Skip to main content

Advertisement

Log in

Identifying the Impact of Soil Ingestion on Dental Microwear Textures Using a Wild Boar Experimental Model

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Dental microwear has been widely used to reconstruct mammals’ past diet and to understand their dental evolution. In archaeology, it can help reconstruct anthropogenic herd-feeding systems. However, deciphering the impact of exogenous mineral particles on dental wear is an ongoing challenge since studies have shown that soil ingestion can generates microwear traces that interfere with the dietary signals. To bridge this gap, this study relies on the first large-scale controlled-food experiment on wild boars (Sus scrofa) to test how soil ingestion can affect the dietary signal recorded in dental microwear. It provides the opportunity to investigate the impact of natural soil ingestion over microwear traces by comparing penned boars that were able to root with stalled boars that were not. We performed 3D Dental microwear texture analysis (DMTA) on 22 controlled-fed boars kept captive either in an indoor stall with no soil ingestion, or in a wooded pen with natural soil ingestion. We analysed shearing and crushing facets on upper and lower first and second molars using standard texture parameters. We also conducted particle size distribution analyses of the ingested soil. In line with previous works, the consumption of exogenous abrasives in rooting boars leads to less rough, less complex and more anisotropic wear surfaces than in stall-fed boars, even though they received the same diet. Thus, we highly recommend studying DMT when investigating ancient pig husbandry systems, particularly local changes in food management. Overall, this study contributes to a better comprehension of how exogenous abrasives impact DMT among mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackermans, N. L., Winkler, D. E., Martin, L. F., Kaiser, T. M., Clauss, M., & Hatt, J.-M. (2020). Dust and grit matter: Abrasives of different size lead to opposing dental microwear textures in experimentally fed sheep (Ovis aries). The Journal of Experimental Biology, 223(3), jeb220442. https://doi.org/10.1242/jeb.220442

    Article  Google Scholar 

  • Balasse, M., Cucchi, T., Evin, A., Bălăşescu, A., Frémondeau, D., & Horard-Herbin, M.-P. (2018). Wild game or farm animal? Tracking human-pig relationships in ancient times through stable isotope analysis. In C. Stépanoff & J.-D. Vigne (Eds.), Hybrid Communities. Biosocial Approaches to Domestication and Other Trans-species Relationships (pp. 81–96). Routledge. https://www.taylorfrancis.com/books/9781351717984

  • Barthelmy, D. (2014). Mineralogy Database. Available at http://webmineral.com/. Accessed Dec 2021

  • Beattie, V. E., & O’Connellt, N. E. (2002). Relationship between rooting behaviour and foraging in growing pigs. Animal Welfare, 11(3), 295–303.

    Article  Google Scholar 

  • Berlioz, E., Azorit, C., Blondel, C., Ruiz, M. S. T., & Merceron, G. (2017). Deer in an arid habitat: Dental microwear textures track feeding adaptability. Hystrix, the Italian Journal of Mammalogy, 28, 222–230. https://doi.org/10.4404/hystrix-28.2-12048

    Article  Google Scholar 

  • Berlioz, É., Kostopoulos, D. S., Blondel, C., & Merceron, G. (2018). Feeding ecology of Eucladoceros ctenoides as a proxy to track regional environmental variations in Europe during the early Pleistocene. Comptes Rendus Palevol, 17(4), 320–332. https://doi.org/10.1016/j.crpv.2017.07.002

    Article  Google Scholar 

  • Blondel, C., Rowan, J., Merceron, G., Bibi, F., Negash, E., Barr, W. A., & Boisserie, J.-R. (2018). Feeding ecology of Tragelaphini (Bovidae) from the Shungura Formation, Omo Valley, Ethiopia: Contribution of dental wear analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 496, 103–120. https://doi.org/10.1016/j.palaeo.2018.01.027

    Article  Google Scholar 

  • Brindley, G. W., & Brown, G. (1980). Crystal Structures of Clay Minerals and Their X-Ray Identification. https://doi.org/10.1180/mono-5

    Article  Google Scholar 

  • Broz, M. E., Cook, R. F., & Whitney, D. L. (2006). Microhardness, toughness, and modulus of Mohs scale minerals. American Mineralogist, 91(1), 135–142. https://doi.org/10.2138/am.2006.1844

