Skip to main content

Investigating Isotopic Niche Space: Using rKIN for Stable Isotope Studies in Archaeology

This article has been updated

Abstract

Archaeological applications of stable isotope data have become increasingly prevalent, and the use of these data continues to expand rapidly. Researchers are starting to find that recovering data for multiple elements provides additional insight and quantitative data for answering questions about past human activities and behaviors. Many stable isotope studies in archaeology, however, rarely move beyond comparisons of descriptive statistics such as mean, median, and standard deviation. Over the last decade, ecologists have formalized the concept of isotopic niche space, and corresponding isotopic niche overlap, to incorporate data from two or more isotopic systems into a single analysis. Additionally, several methods for quantifying isotopic niche space and overlap are now available. Here, I describe the evolution of the isotopic niche space concept and demonstrate the usefulness of it for archaeological research through three case studies using the recently developed rKIN package that allows for a comparison of different methods of isotopic niche space and overlap estimations. Two case studies apply these new measures to previously published studies, while a third case study illustrates its applicability to exploring new hypotheses and research directions. The benefits and limitations of quantifying isotopic niche space and overlap are discussed, as well as suggestions for data reporting and transparency when using these methods. Isotopic niche space and overlap metrics will allow archaeologists to extract more nuanced information from stable isotope datasets in their drive to understand more fully the histories of the human conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

  • 15 November 2021

    The original version of this paper was updated due to the revised statement of Availability of Data and Material

References

  1. Albeke, S. E. (2017). rKIN:(kernel) isotope niche estimation. R package version 0.1.

  2. Ambrose, S. H. (1991). Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science, 18(3), 293–317.

    Google Scholar 

  3. Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive consideration. In M. K. Sandford (Ed.), Investigations of ancient human tissue: Chemical analyses in anthropology (pp. 50-130). Gordon and Breach.

  4. Ambrose, S. H., & DeNiro, M. (1986). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature, 319, 321–324.

    Google Scholar 

  5. Bentley, R. A. (2006). Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory, 13(3), 135–187.

    Google Scholar 

  6. Bentley, R. A., & Knipper, C. (2005). Geographical patterns in biologically available strontium, carbon and oxygen isotope signatures in prehistoric SW Germany. Archaeometry, 47(3), 629–644.

    Google Scholar 

  7. Blumenthal, S. A., Levin, N. E., Brown, F. H., Brugal, J. P., Chritz, K. L., Harris, J. M., Jehle, G. E., & Cerling, T. E. (2017). Aridity and hominin environments. Proceedings of the National Academy of Sciences, 114(28), 7331–7336.

    Google Scholar 

  8. Boyd, M., Feibel, C. S., Manthi, F. K., Ward, C. V., & Plavcan, J. M. (2018). A synthesis of multi-proxy paleoenvironmental reconstruction methods: The depositional environments of the Lomekwi Member, Nachukui Formation, West Turkana. In AGU Fall Meeting Abstracts (Vol. 2018, pp. PP31B-1657).

  9. Brill, R. H., & Wampler, J. M. (1967). Isotope studies of ancient lead. American Journal of Archaeology, 71(1), 63–77.

    Google Scholar 

  10. Cerling, T.E. (2014). 14.12 Stable isotope evidence for hominin environments in Africa. Treatise on Geochemistry, Springer, pp. 158-166.

  11. Cerling, T. E., Bowman, J. R., & O’Neil, J. R. (1988). An isotopic study of a fluvial-lacustrine sequence: The Plio-Pleistocene Koobi Fora sequence, East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 63(4), 335–356.

    Google Scholar 

  12. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African Bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.

    Google Scholar 

  13. Cerling, T. E., Manthi, F. K., Mbua, E. N., Leakey, L. N., Leakey, M. G., Leakey, R. E., Brown, F. H., Grine, F. E., Hart, J. A., Kaleme, P., Roche, H., Uno, K. T., & Wood, B. A. (2013). Stable isotope-based diet reconstructions of Turkana Basin hominins. Proceedings of the National Academy of Sciences, 110(26), 10501–10506.

