Skip to main content
Log in

Weathering Stages of Proboscidean Bones: Relevance for Zooarchaeological Analysis

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

This paper describes weathering modifications to elephant bones in Zimbabwe, southern Africa, and discusses possible implications about conditions of deposition and the time elapsed since death or skeletonization. The observed patterns of proboscidean bone weathering, the times elapsed since death, and burial times may not be same as for bones of smaller terrestrial mammals typically found in fossil assemblages. A system of weathering stages is proposed for proboscidean long bones, flat bones, mandibles, and ribs. Special attention is given to drying cracks that affect breakage patterns when weathered bones are trampled or impacted. Weathering effects on elephant bones vary for several reasons, such as differences between juvenile and adult cortical bone and frequency of wet/dry cycling. Also briefly discussed are the observed or possible effects of burning, dissolution, organic erosion such as root etching, and inorganic carbonate (calcite) encrustation. Comparable weathering effects are also reported on bones of Mammuthus spp., supporting the probability that (1) bone weathering in fossil proboscidean assemblages can be described in corresponding terms, and (2) implications about assemblage origins may be similar, although this inference must be cautiously drawn. The data reported here will allow analysts to describe assemblage materials in consistent terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Andrews, P. (1990). Owls, caves, and fossils, Predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-Sub-Mendip, Somerset, United Kingdom. University of Chicago Press.

    Google Scholar 

  • Andrews, P., & Armour-Chelu, M. (1998). Taphonomic observations on a surface bone assemblage in a temperate environment. Bulletin De La Société Géologique De France, 169(3), 433–442.

    Google Scholar 

  • Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man, 20, 675–691.

    Article  Google Scholar 

  • Andrews, P., & Whybrow, P. (2005). Taphonomic observations on a camel skeleton in a desert environment in Abu Dhabi. Palaeontologia Electronica, 8(1), 23A 17.

    Google Scholar 

  • Anon (n.d.). Nosorożec włochaty Coelodonta antiquitatis ze Staruni. http://www.isez.pan.krakow.pl/en/rhinoceros.html. Accessed 14 Jan 2019.

  • Bass, W. M., III. (1997). Outdoor decomposition rates in Tennessee. In W. D. Haglund & M. H. Sorg (Eds.), Forensic Taphonomy. The Postmortem Fate of Human Remains (pp. 181–186). CRC Press.

    Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4(2), 150–162.

    Article  Google Scholar 

  • Behrensmeyer, A. K., & Faith, J. T. (2006). Post-mortem damage to bone surfaces in the modern landscape assemblage of Amboseli Park, Kenya, with implications for the fossil record. Journal of Vertebrate Paleontology, 26, 40A.

  • Behrensmeyer, A. K., & Miller, J. H. (2012). Building links between ecology and paleontology using taphonomic studies of recent vertebrate communities. In J. Louys (Ed.), Paleontology in Ecology and Conservation (pp. 69–91). Springer-Verlag.

    Chapter  Google Scholar 

  • Berryman, H. E., Bass, W. M., Symes, S. A., & Smith, O. C. (1997). Recognition of cemetery remains in the forensic setting. In W. D. Haglund & M. H. Sorg (Eds.), Forensic Taphonomy. The Postmortem Fate of Human Remains (pp. 165–180). CRC Press.

    Google Scholar 

  • Bocherens, B., Drucker, D. G., Billiou, D., Geneste, J.-M., & Kervazo, B. (2008). Grotte Chauvet (Ardèche, France): A “natural experiment” for bone diagenesis in karstic context. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 220–226.

    Article  Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted? An introduction to African Taphonomy. University of Chicago Press.

    Google Scholar 

  • Coe, M. (1978). The decomposition of elephant carcasses in the Tsavo (East) National Park, Kenya. Journal of Arid Environments, 1(1), 71–85.

    Article  Google Scholar 

  • Conard, N. J., Walker, S. J., & Kindle, A. W. (2008). How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 236–245.