    Article  Google Scholar 

  • Cucchi, T., Dai, L., Balasse, M., Zhao, C., Gao, J., Hu, Y., Yuan, J., & Vigne, J.-D. (2016). Social Complexification and Pig (Sus scrofa) Husbandry in ancient China: A combined geometric morphometric and isotopic approach. PLoS One, 11(7), e0158523. https://doi.org/10.1371/journal.pone.0158523

    Article  Google Scholar 

  • Daegling, D. J., Hua, L.-C., & Ungar, P. S. (2016). The role of food stiffness in dental microwear feature formation. Archives of Oral Biology, 71, 16–23. https://doi.org/10.1016/j.archoralbio.2016.06.018

    Article  Google Scholar 

  • Damuth, J., & Janis, C. M. (2011). On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology. Biological Reviews, 86(3), 733–758. https://doi.org/10.1111/j.1469-185X.2011.00176.x

    Article  Google Scholar 

  • Davis, M., & Pineda Munoz, S. (2016). The temporal scale of diet and dietary proxies. Ecology and Evolution, 6(6), 1883–1897. https://doi.org/10.1002/ece3.2054

    Article  Google Scholar 

  • DeSantis, L. R. G., Scott, J. R., Schubert, B. W., Donohue, S. L., McCray, B. M., Stolk, C. A. V., Winburn, A. A., Greshko, M. A., & O’Hara, M. C. (2013). Direct Comparisons of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS One, 8(8), e71428. https://doi.org/10.1371/journal.pone.0071428

    Article  Google Scholar 

  • Dixon, J. B., & Weed, S. B. (Eds.). (1989). Minerals in soil environments. Soil Science Society of America. https://doi.org/10.2136/sssabookser1.2ed

  • Fannin, L. D., Singels, E., Esler, K. J., & Dominy, N. J. (2021). Grit and consequence. Evolutionary Anthropology: Issues, News, and Reviews, evan.21927. https://doi.org/10.1002/evan.21927

  • Francisco, A., Blondel, C., Brunetière, N., Ramdarshan, A., & Merceron, G. (2018). Enamel surface topography analysis for diet discrimination. A methodology to enhance and select discriminative parameters. Surface Topography: Metrology and Properties, 6(1), 015002. https://doi.org/10.1088/2051-672X/aa9dd3

  • Gallego-Valle, A., Colominas, L., Burguet-Coca, A., Aguilera, M., Palet, J.-M., & Tornero, C. (2020). What is on the menu today? Creating a microwear reference collection through a controlled-food trial to study feeding management systems of ancient agropastoral societies. Quaternary International, 557, 3–11. https://doi.org/10.1016/j.quaint.2020.02.020

    Article  Google Scholar 

  • Grant, A. (1982). The use of tooth wear as a guide to the age of domestic animals. In B. Wilson, S. Grigson, & S. Payne (Eds.), Ageing and Sexing Animal Bones from Archaeological Sites (pp. 91–108). British Archaeological Reports.

    Google Scholar 

  • Harbers, H., Neaux, D., Ortiz, K., Blanc, B., Laurens, F., Baly, I., Callou, C., Schafberg, R., Haruda, A., Lecompte, F., Casabianca, F., Studer, J., Renaud, S., Cornette, R., Locatelli, Y., Vigne, J.-D., Herrel, A., & Cucchi, T. (2020a). The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). Royal Society Open Science, 7(3), 192039. https://doi.org/10.1098/rsos.192039

    Article  Google Scholar 

  • Harbers, H., Zanolli, C., Cazenave, M., Theil, J.-C., Ortiz, K., Blanc, B., Locatelli, Y., Schafberg, R., Lecompte, F., Baly, I., Laurens, F., Callou, C., Herrel, A., Puymerail, L., & Cucchi, T. (2020b). Investigating the impact of captivity and domestication on limb bone cortical morphology: An experimental approach using a wild boar model. Scientific Reports, 10(1), 19070. https://doi.org/10.1038/s41598-020-75496-6

    Article  Google Scholar 

  • Harris, J. M., & Cerling, T. E. (2002). Dietary adaptations of extant and Neogene African suids. Journal of Zoology, 256(1), 45–54. https://doi.org/10.1017/S0952836902000067

