Skip to main content
Log in

Mappings of Potential Sailing Mobility in the Mediterranean During Antiquity

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript


A comprehensive mapping of potential sailing mobility was performed for the eastern and central Mediterranean basins. The mapping is based on newly developed methods for measuring potential sailing mobility of merchant ships with a loose-footed square sail in antiquity, both for direct passages and for coastal sailing. The metrics of the measured direct and coastal sailing passages generate new measures of potential sailing mobility that provide new insights into the functioning of maritime links. The study also applies the measurements to several case studies in historical context including mapping of potential sailing mobility for the grain shipments from Egypt to Rome and the potential sailing mobility of Phoenician maritime links between the Levant and colonies to the west. The mappings reveal the bottlenecks for westward sailing from the Levant in the summer months. The mappings also highlight the bi-directional sailing links that could be maintained throughout the summer season despite the prevailing Etesian winds. The mappings contribute to deeper understanding of seafaring options and challenges during Antiquity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others


  1. Wind data changes as the simulated/calculated passage progresses.

  2. Apparent wind is the wind measured or sensed on board a moving ship. It includes the vector of the wind induced by the ship’s movement.

  3. Leeway is the sideways drift of a sailing vessel induced to counter the sideways force exerted by the wind.

  4. The significant wave height is the average height of the highest one-third of all waves measured.


  • Alberti, G. (2018). TRANSIT: A GIS toolbox for estimating the duration of ancient sail-powered navigation. Cartography and Geographic Information Science, 45(6), 510–528.

    Article  Google Scholar 

  • Arcenas, S. (2012). Applying ORBIS. ORBIS: The Stanford geospatial network model for the Roman world.

  • Arnaud, P. (2005). Les routes de la navigation antique: itinéraires en Méditerranée. Editions Errance.

  • Casson, L. (1950). The Isis and Her Voyage. Transactions and Proceedings of the American Philological Association, 81, 43–56.

    Article  Google Scholar 

  • Casson, L. (1995). Ships and Seamanship in the Ancient World. Johns Hopkins University Press.

    Book  Google Scholar 

  • Gal, D., Saaroni, H., & Cvikel, D. (2021a). A new method for examining maritime mobility of direct crossings with contrary prevailing winds in the Mediterranean during antiquity. Journal of Archaeological Science, 129, 105369.

    Article  Google Scholar 

  • Gal, D., Saaroni, H., & Cvikel, D. (2021b). Measuring potential coastal sailing mobility with the loose-footed square sail. Journal of Archaeological Science, 136, 105500.

    Article  Google Scholar 

  • Gal, David; Saaroni, Hadas; Cvikel, Deborah (2022), Mappings of potential sailing mobility in the Mediterranean during antiquity: Research Data, Mendeley Data, V1,

  • Hatzaki, M., Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., & Rudeva, I. (2014). Seasonal aspects of an objective climatology of anticyclones affecting the Mediterranean. Journal of Climate, 27(24), 9272–9289.

    Article  Google Scholar 

  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.

    Article  Google Scholar 

  • Klaic, Z. B., Pasaric, Z., & Tudor, M. (2009). On the interplay between sea-land breezes and Etesian winds over the Adriatic. Journal of Marine Systems, 78(SUPPL. 1), S101–S118.

    Article  Google Scholar 

  • Leidwanger, J. (2013). Modeling distance with time in ancient Mediterranean seafaring: A GIS application for the interpretation of maritime connectivity. Journal of Archaeological Science, 40(8), 3302–3308.

    Article  Google Scholar 

  • McGrail, S. (2004). Boats of the world, from the stone age to Medieval times. Oxford University Press.

    Google Scholar 

  • Morton, J. (2001). The role of the physical environment in Ancient Greek seafaring. Brill.

  • Murray, W. M. (1987). Do modern winds equal ancient winds? Mediterranean Historical Review, 2(2), 139–167.

    Article  Google Scholar 

  • Murray, W. M. (1993). Ancient sailing winds in the Eastern Mediterranean: The case for Cyprus. Proceedings of the International Symposium, Cyprus and the Sea, Nicosia, 33–44.