    Article  Google Scholar 

  • Crouch, M. J. C. (2010). Quantifying the biotic enhancement of mineral weathering by moss. M.Sc. thesis, University of East Anglia (cited by Jackson 2015).

  • Czyżewski, K. J. (2015). Smoki, olbrzymy, zwierzęta przedpotopowe. O kościach kopalnych w Katedrze Krakowskiej. In M. Reklewska (Ed.), Dwa oblicza smoka (pp. 47–66). Wawel Royal Castle, State Art Collection.

    Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications. Springer.

    Book  Google Scholar 

  • Fiorillo, A. R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & M. Sorg (Eds.), Bone Modification (pp. 61–72). University of Maine, Center for the Study of the First Americans.

    Google Scholar 

  • Fiorillo, A. R. (1995). Possible influence of low temperature on bone weathering in Curecanti National Recreation Area, southwest Colorado. Current Research in the Pleistocene, 12, 69–71.

    Google Scholar 

  • Fosse, P., Laudet, F., Selva, N., & Wajrak, A. (2004). Premières observations néotaphonomique sur des assemblages osseux de Bialowieza (N.-E. Pologne): Intérêts pour les gisements Pléistocènes d’Europe. Paleo, 16, 91–116.

    Google Scholar 

  • Frison, G. C. (1974). Archeology of the Casper Site. In G. C. Frison (Ed.), The Casper Site. A Hell Gap Bison Kill on the High Plains (pp. 1–11). Academic Press.

    Google Scholar 

  • Frison, G. C. (1986). Human artifacts, mammoth procurement, and Pleistocene extinctions as viewed from the Colby site. In G. C. Frison & L. C. Todd (Eds.), The Colby Mammoth Site. Taphonomy and archaeology of a Clovis kill in northern Wyoming (pp. 91–114). University of New Mexico Press.

    Google Scholar 

  • Gaudzinski-Windheuser, S., Noack, E. S., Pop, E., Herbst, C., Pfleging, J., Buchli, J., Jacob, A., Enzmann, F., Kindler, L., Iovita, R., Street, M., & Roebroeks, W. (2018). Evidence for close-range hunting by Last Interglacial Neandertals, Supplementary Information. Nature Ecology & Evolution, 2(7), 1087–1092.

    Article  Google Scholar 

  • Gifford, D. P. (1981). Taphonomy and paleoecology: A critical review of archaeology’s sister disciplines. In M. B. Schiffer (Ed.), Advances in Archaeological Method and Theory (Vol. 4, pp. 94–106). Academic Press.

    Google Scholar 

  • Gifford-Gonzalez, D. (2018). An introduction to zooarchaeology. Springer.

    Book  Google Scholar 

  • Graham, A. D., & Laws, R. M. (1971). The collection of found ivory in Murchison Falls National Park, Uganda. African Journal of Ecology, 9(1), 57–65.

    Article  Google Scholar 

  • Haynes, G. (1981). Bone modifications and skeletal disturbances by natural agencies: Studies in North America. Unpublished Ph.D.dissertation in Anthropology, Catholic University of America.

  • Haynes, G. (1991). Mammoths, mastodonts, and elephants: Biology, behavior, and the fossil record. Cambridge University Press.

    Google Scholar 

  • Haynes, G. (2018). Raining more than cats and dogs: Looking back at field studies of noncultural animal-bone occurrences. Quaternary International, 466(Part B), 113–130.

    Article  Google Scholar 

  • Haynes, G. (2020). Additional data about natural breaks and marks on tusks of African elephant (Loxodonta africana) and possible implications for Paleolithic ivory assemblages. https://doi.org/10.13140/RG.2.2.21967.51366

  • Haynes, G., & Hutson, J. (2020). African elephant bones modified by carnivores: Implications for interpreting fossil proboscidean assemblages. Journal of Archaeological Science: Reports, 34, 102596.

    Google Scholar 

  • Haynes, G., Krasinski, K., & Wojtal, P. (2021). A study of fractured proboscidean bones in recent and fossil assemblages. Journal of Archaeological Method and Theory, 28, 956–1025.

