty-first century approaches to ancient problems: Climate and society. Proceedings of the National Academy of Sciences, 113(51), 14483–14491.

    Article  Google Scholar 

  • Davies, B., Holdaway, S. J., & Fanning, P. C. (2015). Modelling the palimpsest: An exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. The Holocene, 26(3), 450–463.

    Article  Google Scholar 

  • DiNapoli, R., Crema, E., Lipo, C., Rieth, T., & Hunt, T. (2021). Approximate Bayesian computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island). Nature Communications, 12(1), 3939.

    Article  Google Scholar 

  • Downey, S. S., Haas, W. R., Jr., & Shennan, S. J. (2016). European Neolithic societies showed early warning signals of population collapse. Proceedings of the National Academy of Sciences, 113(35), 9751–9756.

    Article  Google Scholar 

  • Drake, B. L., Blanco-González, A., & Lillios, K. T. (2017). Regional demographic dynamics in the Neolithic transition in Iberia: Results from summed calibrated date analysis. Journal of Archaeological Method and Theory, 24(3), 796–812.

    Article  Google Scholar 

  • Drennan, R. D., Berrey, C. A., & Peterson, C. E. (2015).  Regional Settlement Demography in Archaeology. Eliot Werner Publications.

  • Edinborough, K., Porčić, M., Martindale, A., Brown, T. J., Supernant, K., & Ames, K. M. (2017). Radiocarbon test for demographic events in written and oral history. Proceedings of the National Academy of Sciences, 114(47), 12436–12441.

    Article  Google Scholar 

  • Eerkens, J. W., & Rosenthal, J. S. (2002). Transition from geophyte to seed processing: Evidence for intensification from thermal features near China Lake, northern Mojave Desert. Pacific Coast Archaeological Society Quarterly, 38(2–3), 19–36.

    Google Scholar 

  • Eerkens, J. W., Rosenthal, J. S., Young, D. C., & King, J. (2007). Early Holocene landscape archaeology in the Coso Basin, Northwestern Mojave Desert, California. North American Archaeologist, 28(2), 87–112.

    Article  Google Scholar 

  • Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., & Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences, 110(20), 7978–7985.

    Article  Google Scholar 

  • Fanning, P. C., Holdaway, S. J., & Rhodes, E. J. (2007). A geomorphic framework for understanding the surface archaeological record in arid environments. Geodinamica Acta, 20(4), 275–286. https://doi.org/10.3166/ga.20.275-286

    Article  Google Scholar 

  • Fernández-López de Pablo, J., Gutiérrez-Roig, M., Gómez-Puche, M., McLaughlin, R., Silva, F., & Lozano, S. (2019). Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nature Communications, 10(1), 1872.

    Article  Google Scholar 

  • Flannery, K. V. (Ed.). (1976). The Early Mesoamerican Village. Academic Press.

    Google Scholar 

  • Flohr, P., Fleitmann, D., Matthews, R., Matthews, W., & Black, S. (2016). Evidence of resilience to past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events. Quaternary Science Reviews, 136(C), 23–39.

    Article  Google Scholar 

  • Freeman, J., Byers, D. A., Robinson, E., & Kelly, R. L. (2018). Culture process and the interpretation of radiocarbon data. Radiocarbon, 60(2), 453–467.

    Article  Google Scholar 

  • Goldberg, A., Mychajliw, A. M., & Hadly, E. A. (2016). Post-invasion demography of prehistoric humans in South America. Nature, 532(7598), 232–235.

    Article  Google Scholar 

  • Herrmann, E. W. (2015). How bedrock-controlled channel migration can structure selective preservation of archaeological sites: Implications for modeling Paleoindian settlement. Geoarchaeology, 31(1), 58–74.

    Article  Google Scholar 

  • Hinz, M., Feeser, I., Sjögren, K.-G., & Müller, J. (2012). Demography and the intensity of cultural activities: An evaluation of Funnel Beaker Societies (4200-2800 cal BC). Journal of Archaeological Science, 39(10), 3331–3340.

    Article  Google Scholar 

  • Holdaway, S. J., Fanning, P. C., & Littleton, J. (2009). Assessing the frequency distribution of radiocarbon determinations from the archaeological record of the Late Holocene in western NSW, Australia. In A. S. Fairbairn, S. O’Connor, & B. Marwick (Eds.), New Directions in Archaeological Science (pp. 1–11). ANU E Press.