    Google Scholar 

  14. Cheung, C., Jing, Z., Tang, J., Weston, D. A., & Richards, M. P. (2017). Diets, social roles, and geographical origins of sacrificial victims at the royal cemetery at Yinxu, Shang China: New evidence from stable carbon, nitrogen, and sulfur isotope analysis. Journal of Anthropological Archaeology, 48, 28–45.

    Google Scholar 

  15. Chritz, K. L., Marshall, F. B., Zagal, M. E., Kirera, F., & Cerling, T. E. (2015). Environments and trypanosomiasis risks for early herders in the later Holocene of the Lake Victoria basin, Kenya. Proceedings of the National Academy of Sciences, 112(12), 3674–3679.

    Google Scholar 

  16. DeNiro, M. J. (1987). Stable isotopy and archaeology. American Scientist, 75(2), 182–191.

    Google Scholar 

  17. DeNiro, M. J., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et cosmochimica acta, 45(3), 341–351.

    Google Scholar 

  18. Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences, 107, 5738–5743.

  19. Du, A., Rowan, J., Wang, S. C., Wood, B. A., & Alemseged, Z. (2020). Statistical estimates of hominin origination and extinction dates: A case study examining the Australopithecus anamensis–afarensis lineage. Journal of Human Evolution, 138, 102688.

    Google Scholar 

  20. Dupras, T. L., Schwarcz, H. P., & Fairgrieve, S. I. (2001). Infant feeding and weaning practices in Roman Egypt. American Journal of Physical Anthropology, 115(3), 204–212.

    Google Scholar 

  21. Eckrich, C. A., Albeke, S. E., Flaherty, E. A., Bowyer, R. T., & Ben-David, M. (2020). rKIN: Kernel-based method for estimating isotopic niche size and overlap. Journal of Animal Ecology, 89(3), 757–771.

    Google Scholar 

  22. Ericson, J. E. (1985). Strontium isotope characterization in the study of prehistoric human ecology. Journal of Human Evolution, 14(5), 503–514.

    Google Scholar 

  23. Evans, J. A., Chenery, C. A., & Fitzpatrick, A. P. (2006). Bronze Age childhood migration of individuals near Stonehenge, revealed by strontium and oxygen isotope tooth enamel analysis. Archaeometry, 48(2), 309–321.

    Google Scholar 

  24. Faith, J. T. (2018). Paleodietary change and its implications for aridity indices derived from δ18O of herbivore tooth enamel. Palaeogeography, Palaeoclimatology, Palaeoecology, 490, 571–578.

    Google Scholar 

  25. Flaherty, E. A., & Ben-David, M. (2010). Overlap and partitioning of the ecological and isotopic niches. Oikos, 119(9), 1409–1416.

    Google Scholar 

  26. Galetti, M., Rodarte, R. R., Neves, C. L., Moreira, M., & Costa-Pereira, R. (2016). Trophic niche differentiation in rodents and marsupials revealed by stable isotopes. PLoS One, 11(4), e0152494.

    Google Scholar 

  27. Garrett, N. D., Fox, D. L., McNulty, K. P., Faith, J. T., Peppe, D. J., Van Plantinga, A., & Tryon, C. A. (2015). Stable isotope paleoecology of late Pleistocene middle stone age humans from the Lake Victoria Basin, Kenya. Journal of human evolution, 82, 1–14.

    Google Scholar 

  28. Haile-Selassie, Y., Gibert, L., Melillo, S. M., Ryan, T. M., Alene, M., Deino, A., Levin, N. E., Scott, G., & Saylor, B. Z. (2015). New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature, 521(7553), 483–488.

    Google Scholar 

  29. Haile-Selassie, Y., Melillo, S. M., Vazzana, A., Benazzi, S., & Ryan, T. M. (2019). A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia. Nature, 573(7773), 214–219.

    Google Scholar 

  30. Harmand, S., Lewis, J. E., Feibel, C. S., Lepre, C. J., Prat, S., Lenoble, A., Roche, H., et al. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature, 521(7552), 310–315.