    Article  Google Scholar 

  • Hutson, J. M., Burke, C. C., & Haynes, G. (2013). Osteophagia and bone modifications by giraffe and other large ungulates. Journal of Archaeological Science, 40, 4139–4149.

    Article  Google Scholar 

  • Jackson, T. A. (2015). Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment. Geoderma, 251–252, 78–91.

    Article  Google Scholar 

  • Junod, C. A., & Pokines, J. Y. (2014). Subaerial weathering. In J. T. Pokines & S. A. Symes (Eds.), Manual of Forensic Taphonomy (pp. 287–314). CRC Press.

    Google Scholar 

  • Keiler, J.-A., Benecke, M., & Keiler, J. (2020). Bone modifications by insects from the Early Pleistocene site of Untermassfeld. In R.-D. Kahlke (Ed.), The Pleistocene of Untermassfeld Near Meiningen (Thüringen, Germany) Part 4. Senckenberg Römisch-Germanisches Zentralmuseum Leibniz-Forschungsinstitut für Archäeologie Monographien des RGZM Band 40, 4.

    Google Scholar 

  • Kirillova, I. V., Borisova, O. K., Chernova, O. F., Haynes, G., Narina, N. V., Panin, A. V., Zanina, O. G., Zazovskaya, E. P., Zhuravlev, A. Y., & Zvyagin, V. N. (2021). Nonpyrogenic charring of Late Pleistocene large mammal remains in northeastern Russia. Boreas 51(2):481–495. https://doi.org/10.1111/bor.12569

  • Kottek, M., Greiser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.

    Article  Google Scholar 

  • Kuc, T., Różański, K., Kotarba, M., Goslar, T., & Kubiak, H. (2012). Radiocarbon dating of Pleistocene fauna and flora from Starunia, SW Ukraine. Radiocarbon, 54(1), 123–136.

    Article  Google Scholar 

  • Kufel-Diakowska, B., Wilczyński, J., Wojtal, P., & Sobczyk, K. (2016). Mammoth hunting – Impact traces on backed implements from a mammoth bone accumulation at Kraków Spadzista (southern Poland). Journal of Archaeological Science, 65, 122–133.

    Article  Google Scholar 

  • Łanczont, M., Madeyska, T., Mroczek, P., Hołub, B., Żogała, B., & Bogucki, A. (2015a). Relief and palaeorelief analyses of the Kraków Spadzista Palaeolithic site as the tools used for explanation of the site location. Quaternary International, 359–360, 89–95.

    Article  Google Scholar 

  • Łanczont, M., Madeyska, T., Mroczek, P., Komar, M., Lącka, B., Bogucki, A., Sobczyk, K., & Wilczyński, J. (2015b). The loess-palaeosol sequence in the Upper Palaeolithic site at Kraków Spadzista: A palaeoenvironmental approach. Quaternary International, 365, 98–113.

    Article  Google Scholar 

  • Łanczont, M., Mrocek, P., Madeyska, T., Komar, M., Hołub, B., Żogała, B., Sobczyk, K., & Wilczyński, J. (2015). Natural environment of the Gravettian settlement in the Kraków Spadzista site based on palaeogeographical interpretation of loess-palaeosol sequences. In P. Wojtal, J. Wilczyński, & G. Haynes (Eds.), A Gravettian Site in Southern Poland: Kraków Spadzista (pp. 19–49). Institute of Systematics and Evolution of Animals, Polish Academy of Sciences.

    Google Scholar 

  • Lengyel, G., & Wilczyński, J. (2018). The Gravettian and the Epigravettian chronology in eastern central Europe A comment on Bösken et al. (2017). Palaeogeography, Palaeoclimatology, Palaeoecology, 506, 265–269.

    Article  Google Scholar 

  • Lyman, R. L., & Fox, G. L. (1989). A critical evaluation of bone weathering as an indication of bone assemblage formation. Journal of Archaeological Science, 16(3), 293–317.