  • Nissen, K. M., Leckebusch, G. C., Pinto, J. G., Renggli, D., Ulbrich, S., & Ulbrich, U. (2010). Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Science, 10(7), 1379–1391.

    Article  Google Scholar 

  • Perttola, W. (2021). Correction to: Digital navigator on the seas of the Selden Map of China: Sequential least-cost path analysis using dynamic wind data. In Journal of Archaeological Method and Theory. Springer US.

  • Pryor, J. H. (1988). Geography, technology, and war: Studies in the maritime history of the Mediterranean, 649–1571. Cambridge University Press.

    Book  Google Scholar 

  • QGIS Development Team. (2009). QGIS Geographic Information System.

  • Saaroni, H., Maza, E., & Ziv, B. (2004). Summer sea breeze, under suppressive synoptic forcing, in a hyper-arid city: Eilat Israel. Climate Research, 26(3), 213–220.

    Article  Google Scholar 

  • Safadi, C., & Sturt, F. (2019). The warped sea of sailing: Maritime topographies of space and time for the Bronze Age eastern Mediterranean. Journal of Archaeological Science, 103, 1–15.

    Article  Google Scholar 

  • Scheidel, W., Meeks, E., & Weiland, J. (2012). ORBIS: The Stanford geospatial network model of the Roman world.

  • Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P., & Dobricic, S. (2019). Mediterranean Sea physical reanalysis (CMEMS MED-Physics) (Version 1). Copernicus Monitoring Environment Marine Service (CMEMS).

  • Skamarock, W. C., Klemp, J. B., Dudhia, J. B., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., & Powers, J. G. (2021). A description of the Advanced Research WRF Model version 4.3. In NCAR Technical Note (Issue July, pp. 1–165).

  • TraperoFernández, P., & Aragón, E. (2022). Modelling cabotage. Coastal navigation in the western Mediterranean Sea during the Early Iron Age. Journal of Archaeological Science Reports, 41(December 2021), 1–12.

    Article  Google Scholar 

  • Wachsmann, S. (1998). Seagoing ships and seamanship in the Late Bronze Age Levant (1st ed.). Chatham Publishing.

    Google Scholar 

  • Warnking, P. (2016). Roman trade routes in the Mediterranean Sea: Modeling the routes and duration of ancient travel with modern offshore Regatta software. In C. Schäfer (Ed.), Connecting the ancient world: Mediterranean shipping, maritime networks and their impact (pp. 45–90). Verlag Marie Leidorf GmbH.

    Google Scholar 

  • Whitewright, J. (2018). Sailing and sailing rigs in the Ancient Mediterranean: Implications of continuity, variation and change in propulsion technology. International Journal of Nautical Archaeology, 47(1), 28–44.

    Article  Google Scholar 

Download references


The authors wish to thank the anonymous reviewers for their encouraging appreciation of the work and for their valid and constructive comments. The authors also thank John Tresman for the English editing.


This study was partially supported by a Sir Maurice and Lady Irene Hatter Research Grant for Maritime Studies. The authors received a seed grant from the Data Science Research Centre (DSRC) of the University of Haifa to develop a high-resolution reanalysis database mapping coastal winds for the central and eastern Mediterranean basins.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. Gal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


Appendix 1 List of direct sailing passages

An index map of all bi-directional direct sailing passages is shown in Fig. 

Fig. 24
figure 24

Direct bi-directional passages (D. Gal).

24 followed by a listing of the individual passages. Datasheets for each passage are part of the research data for this study and can be found at