    Google Scholar 

  31. Hartman, G. (2011). Are elevated δ15N values in herbivores in hot and arid environments caused by diet or animal physiology? Functional Ecology, 25(1), 122–131.

    Google Scholar 

  32. Hedges, R. E., & Reynard, L. M. (2007). Nitrogen isotopes and the trophic level of humans in archaeology. Journal of archaeological science, 34(8), 1240–1251.

    Google Scholar 

  33. Hermes, T. R., Frachetti, M. D., Bullion, E. A., Maksudov, F., Mustafokulov, S., & Makarewicz, C. A. (2018). Urban and nomadic isotopic niches reveal dietary connectivities along Central Asia’s Silk Roads. Scientific Reports, 8(1), 1–11.

    Google Scholar 

  34. Hette-Tronquart, N. (2019). Isotopic niche is not equal to trophic niche. Ecology Letters, 22(11), 1987–1989.

    Google Scholar 

  35. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427.

    Google Scholar 

  36. Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology, 80(3), 595–602.

    Google Scholar 

  37. Jackson, M. C., & Britton, J. R. (2014). Divergence in the trophic niche of sympatric freshwater invaders. Biological Invasions, 16(5), 1095–1103.

    Google Scholar 

  38. Karlson, A. M., Gorokhova, E., & Elmgren, R. (2015). Do deposit-feeders compete? Isotopic niche analysis of an invasion in a species-poor system. Scientific Reports, 5(1), 1–8.

    Google Scholar 

  39. Kimbel, W. H., Lockwood, C. A., Ward, C. V., Leakey, M. G., Rak, Y., & Johanson, D. C. (2006). Was Australopithecus anamensis ancestral to A. afarensis? A case of anagenesis in the hominin fossil record. Journal of Human Evolution, 51(2), 134–152.

    Google Scholar 

  40. Klein, R. G. (2013). Stable carbon isotopes and human evolution. Proceedings of the National Academy of Sciences, 110(26), 10470–10472.

    Google Scholar 

  41. Kohn, M. J. (2010). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo)climate. Proceedings of the National Academy of Sciences, 107, 19691–19695.

  42. Larsen, C. S., Schoeninger, M. J., Van der Merwe, N. J., Moore, K. M., & Lee-Thorp, J. A. (1992). Carbon and nitrogen stable isotopic signatures of human dietary change in the Georgia Bight. American Journal of Physical Anthropology, 89(2), 197–214.

    Google Scholar 

  43. Layman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88(1), 42–48.

    Google Scholar 

  44. Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, 103(30), 11201–11205.

    Google Scholar 

  45. Levin, N. E., Zipser, E. J., & Cerling, T. E. (2009). Isotopic composition of waters from Ethiopia and Kenya: Insights into moisture sources for eastern Africa. Journal of Geophysical Research: Atmospheres, 114(D23).

  46. Levin, N. E., Haile-Selassie, Y., Frost, S. R., & Saylor, B. Z. (2015). Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proceedings of the National Academy of Sciences, 112(40), 12304–12309.

    Google Scholar 

  47. Loponte, D., & Corriale, M. J. (2020). Patterns of resource use and isotopic niche overlap among guanaco (Lama guanicoe), pampas deer (Ozotoceros bezoarticus) and marsh deer (Blastocerus dichotomus) in the pampas. Ecological, paleoenvironmental and archaeological implications. Environmental Archaeology, 25(4), 411–444.

    Google Scholar 

  48. Martin, J. E., Tacail, T., Braga, J., Cerling, T. E., & Balter, V. (2020). Calcium isotopic ecology of Turkana Basin hominins. Nature Communications, 11(1), 1–7.

    Google Scholar 

  49. Martínez del Rio, C., Wolf, N., Carleton, S. A., & Gannes, L. Z. (2009). Isotopic ecology ten years after a call for more laboratory experiments. Biological Reviews, 84(1), 91–111.

    Google Scholar 

  50. Newsome, S. D., Martinez del Rio, C., Bearhop, S., & Phillips, D. L. (2007). A niche for isotopic ecology. Frontiers in Ecology and the Environment, 5(8), 429–436.