    Article  Google Scholar 

  • Hatt, J.-M., Codron, D., Ackermans, N. L., Martin, L. F., Richter, H., Kircher, P. R., Gerspach, C., Hummel, J., & Clauss, M. (2020). The effect of the rumen washing mechanism in sheep differs with concentration and size of abrasive particles. Palaeogeography, Palaeoclimatology, Palaeoecology, 550, 109728. https://doi.org/10.1016/j.palaeo.2020.109728

    Article  Google Scholar 

  • Hiiemae, K. M. (2000). CHAPTER 13—Feeding in mammals. In K. Schwenk (Ed.), Feeding (pp. 411–448). Academic Press. https://doi.org/10.1016/B978-012632590-4/50014-9

  • Hoffman, J. M., Fraser, D., & Clementz, M. T. (2015). Controlled feeding trials with ungulates: A new application of in vivo dental molding to assess the abrasive factors of microwear. Journal of Experimental Biology, 218(10), 1538–1547. https://doi.org/10.1242/jeb.118406

    Article  Google Scholar 

  • Hua, L., Chen, J., & Ungar, P. S. (2020). Diet reduces the effect of exogenous grit on tooth microwear. Biosurface and Biotribology, 6(2), 48–52. https://doi.org/10.1049/bsbt.2019.0041

    Article  Google Scholar 

  • Keuling, O., Podgórski, T., Monaco, A., Melletti, M., Merta, D., Albrycht, M., Genov, P. V., Gethöffer, F., Vetter, S. G., Jori, F., Scalera, R., & Gongora, J. (2017). Eurasian Wild Boar Sus scrofa (Linnaeus, 1758). In M. Melletti & E. Meijaard (Eds.), Ecology, Conservation and Management of Wild Pigs and Peccaries (1st ed., pp. 202–233). Cambridge University Press. https://doi.org/10.1017/9781316941232.023

  • Lazagabaster, I. A. (2019). Dental microwear texture analysis of Pliocene Suidae from Hadar and Kanapoi in the context of early hominin dietary breadth expansion. Journal of Human Evolution, 132, 80–100. https://doi.org/10.1016/j.jhevol.2019.04.010

    Article  Google Scholar 

  • Louail, M., Ferchaud, S., Souron, A., Walker, A. E. C., & Merceron, G. (2021). Dental microwear textures differ in pigs with overall similar diets but fed with different seeds. Palaeogeography, Palaeoclimatology, Palaeoecology, 572, 110415. https://doi.org/10.1016/j.palaeo.2021.110415

    Article  Google Scholar 

  • Lucas, P. W. (2004). Dental functional morphology: how teeth work (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511735011

  • Lucas, P. W., van Casteren, A., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., Watzke, J., Reed, D. A., Diekwisch, T. G. H., Strait, D. S., & Atkins, A. G. (2014). The role of dust, grit and phytoliths in tooth wear. Annales Zoologici Fennici, 51(1–2), 143–152. https://doi.org/10.5735/086.051.0215

    Article  Google Scholar 

  • Lucas, P. W., Constantino, P., Wood, B., & Lawn, B. (2008). Dental enamel as a dietary indicator in mammals. BioEssays, 30(4), 374–385. https://doi.org/10.1002/bies.20729

    Article  Google Scholar 

  • Lucas, P. W., Omar, R., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., Thai, L. A., Watzke, J., Strait, D. S., & Atkins, A. G. (2013). Mechanisms and causes of wear in tooth enamel: Implications for hominin diets. Journal of the Royal Society Interface, 10(80), 20120923. https://doi.org/10.1098/rsif.2012.0923

    Article  Google Scholar 

  • Madden, R. H. (2014). Hypsodonty in mammals: Evolution, geomorphology and the role of earth surface processes. Cambridge University Press. https://doi.org/10.1017/CBO9781139003384

    Article  Google Scholar 

  • Mainland, I. L. (2003). Dental microwear in grazing and browsing Gotland sheep (Ovis aries) and its implications for dietary reconstruction. Journal of Archaeological Science, 30(11), 1513–1527. https://doi.org/10.1016/S0305-4403(03)00055-4