1  Acamas-Karpasia

76  Holmoi-Byblos

151  Menelaus-Kommos

2  Acamas-Pedalion

77  Holmoi-Dor

152  Menelaus-Kriou

3  Alexandretta-Byblos

78  Holmoi-Korakesion

153  Menelaus-Marsa Matrouh

4  Alexandretta-Holmoi

79  Holmoi-Kyrenia

154  Menelaus-Paphos

5  Alexandria-Apollonia

80  Holmoi-Laodicea

155  Meninx-Hadrumete

6  Alexandria-Ashkelon

81  Holmoi-Sidon

156  Meninx-Leptis Magna

7  Alexandria-Dor

82  Karpasia-Acamas

157  Meninx-Malta

8  Alexandria-Gelidonya

83  Karpathos-Alexandria

158  Meninx-Motya

9  Alexandria-Karpathos

84  Karpathos-Gelidonya

159  Messina-Apollonia

10  Alexandria-Korakesion

85  Karpathos-Kommos

160  Messina-Eperos

11  Alexandria-Marsa Matrouh

86  Karpathos-Marsa Matrouh

161  Messina-Euesperides

12  Alexandria-Megiste

87  Karpathos-Menelaus

162  Messina-Kommos

13  Alexandria-Paphos

88  Karpathos-Rhodes

163  Messina-Leptis Magna

14  Alexandria-Pelusion

89  Kimaros-Samonion

164  Messina-Malta

15  Alexandria-Rhodes

90  Kition-Dor

165  Messina-Ostia

16  Amos-Gelidonya

91  Kition-Pelusion

166  Messina-Puteoli

17  Apollonia-Alexandria

92  Kition-Sidon

167  Messina-Zante

18  Apollonia-Euesperides

93  Kition-Tyre

168  Motya-Carthage

19  Apollonia-Gelidonya

94  Kommos-Apollonia

169  Motya-Hadrumete

20  Apollonia-Kommos

95  Kommos-Karpathos

170  Motya-Leptis Magna

21  Apollonia-Kriou

96  Kommos-Kriou

171  Motya-Malta

22  Apollonia-Leptis Magna

97  Kommos-Leptis Magna

172  Motya-Meninx

23  Apollonia-Menelaus

98  Kommos-Malta

173  Motya-Ostia

24  Apollonia-Messina

99  Kommos-Marsa Matrouh

174  Motya-Puteoli

25  Apollonia-Paphos

100  Kommos-Menelaus

175  Motya-Syracuse

26  Apollonia-Zante

101  Kommos-Messina

176  Ostia-Carthage

27  Arsinoe-Kyrenia

102  Kommos-Paphos

177  Ostia-Messina

28  Ashkelon-Alexandria

103  Kommos-Tyre

178  Ostia-Motya

29  Ashkelon-Byblos

104  Korakesion-Alexandria

179  Ostia-Puteoli

30  Ashkelon-Paphos

105  Korakesion-Gelidonya

180  Paphos-Alexandria

31  Ashkelon-Pelusion

106  Korakesion-Holmoi

181  Paphos-Apollonia

32  Byblos-Alexandretta

107  Korakesion-Kyrenia

182  Paphos-Ashkelon

33  Byblos-Ashkelon

108  Korakesion-Paphos

183  Paphos-Dor

34  Byblos-Holmoi

109  Kriou-Apollonia

184  Paphos-Gelidonya

35  Byblos-Pelusion

110  Kriou-Ermoupolis

185  Paphos-Kommos

36  Byblos-Salamis

111  Kriou-Kommos

186  Paphos-Korakesion

37  Caesarea-Rhodes

112  Kriou-Leptis Magna

187  Paphos-Menelaus

38  Carthage-Leptis Magna

113  Kriou-Menelaus

188  Paphos-Pelusion

39  Carthage-Malta

114  Kriou-Zante

189  Paphos-Rhodes

40  Carthage-Motya

115  Kyrenia-Arsinoe

190  Paphos-Sidon

41  Carthage-Ostia

116  Kyrenia-Gelidonya

191  Pedalion-Acamas

42  Carthage-Puteoli

117  Kyrenia-Holmoi

192  Pelusion-Alexandria

43  Dor-Alexandria

118  Kyrenia-Korakesion

193  Pelusion-Ashkelon

44  Dor-Holmoi

119  Laodicea-Holmoi

194  Pelusion-Byblos

45  Dor-Kition

120  Leptis Magna-Apollonia

195  Pelusion-Dor

46  Dor-Paphos

121  Leptis Magna-Carthage

196  Pelusion-Kition

47  Dor-Pelusion

122  Leptis Magna-Eperos

197  Pelusion-Paphos

48  Dor-Salamis

123  Leptis Magna-Euesperides

198  Puteoli-Carthage

49  Eperos-Euesperides

124  Leptis Magna-Kommos

199  Puteoli-Messina

50  Eperos-Leptis Magna