    Google Scholar 

  51. Newsome, S. D., Yeakel, J. D., Wheatley, P. V., & Tinker, M. T. (2012). Tools for quantifying isotopic niche space and dietary variation at the individual and population level. Journal of Mammalogy, 93(2), 329–341.

    Google Scholar 

  52. Patterson, D. B., Braun, D. R., Allen, K., Barr, W. A., Behrensmeyer, A. K., Biernat, M., Lehmann, S. B., Maddox, T., Manthi, F. K., Merritt, S. R., Morris, S. E., O’Brien, K., Reeves, J. S., Wood, B. A., & Bobe, R. (2019). Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nature Ecology & Evolution, 3(7), 1048–1056.

    Google Scholar 

  53. Quevedo, M., Svanbäck, R., & Eklöv, P. (2009). Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology, 90(8), 2263–2274.

    Google Scholar 

  54. Quinn, R. L., & Lepre, C. J. (2021). Contracting eastern African C4 grasslands during the extinction of Paranthropus boisei. Scientific Reports, 11(1), 1–10.

    Google Scholar 

  55. Roberts, P., Fernandes, R., Craig, O. E., Larsen, T., Lucquin, A., Swift, J., & Zech, J. (2018). Calling all archaeologists: Guidelines for terminology, methodology, data handling, and reporting when undertaking and reviewing stable isotope applications in archaeology. Rapid Communications in Mass Spectrometry, 32(5), 361–372.

    Google Scholar 

  56. Robinson, J. R., & Rowan, J. (2017). Holocene paleoenvironmental change in southeastern Africa (Makwe Rockshelter, Zambia): Implications for the spread of pastoralism. Quaternary Science Reviews, 156, 57–68.

    Google Scholar 

  57. Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G., & Reed, K. E. (2017). Late Pliocene environmental change during the transition from Australopithecus to Homo. Nature Ecology & Evolution, 1(6), 1–7.

    Google Scholar 

  58. Rossman, S., Ostrom, P. H., Gordon, F., & Zipkin, E. F. (2016). Beyond carbon and nitrogen: Guidelines for estimating three-dimensional isotopic niche space. Ecology and Evolution, 6(8), 2405–2413.

    Google Scholar 

  59. Scaffidi, B. K., Kamenov, G. D., Sharpe, A. E., & Krigbaum, J. (2021). Non-local enemies or local subjects of violence?: Using strontium (87Sr/86Sr) and lead (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) isobiographies to reconstruct geographic origins and early childhood mobility of decapitated male heads from the Majes Valley, Peru. Journal of Archaeological Method and Theory, 1-54.

  60. Schoeninger, M. J. (1985). Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral. Journal of Human Evolution, 14(5), 515–525.

    Google Scholar 

  61. Schoeninger, M. J. (1989). Reconstructing prehistoric human diet. In T. D. Price (Ed.), The chemistry of prehistoric human bone (pp. 38-67). Cambridge University Press Cambridge.

  62. Schoeninger, M. J., & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica acta, 48(4), 625–639.

    Google Scholar 

  63. Schoeninger, M. J., & Moore, K. (1992). Bone stable isotope studies in archaeology. Journal of World Prehistory, 6(2), 247–296.

    Google Scholar 

  64. Schoeninger, M. J., Reeser, H., & Hallin, K. (2003). Paleoenvironment of Australopithecus anamensis at Allia Bay, East Turkana, Kenya: Evidence from mammalian herbivore enamel stable isotopes. Journal of Anthropological Archaeology, 22(3), 200–207.

    Google Scholar 

  65. Sealy, J. C., van der Merwe, N. J., Sillen, A., Kruger, F. J., & Krueger, H. W. (1991). 87Sr/86Sr as a dietary indicator in modern and archaeological bone. Journal of Archaeological Science, 18(3), 399-416.

  66. Sealy, J. C., Armstrong, R., & Schrire, C. (1995). Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity, 69(263), 290.