    Article  Google Scholar 

  • Martin, F., Plastiras, C.-A., Merceron, G., Souron, A., & Boisserie, J.-R. (2018). Dietary niches of terrestrial cercopithecines from the Plio-Pleistocene Shungura Formation, Ethiopia: Evidence from dental microwear texture analysis. Scientific Reports, 8(1), 14052. https://doi.org/10.1038/s41598-018-32092-z

    Article  Google Scholar 

  • Martin, L. F., Krause, L., Ulbricht, A., Winkler, D. E., Codron, D., Kaiser, T. M., Müller, J., Hummel, J., Clauss, M., Hatt, J.-M., & Schulz-Kornas, E. (2020). Dental wear at macro- and microscopic scale in rabbits fed diets of different abrasiveness: A pilot investigation. Palaeogeography, Palaeoclimatology, Palaeoecology, 556, 109886. https://doi.org/10.1016/j.palaeo.2020.109886

    Article  Google Scholar 

  • Merceron, G., Blondel, C., Brunetiere, N., Francisco, A., Gautier, D., & Ramdarshan, A. (2017). Dental microwear and controlled food testing on sheep: The TRIDENT project. Biosurface and Biotribology, 3(4), 174–183. https://doi.org/10.1016/j.bsbt.2017.12.005

    Article  Google Scholar 

  • Merceron, G., Escarguel, G., Angibault, J.-M., & Verheyden-Tixier, H. (2010). Can dental microwear textures record inter-individual dietary variations? PLoS One, 5(3), e9542. https://doi.org/10.1371/journal.pone.0009542

    Article  Google Scholar 

  • Merceron, G., Hofman-Kamińska, E., & Kowalczyk, R. (2014). 3D dental microwear texture analysis of feeding habits of sympatric ruminants in the Białowieża Primeval Forest, Poland. Forest Ecology and Management, 328, 262–269. https://doi.org/10.1016/j.foreco.2014.05.041

    Article  Google Scholar 

  • Merceron, G., Kallend, A., Francisco, A., Louail, M., Martin, F., Plastiras, C.-A., Thiery, G., & Boisserie, J.-R. (2021). Further away with dental microwear analysis: Food resource partitioning among Plio-Pleistocene monkeys from the Shungura Formation, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology, 572, 110414. https://doi.org/10.1016/j.palaeo.2021.110414

    Article  Google Scholar 

  • Merceron, G., Ramdarshan, A., Blondel, C., Boisserie, J.-R., Brunetiere, N., Francisco, A., Gautier, D., Milhet, X., Novello, A., & Pret, D. (2016). Untangling the environmental from the dietary: Dust does not matter. Proceedings of the Royal Society b: Biological Sciences, 283(1838), 20161032. https://doi.org/10.1098/rspb.2016.1032

    Article  Google Scholar 

  • Merceron, G., Scott, J., Scott, R. S., Geraads, D., Spassov, N., & Ungar, P. S. (2009). Folivory or fruit/seed predation for Mesopithecus, an earliest colobine from the late Miocene of Eurasia? Journal of Human Evolution, 57(6), 732–738. https://doi.org/10.1016/j.jhevol.2009.06.009

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C., Jr. (1989). X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press.

    Google Scholar 

  • Neaux, D., Blanc, B., Ortiz, K., Locatelli, Y., Schafberg, R., Herrel, A., Debat, V., & Cucchi, T. (2021a). Constraints associated with captivity alter craniomandibular integration in wild boar. Journal of Anatomy, 239(2), 489–497. https://doi.org/10.1111/joa.13425

    Article  Google Scholar 

  • Neaux, D., Blanc, B., Ortiz, K., Locatelli, Y., Laurens, F., Baly, I., Callou, C., Lecompte, F., Cornette, R., Sansalone, G., Haruda, A., Schafberg, R., Vigne, J.-D., Debat, V., Herrel, A., & Cucchi, T. (2021b). How changes in functional demands associated with captivity affect the skull shape of a wild boar (Sus scrofa). Evolutionary Biology. https://doi.org/10.1007/s11692-020-09521-x