125  Leptis Magna-Kriou

200  Puteoli-Motya

51  Eperos-Messina

126  Leptis Magna-Malta

201  Puteoli-Ostia

52  Ermoupolis-Kriou

127  Leptis Magna-Meninx

202  Rhodes-Alexandria

53  Euesperides-Apollonia

128  Leptis Magna-Messina

203  Rhodes-Caesarea

54  Euesperides-Eperos

129  Leptis Magna-Motya

204  Rhodes-Gelidonya

55  Euesperides-Leptis Magna

130  Leptis Magna-Zante

205  Rhodes-Hellespont

56  Euesperides-Malta

131  Malta-Carthage

206  Rhodes-Karpathos

57  Euesperides-Messina

132  Malta-Euesperides

207  Rhodes-Marsa Matrouh

58  Euesperides-Zante

133  Malta-Hadrumete

208  Rhodes-Megiste

59  Gaza-Hellespont

134  Malta-Kommos

209  Rhodes-Paphos

60  Gelidonya-Alexandria

135  Malta-Leptis Magna

210  Salamis-Byblos

61  Gelidonya-Amos

136  Malta-Meninx

211  Salamis-Dor

62  Gelidonya-Apollonia

137  Malta-Messina

212  Samonion-Kimaros

63  Gelidonya-Karpathos

138  Malta-Motya

213  Sidon-Holmoi

64  Gelidonya-Korakesion

139  Malta-Zante

214  Sidon-Kition

65  Gelidonya-Kyrenia

140  Marsa Matrouh-Alexandria

215  Sidon-Paphos

66  Gelidonya-Marsa Matrouh

141  Marsa Matrouh-Gelidonya

216  Syracuse-Motya

67  Gelidonya-Menelaus

142  Marsa Matrouh-Karpathos

217  Tyre-Kition

68  Gelidonya-Paphos

143  Marsa Matrouh-Kommos

218  Tyre-Kommos

69  Gelidonya-Rhodes

144  Marsa Matrouh-Menelaus

219  Zante-Apollonia

70  Hadrumete-Malta

145  Marsa Matrouh-Rhodes

220  Zante-Euesperides

71  Hadrumete-Meninx

146  Megiste-Alexandria

221  Zante-Kriou

72  Hadrumete-Motya

147  Megiste-Rhodes

222  Zante-Leptis Magna

73  Hellespont-Gaza

148  Menelaus-Apollonia

223  Zante-Malta

74  Hellespont-Rhodes

149  Menelaus-Gelidonya

224  Zante-Messina

75  Holmoi-Alexandretta

150  Menelaus-Karpathos


Appendix 2 List of coastal sailing stretches

An index map of all coastal sailing stretches is shown in Fig. 

Fig. 25
figure 25

Coastal sections mapped for coastal sailing mobility (D. Gal).

25, followed by a listing of the coastal stretches measured for potential sailing mobility. Datasheets for each coastal stretch are part of the research data for this study and can be found at

1. Alexandretta to Byblos

14. Holmoi to Korakesion

2. Alexandretta to Holmoi

15. Korakesion to Gelidonya

3. Alexandria to Marsa Matrouh

16. Karpasia to Acamas

4. Amos to Ermoupolis

17. Leptis Magna to Meninx

5. Apollonia to Euesperides

18. Messina to Puteoli

6. Ashkelon to Byblos

19. Menelaus to Apollonia

7. Ashkelon to Pelusion

20. Meninx to Hadrumete

8. Byblos to Alexandretta

21. Marsa Matrouh to Menelaus

9. Byblos to Ashkelon

22. Pedalion to Acamas

10. Eperos to Leptis Magna

23. Pelusion to Alexandria

11. Ermoupolis to Kriou

24. Puteoli to Ostia

12. Euesperides to Eperos

25. Samonion to Kimaros

13. Gelidonya to Amos

26. Syracuse to Motya

Appendix 3 Example data sheets

Data sheets for direct passages

Three datasheets are suggested as examples for potential sailing mobility in relation to the prevailing winds. The passage from Paphos to Rhodes (Online Resource 1) is an example of a contrary wind passage. The passage from Rhodes to Paphos (Online Resource 2) represents passages with following prevailing winds. The passage from Alexandria to Paphos (Online Resource 3) is representative of cross-wind passages.