    Google Scholar 

  67. Shackleton, N. J., Backman, J., Zimmerman, H. T., Kent, D. V., Hall, M. A., Roberts, D. G., Schnitker, D., Baldauf, J. G., Desprairies, A., Homrighausen, R., Huddlestun, P., Keene, J. B., Kaltenback, A. J., Krumsiek, K. A. O., Morton, A. C., Murray, J. W., & Westberg-Smith, J. (1984). Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature, 307(5952), 620–623.

    Google Scholar 

  68. Sharma, S., Joachimski, M. M., Tobschall, H. J., Singh, I. B., Tewari, D. P., & Tewari, R. (2004). Oxygen isotopes of bovid teeth as archives of paleoclimatic variations in archaeological deposits of the Ganga plain, India. Quaternary Research, 62(1), 19–28.

    Google Scholar 

  69. Sponheimer, M., Alemseged, Z., Cerling, T. E., Grine, F. E., Kimbel, W. H., Leakey, M. G., Lee-Thorp, J. A., Manthi, F. K., Reed, K. E., Wood, B. A., & Wynn, J. G. (2013). Isotopic evidence of early hominin diets. Proceedings of the National Academy of Sciences, 110(26), 10513–10518.

    Google Scholar 

  70. Swanson, H. K., Lysy, M., Power, M., Stasko, A. D., Johnson, J. D., & Reist, J. D. (2015). A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology, 96(2), 318–324.

    Google Scholar 

  71. Ugan, A., & Coltrain, J. (2012). Stable isotopes, diet, and taphonomy: A look at using isotope-based dietary reconstructions to infer differential survivorship in zooarchaeological assemblages. Journal of Archaeological Science, 39(5), 1401–1411.

    Google Scholar 

  72. Van der Merwe, N. J., & Vogel, J. C. (1978). 13C content of human collagen as a measure of prehistoric diet in Woodland North America. Nature, 276(5690), 815-816.

  73. Vogel, J. C., & Van Der Merwe, N. J. (1977). Isotopic evidence for early maize cultivation in New York State. American Antiquity, 238–242.

  74. Ward, C. V., Plavcan, J. M., & Manthi, F. K. (2010). Anterior dental evolution in the Australopithecus anamensis–afarensis lineage. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1556), 3333–3344.

    Google Scholar 

  75. West, C. F., & France, C. A. (2015). Human and canid dietary relationships: Comparative stable isotope analysis from the Kodiak Archipelago, Alaska. Journal of Ethnobiology, 35(3), 519–535.

    Google Scholar 

  76. Wright, L. E. (2012). Immigration to Tikal, Guatemala: Evidence from stable strontium and oxygen isotopes. Journal of Anthropological Archaeology, 31(3), 334–352.

    Google Scholar 

  77. Wynn, J. G., Sponheimer, M., Kimbel, W. H., Alemseged, Z., Reed, K., Bedaso, Z. K., & Wilson, J. N. (2013). Diet of Australopithecus afarensis from the Pliocene Hadar formation, Ethiopia. Proceedings of the National Academy of Sciences, 110(26), 10495–10500.

    Google Scholar 

  78. Wynn, J. G., Alemseged, Z., Bobe, R., Grine, F. E., Negash, E. W., & Sponheimer, M. (2020). Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proceedings of the National Academy of Sciences, 117(36), 21978–21984.

    Google Scholar 

  79. Yeakel, J. D., Bhat, U., Elliott Smith, E. A., & Newsome, S. D. (2016). Exploring the isotopic niche: Isotopic variance, physiological incorporation, and the temporal dynamics of foraging. Frontiers in Ecology and Evolution, 4, 1.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua R. Robinson.

Ethics declarations

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robinson, J.R. Investigating Isotopic Niche Space: Using rKIN for Stable Isotope Studies in Archaeology. J Archaeol Method Theory (2021). https://doi.org/10.1007/s10816-021-09541-7

Download citation

Keywords

  • Isotopic niche space
  • Isotopic niche overlap
  • Minimum convex polygon
  • Standard ellipse area
  • Kernel utilization density
  • rKIN