    Article  Google Scholar 

  • Percher, A. M., Merceron, G., Nsi Akoue, G., Galbany, J., Romero, A., & Charpentier, M. J. (2017). Dental microwear textural analysis as an analytical tool to depict individual traits and reconstruct the diet of a primate. American Journal of Physical Anthropology, 165(1), 123–138. https://doi.org/10.1002/ajpa.23337

    Article  Google Scholar 

  • Price, M., & Hongo, H. (2020). The archaeology of pig domestication in Eurasia. Journal of Archaeological Research, 28(4), 557–615. https://doi.org/10.1007/s10814-019-09142-9

    Article  Google Scholar 

  • R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/

  • Rabenold, D., & Pearson, O. M. (2011). Abrasive, silica phytoliths and the evolution of thick molar enamel in primates, with implications for the diet of Paranthropus boisei. PLoS One, 6(12), e28379. https://doi.org/10.1371/journal.pone.0028379

    Article  Google Scholar 

  • Ramdarshan, A., Blondel, C., Gautier, D., Surault, J., & Merceron, G. (2017). Overcoming sampling issues in dental tribology: Insights from an experimentation on sheep. Palaeontologia Electronica. https://doi.org/10.26879/762

  • Rivals, F., Gardeisen, A., & Cantuel, J. (2011). Domestic and wild ungulate dietary traits at Kouphovouno (Sparta, Greece): Implications for livestock management and paleoenvironment in the Neolithic. Journal of Archaeological Science, 38(3), 528–537. https://doi.org/10.1016/j.jas.2010.10.007

    Article  Google Scholar 

  • Ross, C. F., Iriarte-Diaz, J., & Nunn, C. L. (2012). Innovative approaches to the relationship between diet and mandibular morphology in primates. International Journal of Primatology, 33(3), 632–660. https://doi.org/10.1007/s10764-012-9599-y

    Article  Google Scholar 

  • Rowley-Conwy, P., Albarella, U., & Dobney, K. (2012). Distinguishing wild boar from domestic pigs in prehistory: A review of approaches and recent results. Journal of World Prehistory, 25(1), 1–44. https://doi.org/10.1007/s10963-012-9055-0

    Article  Google Scholar 

  • Schulz, E., Calandra, I., & Kaiser, T. M. (2010). Applying tribology to teeth of hoofed mammals. Scanning, 32(4), 162–182. https://doi.org/10.1002/sca.20181

    Article  Google Scholar 

  • Schulz, E., Calandra, I., & Kaiser, T. M. (2013a). Feeding ecology and chewing mechanics in hoofed mammals: 3D tribology of enamel wear. Wear, 300(1), 169–179. https://doi.org/10.1016/j.wear.2013.01.115

    Article  Google Scholar 

  • Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., & Kaiser, T. M. (2013b). Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits. PLoS One, 8(2), e56167. https://doi.org/10.1371/journal.pone.0056167

    Article  Google Scholar 

  • Schulz-Kornas, E., Winkler, D. E., Clauss, M., Carlsson, J., Ackermans, N. L., Martin, L. F., Hummel, J., Müller, D. W. H., Hatt, J.-M., & Kaiser, T. M. (2020). Everything matters: Molar microwear texture in goats (Capra aegagrus hircus) fed diets of different abrasiveness. Palaeogeography, Palaeoclimatology, Palaeoecology, 552, 109783. https://doi.org/10.1016/j.palaeo.2020.109783

    Article  Google Scholar 

  • Scott, J. R. (2012). Dental microwear texture analysis of extant African Bovidae. Mammalia, 76(2). https://doi.org/10.1515/mammalia-2011-0083

  • Scott, R. S., Teaford, M. F., & Ungar, P. S. (2012). Dental microwear texture and anthropoid diets. American Journal of Physical Anthropology, 147(4), 551–579. https://doi.org/10.1002/ajpa.22007

    Article  Google Scholar 

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., & Walker, A. (2006). Dental microwear texture analysis: Technical considerations. Journal of Human Evolution, 51(4), 339–349. https://doi.org/10.1016/j.jhevol.2006.04.006

    Article  Google Scholar 

  • Service du Patrimoine naturel (collectif) (2017). Inventaire naturaliste de la Réserve zoologique de la Haute-Touche (Indre) du 1er au 3 juin 2016. Service du patrimoine naturel, Muséum national d'Histoire naturelle, Paris