    Article  Google Scholar 

  • Miller, J. H. (2011). Ghosts of Yellowstone: Multi-decadal histories of wildlife populations captured by bones on a modern landscape. PLoS ONE, 6(3), e18057. https://doi.org/10.1371/journal.pone.0018057

    Article  Google Scholar 

  • Miller, J. H. (2009). The large-mammal death assemblage of Yellowstone National Park: Historical ecology, conservation biology, paleoecology. Unpublished Ph.D. dissertation, University of Chicago.

  • Münzel, S. C. (2001). The production of Upper Palaeolithic mammoth bone artifacts from southwestern Germany. In G. Cavarratta, P. Gioia, M. Mussi, & M. R. Palombo (Eds.), La Terra Degli Elefanti (The World of Elephants). Atti del 1o Congresso Internazionale (Proceedings of the 1st International Congress) Roma, 16–20 Ottobre 2001 (pp. 448–454). Consiglio Nazionale delle Ricerche.

    Google Scholar 

  • Münzel, S. C., Wolf, S., Drucker, D. G., & Conard, N. J. (2017). The exploitation of mammoth in the Swabian Jura (SW-Germany) during the Aurignacian and Gravettian period. Quaternary International, 445, 184–199.

    Article  Google Scholar 

  • Münzel, S. C., Wolf, S., Achtelik, M., Arlt, S., Becher, J., Brunke, L., Klett, J., Kremmer, A., Krönke, J., Langer, A., Litzenberg, R., Loy, A. -K., Mandt, A. -F., Mena, J. A., Ochs, U., Rebentisch, A., Schürch, B., Taipale, N., Wegeng, H., Wiedmann, H., Würschem, H., Zahoransky, T., Zerrer, M. H., & Krönneck, P. (2015). Chaîne opératoire of Molly, an Indian elephant from the Wilhelma in Stuttgart – Bad Cannstatt. In: Results of a Workshop in Blaubeuren on the Processing of Proboscidian Ribs as Raw Material for Tools. Poster presented at the meeting of the Hugo Obermaier Society in Heidenheim, 7 ─ 11 April 2015. Online publication on NESPOS. https://www.nespos.org/pages/viewpage.action?pageId¼33423891. Accessed 2 April 2019.

  • Niven, L. (2006). The Palaeolithic occupation of Vogelherd cave. Implications for the Subsistence Behavior of Late Neanderthals and Early Modern Humans. Kerns Verlag.

    Google Scholar 

  • Niven, L. (2007). From carcass to cave: Large mammal exploitation during the Aurignacian at Vogelherd, Germany. Journal of Human Evolution, 53(4), 362–382.

    Article  Google Scholar 

  • Nowak, J., Panow, E., Tokarski, J., Szafer, W. ł., & Stach, J. (1930). The second woolly rhinoceros (Coelodonta antiquitatis Blum.) from Starunia, Poland. Bulletin International de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles série B: Sciences Naturelles, No. Supplémentaire. Cracovie: Impremerie de l’Université.

  • Pineda, A., & Saladié, P. (2019). The Middle Pleistocene site of Torralba (Soria, Spain): A taphonomic view of the Marquis of Cerralbo and Howell faunal collections. Archaeological and Anthropological Sciences, 11, 2539–2556.

    Article  Google Scholar 

  • Pineda, A., & Saladié, P. (2022). Beyond the problem of bone surface preservation in taphonomic studies of Early and Middle Pleistocene open-air sites. Journal of Archaeological Method and Theory. https://doi.org/10.1007/s10816-022-09550-0

    Article  Google Scholar 

  • Pitulko, V. V. (2011). The Berelekh quest: A review of forty years of research in the mammoth graveyard in northeast Siberia. Geoarchaeology, 26(1), 5–32.

    Article  Google Scholar 

  • Pokines, J. (2016). Taphonomic alterations to terrestrial surface-deposited human osseous remains in a New England environment. Journal of Forensic Identification, 66(1), 59–78.

    Google Scholar 

  • Pokines, J., & Ames, C. J. H. (2015). Weathering and dispersal of a cattle (Bos taurus) carcass in the desert of eastern Jordan over a six-year interval. Journal of Taphonomy, 13(1), 17–31.