    Google Scholar 

  • Jones, T. L., Coltrain, J. B., Jacobs, D. K., Porcasi, J., Brewer, S. C., Buckner, J. C., et al. (2021). Causes and consequences of the late Holocene extinction of the marine flightless duck (Chendytes lawi) in the northeastern Pacific. Quaternary Science Reviews, 260, 106914.

    Article  Google Scholar 

  • Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., & Klein Goldewijk, K. (2010). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775–791. https://doi.org/10.1177/0959683610386983

    Article  Google Scholar 

  • Kelly, R. L., Surovell, T. A., Shuman, B. N., & Smith, G. M. (2013). A continuous climatic impact on Holocene human population in the Rocky Mountains. Proceedings of the National Academy of Sciences, 110(2), 443–447.

    Article  Google Scholar 

  • Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., Kohler, T. A., et al. (2014). Grand challenges for archaeology. Proceedings of the National Academy of Sciences, 111(3), 879–880.

    Article  Google Scholar 

  • Klein Goldewijk, K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), 73–86.

    Article  Google Scholar 

  • MacInnes, B., Fitzhugh, B., & Holman, D. (2014). Controlling for landform age when determining the settlement history of the Kuril Islands. Geoarchaeology, 29(3), 185–201.

    Article  Google Scholar 

  • Mandel, R. D. (2008). Buried Paleoindian-age landscapes in stream valleys of the Central Plains, USA. Geomorphology, 101(1), 342–361. https://doi.org/10.1016/j.geomorph.2008.05.031

    Article  Google Scholar 

  • Mökkönen, T. (2014). Archaeological radiocarbon dates as a population proxy: Skeptical view. Fennoscandia Archaeologica, 31, 125–134.

    Google Scholar 

  • Parkinson, E. W., McLaughlin, T. R., Esposito, C., Stoddart, S., & Malone, C. (2021). Radiocarbon dated trends and central Mediterranean prehistory. Journal of World Prehistory, 34(3), 317–379.

    Article  Google Scholar 

  • Parnell, A. (2015). Bchron: Radiocarbon dating, age-depth modelling, relative sea level rate estimation, and non-parametric phase modelling. https://CRAN.R-project.org/package=Bchron

  • Peros, M. C., Munoz, S. E., Gajewski, K., & Viau, A. E. (2010). Prehistoric demography of North America inferred from radiocarbon data. Journal of Archaeological Science, 37(3), 656–664. https://doi.org/10.1016/j.jas.2009.10.029

    Article  Google Scholar 

  • Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. Science, 324(5932), 1298–1301.

    Article  Google Scholar 

  • Price, M. H., Capriles, J. M., Hoggarth, J. A., Bocinsky, R. K., Ebert, C. E., & Jones, J. H. (2021). End-to-end Bayesian analysis for summarizing sets of radiocarbon dates. Journal of Archaeological Science, 135, 105473.

    Article  Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing (manual). , https://www.R-project.org/

    Google Scholar 

  • Ravesloot, J. C., & Waters, M. R. (2004). Geoarchaeology and archaeological site patterning on the middle Gila River, Arizona. Journal of Field Archaeology, 29(1–2), 203–214. https://doi.org/10.1179/jfa.2004.29.1-2.203

    Article  Google Scholar 

  • Rhode, D., Brantingham, P. J., Perreault, C., & Madsen, D. B. (2014). Mind the gaps: Testing for hiatuses in regional radiocarbon date sequences. Journal of Archaeological Science, 52, 567–577.

    Article  Google Scholar 

  • Rick, J. W. (1987). Dates as data: An examination of the Peruvian preceramic radiocarbon record. American Antiquity, 52(1), 55–73.

    Article  Google Scholar 

  • Riris, P. (2018). Dates as data revisited: A statistical examination of the Peruvian preceramic radiocarbon record. Journal of Archaeological Science, 97, 67–76.

    Article  Google Scholar 

  • Schiffer, M. B. (1987). Formation Processes of the Archaeological Record. University of New Mexico Press.

    Google Scholar 

  • Shennan, S., & Edinborough, K. (2007). Prehistoric population history: From the Late Glacial to the Late Neolithic in central and northern Europe. Journal of Archaeological Science, 34(8), 1339–1345.

    Article  Google Scholar 

  • Shennan, S., Timpson, A., Edinborough, K., Colledge, S. M., Kerig, T., Manning, K., et al. (2013). Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nature Communications, 4(1), 2486.

    Article  Google Scholar 

  • Stafford, C. (1995). Geoarchaeological perspectives on paleolandscapes and regional subsurface archaeology. Journal of Archaeological Method and Theory, 2(1), 69–104.