  • Sierra, A., Balasse, M., Rivals, F., Fiorillo, D., Utrilla, P., & Saña, M. (2021). Sheep husbandry in the early Neolithic of the Pyrenees: New data on feeding and reproduction in the cave of Chaves. Journal of Archaeological Science: Reports, 37, 102935. https://doi.org/10.1016/j.jasrep.2021.102935

    Article  Google Scholar 

  • Sierra, A., Merino, G. O., Rivals, F., & Saña, M. (2020). Feeding practices and management of domestic mammals during the Neolithic in the Iberian Peninsula through dental microwear. Historical Biology, 1–13. https://doi.org/10.1080/08912963.2020.1860957

  • Souron, A. (2017). Diet and ecology of extant and fossil wild pigs. In M. Melletti & E. Meijaard (Eds.), Ecology, Conservation and Management of Wild Pigs and Peccaries (1st ed., pp. 29–38). Cambridge University Press. https://doi.org/10.1017/9781316941232.005

  • Souron, A., Merceron, G., Blondel, C., Brunetière, N., Colyn, M., Hofman-Kamińska, E., & Boisserie, J.-R. (2015). Three-dimensional dental microwear texture analysis and diet in extant Suidae (Mammalia: Cetartiodactyla). Mammalia, 79(3). https://doi.org/10.1515/mammalia-2014-0023

  • Teaford, M. F., & Oyen, O. J. (1989). In vivo and in vitro turnover in dental microwear. American Journal of Physical Anthropology, 80(4), 447–460. https://doi.org/10.1002/ajpa.1330800405

    Article  Google Scholar 

  • Teaford, M. F., Ross, C. F., Ungar, P. S., Vinyard, C. J., & Laird, M. F. (2021). Grit your teeth and chew your food: Implications of food material properties and abrasives for rates of dental microwear formation in laboratory Sapajus apella (Primates). Palaeogeography, Palaeoclimatology, Palaeoecology, 110644. https://doi.org/10.1016/j.palaeo.2021.110644

  • Teaford, M. F., Ungar, P. S., Taylor, A. B., Ross, C. F., & Vinyard, C. J. (2017). In vivo rates of dental microwear formation in laboratory primates fed different food items. Biosurface and Biotribology, 3(4), 166–173. https://doi.org/10.1016/j.bsbt.2017.11.005

    Article  Google Scholar 

  • Thiery, G., Gibert, C., Guy, F., Lazzari, V., Geraads, D., Spassov, N., & Merceron, G. (2021). From leaves to seeds? The dietary shift in late Miocene colobine monkeys of southeastern Europe. Evolution, 75(8), 1983–1997. https://doi.org/10.1111/evo.14283

    Article  Google Scholar 

  • Ungar, P. S., Grine, F. E., & Teaford, M. F. (2008). Dental microwear and diet of the Plio-Pleistocene Hominin Paranthropus boisei. PLoS One, 3(4), e2044. https://doi.org/10.1371/journal.pone.0002044

    Article  Google Scholar 

  • USDA, United States Department of Agriculture. (1987). Soil Mechanics Level 1 Module 3 USDA Soil Textural Classification Study Guide. USDA Soil Conservation Service.

    Google Scholar 

  • van Casteren, A., Lucas, P. W., Strait, D. S., Michael, S., Bierwisch, N., Schwarzer, N., Al-Fadhalah, K. J., Almusallam, A. S., Thai, L. A., Saji, S., Shekeban, A., & Swain, M. V. (2018). Evidence that metallic proxies are unsuitable for assessing the mechanics of microwear formation and a new theory of the meaning of microwear. Royal Society Open Science, 5(5), 171699. https://doi.org/10.1098/rsos.171699

    Article  Google Scholar 

  • Vanpoucke, S., Mainland, I., De Cupere, B., & Waelkens, M. (2009). Dental microwear study of pigs from the classical site of Sagalassos (SW Turkey) as an aid for the reconstruction of husbandry practices in ancient times. Environmental Archaeology, 14(2), 137–154. https://doi.org/10.1179/146141009X12481709928328