    Google Scholar 

  • Pokines, J. T., Faillace, K., Berger, J., Pirtle, D., Sharpe, M., Curtis, A., Lombardi, K., & Admans, J. (2018). The effects of repeated wet-dry cycles as a component of bone weathering. Journal of Archaeological Science: Reports, 17, 433–441.

    Google Scholar 

  • Poole, J. H. (1992). Proboscideans past and present (review of “Mammoths, Mastodonts and Elephants: Biology, Behavior, and the Fossil Record”). Trends in Ecology and Evolution, 7(8), 282–283.

    Article  Google Scholar 

  • Pryor, A. J. E., O’Connell, T. C., Wojtal, P., Krzemińska, A., & Stevens, R. E. (2013). Investigating climate at the Upper Palaeolithic site of Kraków Spadzista Street (B), Poland, using oxygen isotopes. Quaternary International, 294, 108–119.

    Article  Google Scholar 

  • Sánchez-Romero, L., Benito-Calvo, A., Pérez-Gonzálex, A., & Santonja, M. (2016). Assessment of accumulation processes at the Middle Pleistocene site of Ambrona (Soria, Spain). Density and orientation patterns of spatial datasets derived from excavations conducted from the 1960s to the present. PLoS ONE, 11(12), e0167595. https://doi.org/10.1371/journal.pone.0167595

    Article  Google Scholar 

  • Sutcliffe, A. J. (1990). Rate of decay of mammalian remains in the permafrost environment of the Canadian High Arctic. In C. R. Harington (Ed.), Canada’s Missing Dimension. Science and History in the Canadian Arctic Islands Volume I (pp. 161–186). Canadian Museum of Nature.

    Google Scholar 

  • Tappen, N. C. (1969). The relationship of weathering cracks to split-line orientation in bone. American Journal of Physical Anthropology, 31, 191–198.

    Article  Google Scholar 

  • Tappen, M. (1994). Bone weathering in the tropical rain forest. Journal of Archaeological Science, 21(5), 667–673.

    Article  Google Scholar 

  • Todd, L. C., & Frison, G. C. (1986). Taphonomic study of the Colby site mammoth bones. In G. C. Frison & L. C. Todd (Eds.), The Colby Mammoth Site. Taphonomy and archaeology of a Clovis kill in northern Wyoming (pp. 27–90). University of New Mexico Press.

    Google Scholar 

  • Ukraintseva, V. V. (2013). Mammoths and the environment. Cambridge University Press.

    Book  Google Scholar 

  • Vereshchagin, N. K. (1977). Berelekhskoe “kladbishche” mamontov. [in Russian]. Trudi Zoologicheskogo Instituta, 72, 5–50.

    Google Scholar 

  • Vereshchagin, N. K. (2002). Ot ondatri do mamonta. Put’ zoologa. Izdatel’stvo “Asterion.”

    Google Scholar 

  • Vereshchagin, N. K., Nikolaev, A. N. (1982). Raskopki Khatanskogo mamonta. In: N. K. Vereshchagin & I. E. Kuzmina (Eds.), Mamontobaya fauna aziatikoy chasti SSSR [in Russian]. Trudi Zoologicheskogo Instituta 11, 3 – 17.

  • Vietti, L. A. (2016). Quantifying bone weathering stages using the average roughness parameter Ra measured from 3D data. Surface Topography: Metrology and Properties. https://doi.org/10.1088/2051-672X/4/3/034006

    Article  Google Scholar 

  • Villa, P., Soto, E., Santonja, M., Pérez-González, A., Mora, R., Parcerisas, J., & Sesé, C. (2005). New data from Ambrona: Closing the hunting versus scavenging debate. Quaternary International, 126–128, 223–250.

    Article  Google Scholar 

  • Weatherbase.com. (n.d.). Krakow [sic], Poland. https://www.weatherbase.com/weather/weather-summary.php3?s=66521&cityname=Krakow%2C+Lesser+Poland+Voivodeship%2C+Poland&units=metric. Accessed 11 Nov. 2021.