    Article  Google Scholar 

  • Stewart, M., Carleton, W. C., & Groucutt, H. S. (2021). Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nature Communications, 12(1), 965.

    Article  Google Scholar 

  • Stewart, M., Carleton, W. C., & Groucutt, H. S. (2022). Reply to: Accurate population proxies do not exist between 11.7 and 15 ka in North America. Nature Communications, 13(1), 4693. https://doi.org/10.1038/s41467-022-32356-3

  • Surovell, T. A., & Brantingham, P. J. (2007). A note on the use of temporal frequency distributions in studies of prehistoric demography. Journal of Archaeological Science, 34(11), 1868–1877.

    Article  Google Scholar 

  • Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J., & Kelly, R. L. (2009). Correcting temporal frequency distributions for taphonomic bias. Journal of Archaeological Science, 36(8), 1715–1724.

    Article  Google Scholar 

  • Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., & Seppä, H. (2015). Human population dynamics in Europe over the last glacial maximum. Proceedings of the National Academy of Sciences, 112(27), 8232–8237.

    Article  Google Scholar 

  • Tallavaara, M., Pesonen, P., & Oinonen, M. (2010). Prehistoric population history in eastern Fennoscandia. Journal of Archaeological Science, 37(2), 251–260.

    Article  Google Scholar 

  • Timpson, A., Colledge, S., Crema, E., Edinborough, K., Kerig, T., Manning, K., et al. (2014). Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: A new case-study using an improved method. Journal of Archaeological Science, 52(C), 549–557.

    Article  Google Scholar 

  • Torfing, T. (2015). Neolithic population and summed probability distribution of 14C-dates. Journal of Archaeological Science, 63, 193–198.

    Article  Google Scholar 

  • Tremayne, A. H., & Winterhalder, B. (2017). Large mammal biomass predicts the changing distribution of hunter-gatherer settlements in mid-late Holocene Alaska. Journal of Anthropological Archaeology, 45, 81–97.

    Article  Google Scholar 

  • Vaesen, K., Collard, M., Cosgrove, R., & Roebroeks, W. (2016). Population size does not explain past changes in cultural complexity. Proceedings of the National Academy of Sciences, 113(16), E2241–E2247.

    Article  Google Scholar 

  • Ward, I., & Larcombe, P. (2021). Sedimentary unknowns constrain the current use of frequency analysis of radiocarbon data sets in forming regional models of demographic change. Geoarchaeology, 36(3), 546–570.

    Article  Google Scholar 

  • Weitzel, E. M., & Codding, B. F. (2016). Population growth as a driver of initial domestication in Eastern North America. Royal Society Open Science, 3(8), 160319.

    Article  Google Scholar 

  • Williams, A. N. (2012). The use of summed radiocarbon probability distributions in archaeology: A review of methods. Journal of Archaeological Science, 39(3), 578–589.

    Article  Google Scholar 

  • Wilson, K. M., McCool, W. C., & Coltrain, J. B. (2023). Climate and oceanic condition changes influence subsistence economic adaptation through intensification on the Central Andean coasts. Quaternary International. In press.

  • Zahid, H. J., Robinson, E., & Kelly, R. L. (2016). Agriculture, population growth, and statistical analysis of the radiocarbon record. Proceedings of the National Academy of Sciences, 113(4), 931–935.

    Article  Google Scholar 

  • Zvelebil, M., Green, S. W., & Macklin, M. G. (1992). Archaeological landscapes, lithic scatters, and human behavior. In J. Rossignol & L. Wandsnider (Eds.), Space, Time, and Archaeological Landscapes (pp. 193–226). Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation Awards BCS-1921013 and BCS-1921072. The authors thank John Meadows, D. Craig Young, and Duncan Metcalfe for productive conversations about dates-as-data and landscape taphonomy, as well as the various students who have worked on other aspects of this project. We also appreciate the thoughtful and constructive comments provided by two anonymous reviewers.

Data and Code Availability

The R code used in this project is available in the included Supplementary Information.

Funding

This research was supported by the National Science Foundation Awards 1921013 and 1921072.

Author information

Authors and Affiliations

Authors

Contributions

D.C. and B.C. contributed equally to the manuscript.

Corresponding author

Correspondence to Daniel A. Contreras.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 3262 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, D.A., Codding, B.F. Landscape Taphonomy Predictably Complicates Demographic Reconstruction. J Archaeol Method Theory (2023). https://doi.org/10.1007/s10816-023-09634-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10816-023-09634-5

Keywords

Navigation