    Article  Google Scholar 

  • Ward, J., & Mainland, I. L. (1999). Microwear in modern rooting and stall-fed pigs: The potential of dental microwear analysis for exploring pig diet and management in the past. Environmental Archaeology, 4(1), 25–32. https://doi.org/10.1179/env.1999.4.1.25

    Article  Google Scholar 

  • Wilkie, T., Mainland, I., Albarella, U., Dobney, K., & Rowley-Conwy, P. (2007). A dental microwear study of pig diet and management in Iron Age, Romano-British, Anglo-Scandinavian, and medieval contexts in England. In U. Albarella, K. Dobney, A. Ervynck, & P. Rowley-Conwy (Eds.), Pigs and Humans: 10,000 Years of Interaction (pp. 241–254). Oxford University Press.

    Google Scholar 

  • Winkler, D. E., Schulz-Kornas, E., Kaiser, T. M., Codron, D., Leichliter, J., Hummel, J., Martin, L. F., Clauss, M., & Tütken, T. (2020a). The turnover of dental microwear texture: Testing the” last supper” effect in small mammals in a controlled feeding experiment. Palaeogeography, Palaeoclimatology, Palaeoecology, 557, 109930. https://doi.org/10.1016/j.palaeo.2020.109930

    Article  Google Scholar 

  • Winkler, D. E., Schulz-Kornas, E., Kaiser, T. M., De Cuyper, A., Clauss, M., & Tütken, T. (2019). Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction. Proceedings of the National Academy of Sciences, 116(4), 1325–1330. https://doi.org/10.1073/pnas.1814081116

    Article  Google Scholar 

  • Winkler, D. E., Tütken, T., Schulz-Kornas, E., Kaiser, T. M., Müller, J., Leichliter, J., Weber, K., Hatt, J.-M., & Clauss, M. (2020b). Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs. Proceedings of the National Academy of Sciences, 2020b08149. https://doi.org/10.1073/pnas.2008149117

  • Xia, J., Zheng, J., Huang, D., Tian, Z. R., Chen, L., Zhou, Z., Ungar, P. S., & Qian, L. (2015). New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proceedings of the National Academy of Sciences, 112(34), 10669–10672. https://doi.org/10.1073/pnas.1509491112

    Article  Google Scholar 

  • Yamada, E., Hongo, H., & Endo, H. (2021). Analyzing historic human-suid relationships through dental microwear texture and geometric morphometric analyses of archaeological suid teeth in the Ryukyu Islands. Journal of Archaeological Science, 132, 105419. https://doi.org/10.1016/j.jas.2021.105419

    Article  Google Scholar 

  • Yamada, E., Kubo, M. O., Kubo, T., & Kohno, N. (2018). Three-dimensional tooth surface texture analysis on stall-fed and wild boars (Sus scrofa). PLoS One, 13(10), e0204719. https://doi.org/10.1371/journal.pone.0204719

    Article  Google Scholar 

Download references

Acknowledgements

We are most grateful to the staff of the Réserve Zoologique de la Haute-Touche (C. Audureau, J. Bernard, C. Jubert, S. Laloux, E. Marechal, R. Rabier, P. Roux, and C. Vion) for their help during the setup of the experimental structures and the care they provided to the experimental specimens. Without their dedication and expertise, this research project would not have been possible. We warmly thank G. Merceron for our discussions and his valuable advices on the study and on the manuscript. We also thank A.E.C. Walker (PALEVOPRIM) and C. Jubert for their enthusiastic help in collecting the soil samples, as well as G. Reynaud and L. Painault (PALEVOPRIM) for administrative guidance. This study was funded by the ANR project Domexp (ANR-13-JSH3-0003-01, French Agency for Research). M. Louail was funded by the ALIHOM project (project n◦210389, Nouvelle-Aquitaine region, France) and the Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation (France). We thank the three anonymous reviewers whose comments greatly improved the initial version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Louail.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louail, M., Caner, L., Neaux, D. et al. Identifying the Impact of Soil Ingestion on Dental Microwear Textures Using a Wild Boar Experimental Model. J Archaeol Method Theory 30, 855–875 (2023). https://doi.org/10.1007/s10816-022-09574-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-022-09574-6

Keywords

Navigation