  • White, P. A., & Diedrich, C. G. (2012). Taphonomy story of a modern elephant Loxodonta africana carcass on a lakeshore in Zambia (Africa). Quaternary International, 276–277, 287–296.

    Article  Google Scholar 

  • Wilczyński, J., Wojtal, P., & Sobczyk, K. (2012). Spatial organization of the Gravettian mammoth hunters’ site at Kraków Spadzista (southern Poland). Journal of Archaeological Science, 39, 3627–3642.

    Article  Google Scholar 

  • Wilczyński, J., Wojtal, P., Oliva, M., Sobczyk, K., Haynes, G., Klimowicz, J., & Lengyel, G. (2019). Mammoth hunting strategies during the Late Gravettian in Central Europe as determined from case studies of Milovice I (Czech Republic) and Kraków Spadzista (Poland). Quaternary Science Reviews, 223, 105919.

    Article  Google Scholar 

  • Wilczyński, J., Goslar, T., Wojtal, P., Oliva, M., Göhlich, U. B., Antl-Weiser, W., Šida, P., Verpoorte, A., & Lengyel, G. (2020). New radiocarbon dates for the Late Gravettian in Eastern Central Europe. Radiocarbon, 62(1), 243–259.

    Article  Google Scholar 

  • Wilkie, M. P., & Wood, C. M. (1996). The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology, 113B(4), 665–673.

    Article  Google Scholar 

  • Wojtal, P., Haynes, G., Klimowicz, J., Sobczyk, K., Tarasiuk, J., Wroński, S., & Wilczyński, J. (2019). The earliest direct evidence of mammoth hunting in Central Europe – The Kraków Spadzista site (Poland). Quaternary Science Reviews, 213, 162–166.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Janis Klimowicz for her help in the preparation of this paper. GH acknowledges that field studies of African elephant bones were conducted with permission and assistance from the Zimbabwe National Parks and Wildlife Management Authority. The research work establishing comparative data was partly funded by the Smithsonian Institution Paleoindian Program, the National Geographic Society, the Leakey Foundation, the Fulbright Foundation Sub-Saharan Africa Research Program, the University of Nevada-Reno, the International Research and Exchanges Board, the US Academy of Sciences and USSR Academy of Science Scientist Exchange Program, and the National Science Foundation. Studies of curated proboscidean bones were facilitated by staff at the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences in Kraków, the Smithsonian Institution’s National Museum of Natural History in Washington, D.C. and the Museum Support Facility in Suitland, Maryland, the Vienna Museum of Natural History, the Polish State Geological Institute in Warsaw, the Instituto Nacional de Antropología e Historia in Mexico City, the University of Alaska Museum of the North in Fairbanks, the Milwaukee Public Museum, the Royal Ontario Museum in Toronto, the Denver Museum of Nature and Science, the George C. Page Museum in Los Angeles, the Mammoth Site of Hot Springs, South Dakota, the Philadelphia Academy of Natural Science, the University of Nebraska State Museum in Lincoln, the American Museum of Natural History in New York city, the Arizona State Museum in Tucson, the Moravské zemské muzeum in Brno and the museum’s storerooms in Budisov, the Paleontological Institute of the Russian Academy of Science in Moscow, and the Zoological Institute of the Russian Academy of Sciences in St. Petersburg.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the conception and design of this study. Material preparation, data collection and analysis were performed by Gary Haynes and Piotr Wojtal. Field studies of African elephant bones were conducted by Gary Haynes. The first draft of the manuscript was written by Gary Haynes; both authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

The authors confirm they have approved this manuscript and agree to its submission to the Journal of Archaeological Method and Theory.

Corresponding author

Correspondence to Gary Haynes.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haynes, G., Wojtal, P. Weathering Stages of Proboscidean Bones: Relevance for Zooarchaeological Analysis. J Archaeol Method Theory 30, 495–535 (2023). https://doi.org/10.1007/s10816-022-09569-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-022-09569-3

Keywords

Navigation