Coastal sailing datasheets

A coastal sailing datasheet for the south coast of Crete between Ermoupolis and Kriou (Online Resource 4) is suggested as a sample of a coastal sailing contrary to prevailing winds. A second sheet for the coastal stretch between Ashkelon and Byblos (Online Resource 5) is representative of a coastal sailing stretch that lies perpendicular to prevailing winds.

All of the above suggested datasheets can also be found in the published research data.

Appendix 4 Glossary of nautical terms


See points of sail

Coastal sailing

The mode of sailing short daily runs along a coastal section exploiting the daily breeze cycle

Direct passages

The mode of continuous open water sailing between departure and destination points

Distance ratio

The ratio between the distance sailed and the navigation distance. Higher ratio values indicate upwind sailing and increasing difficulties in navigating

Distance sailed

The actual distance over ground sailed between the departure and destination points. This is usually more that the navigation distance


See points of sail


The time spent sailing the passage expressed in decimal days

Implausible passages

The subset of simulated passages that do not meet one or more of the hypothetical criteria defining the mariners’ limits of reasonability and safety

Mobility coefficient

A measure of potential sailing mobility representing the proportion of the number of days per month in which a sailing departure would complete as a plausible passage. This is normalized to a maximum value of 1 for all months of the year. The inverse of the coefficient (1 minus the coefficient) represents the proportion of the month potentially spent waiting for an opportunity to sail

Navigation distance

The shortest possible distance to sail between departure and destination points. In cases where the orthodromic distance line does not cross land the navigation distance and the orthodromic distances are equal

No sail sector

See points of sail

Orthodromic distance

The shortest possible distance between the departure and destination points of the passage. This line may cross land and therefore it may be less than the navigation distance (i.e., the shortest distance possible to sail). Also known as the great circle distance

Passage VMG (velocity made good)

The effective speed of the passage based on passage duration and the shorted possible sailing distance (navigation distance) for the passage

Plausible passages

The subset of simulated passages meeting the hypothetical criteria defining the ancient mariners’ limits of reasonability and safety

Points of sail

Description of the sailing limits and characteristics in relation to the true wind angle (TWA). Following are the points of sail for a ship with a single loose footed square sail, provided by the simulator:

-No sail sector defines the sector in which sailing is not possible − 0 to 77° TWA

-Beating is between 77 and 107° TWA which is the sector in which the sail configuration is for close hauled sailing

-Reaching is between 107 and 160° TWA which is the sector with wind on a rear quarter

-Downwind is between 160 and 180° which is the sectors in which the sail configuration is for running before the wind


See points of sail

Ship speed (Avg./max.)

Average or maximum speed of the ship over ground (SOG) throughout the passage. This will normally be greater than the passage VMG due to the distance sailed being more than the navigation distance

Tacking ratio

The ratio between the numbers of simulated tacks performed during the passage and the navigation distance. The ratio represents the number of tacks per nautical mile. This measure is an indicator to the degree of upwind sailing

True wind angle (TWA)

The angle between a ship’s bow and the true wind

True wind speed (TWS)

The speed of the true wind encountered during the simulated passage as might be measured by a stationary observer

Velocity made good (VMG)

See passage VMG or windward VMG

Waiting (Days)

Days spent waiting for favourable wind. These are the days in which a simulated departure would have culminated in a implausible passage. Statistics are shown for both total monthly waiting days and maximum consecutive waiting days

Windward VMG

The effective velocity of the ship achieved by tacking to advance in the direction of the wind

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gal, D., Saaroni, H. & Cvikel, D. Mappings of Potential Sailing Mobility in the Mediterranean During Antiquity. J Archaeol Method Theory 30, 397–448 (2023).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: