Skip to main content

Advertisement

Log in

Interpreting Past Human Diets Using Stable Isotope Mixing Models

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Palaeodietary reconstruction using stable isotope analysis is becoming increasingly common, as is the practice of using mixing models to quantify ancient dietary compositions. However, many archaeologists may be unaware of the complexities and pitfalls of stable isotope mixing models (SIMMs). This study serves to provide an overview of the basic principles of SIMMs, evaluates the performances of several of the most commonly used SIMM software packages, and offers some field-specific guidelines for the application of SIMMs in archaeological contexts. We present a series of simulated and published archaeological data to demonstrate and evaluate the different types of SIMMs. We compared the outputs of linear mixing models, simple probabilistic models (IsoSource), and conditional probabilistic models (FRUITS and MixSIAR). Our results show that each mixing model has its pros and cons, and archaeologists should select the best model based on a number of factors, including familiarity with coding languages, sample characteristics (i.e. sample size and normality) of the consumer groups, and research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Hyperparameters (α) are also called priors in FRUITS and in the literature more generally. In order to differentiate this from other priors, α will be referred to as hyperparameters throughout this paper.

References

  • Ambrose, S., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. Lambert & G. Grupe (Eds.), Prehistoric Human Bone: Archaeology at the Molecular Level (pp. 1–37). Heidelberg: Springer.

    Google Scholar 

  • Ben-David, M., F, R. W, & Schell, D. (1997). Annual and seasonal changes in diets of Martens: evidence from stable isotope analysis. Oecologia, 111(2), 280–291.

    Article  Google Scholar 

  • Bender, M., Baerreis, D., & Steventon, R. (1981). Further light on carbon isotopes and Hopewell Agriculture. American Antiquity, 43, 346–353.

    Article  Google Scholar 

  • Bettinger, R., Barton, L., & Morgan, C. (2010). The origins of food production in North China: a different kind of agricultural revolution. Evolutionary Anthropology, 19(1), 9–21.

    Article  Google Scholar 

  • Bocherens, H., & Drucker, D. (2003). Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology, 13(1-2), 46–53.

    Article  Google Scholar 

  • Bocherens, H., Drucker, D., Billiou, D., Patou-Mathis, M., & Vandermeersch, B. (2005). Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. Journal of Human Evolution, 49(1), 71–87.

    Article  Google Scholar 

  • Bocherens, H., Mashkour, M., Drucker, D., Moussa, I., & Billiou, D. (2006). Stable isotope evidence for palaeodiets in Southern Turkmenistan during Historical Period and Iron Age. Journal of Archaeological Science, 33(2), 253–264.

    Article  Google Scholar 

  • Bownes, J. M., Ascough, P. L., Cook, G. T., Murray, I., & Bonsall, C. (2017). Using stable isotopes and a Bayesian mixing model (FRUITS) to investigate diet at the early neolithic site of Carding Mill Bay, Scotland. Radiocarbon, 59(5), 1275–1294.

    Article  Google Scholar 

  • Campbell, R., Li, Z., He, Y., & Yuan, J. (2011). Consumption, exchange and production at the great settlement Shang: bone-working at Tiesanlu, Anyang. Antiquity, 85(330), 1279–1297.

    Article  Google Scholar 

  • Campech, S. (1996). Usages et goûts culinaires au Moyen-Age en Languedoc et en Aquitaine, Archéologie du Midi médiéval. Carcassonne and Villerouge-Termenès: Centre d'archéologie médiévale du Languedoc, Carcassonne.

    Google Scholar 

  • Chang, K. (1976). Food and food vessels in Ancient China. Early Chinese Civilization: Anthropological Perspectives, (pp. 115-148). Cambridge: Harvard University Press.

  • Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust}: an {R} package for determining the relevant number of clusters in a data set. Journal of Statistical Software, 61, 1-36.

  • Chen, Z. 陳. (1985). 商代晚期的家畜和家禽(Domesticated animals of the Late Shang). 農業考古, 288-295.

  • Chenery, C., Müldner, G., Evans, J., Eckardt, H., & Lewis, M. (2010). Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. Journal of Archaeological Science, 37, 150–163.

    Article  Google Scholar 

  • Cheung, C., Jing, Z., Tang, J., Weston, D., & Richards, M. (2017a). Diets, social roles, and geographical origins of sacrificial victims at the Royal Cemetery at Yinxu, Shang China: new evidence from stable carbon, nitrogen, and sulfur isotope analysis. Journal of Anthropological Archaeology, 48, 28–45.

    Article  Google Scholar 

  • Cheung, C., Jing, Z., Tang, J., Yue, Z., & Richards, M. (2017b). Examining social and cultural differentiation in early Bronze Age China using stable isotope analysis and mortuary patterning of human remains at Xin’anzhuang, Yinxu. Archaeological and Anthropological Sciences, 9(5), 799–816.

    Article  Google Scholar 

  • Cheung, C., Schroeder, H., & Hedges, R. (2012). Diet, social differentiation and cultural changes in Roman Britain: new isotopic evidence from Gloucestershire. Archaeological and Anthropological Sciences, 4(1), 61–73.

    Article  Google Scholar 

  • Cheung, C., Zhang, H., Hepburn, J., Yang, D., & Richards, M. (2019). Stable isotope and dental caries data reveal rapid adoption of wheat in Ancient China. PLoS One, 14(7), e0218943.

    Article  Google Scholar 

  • Chinique de Armas, Y., Buhay, W., Rodríguez Suárez, R., Bestel, S., Smith, D., Mowat, S., & Roksandic, M. (2015). Starch analysis and isotopic evidence of consumption of cultigens among fisher–gatherers in Cuba: the archaeological site of Canímar Abajo, Matanzas. Journal of Archaeological Science, 58, 121–132.

    Article  Google Scholar 

  • Chisholm, B., Nelson, D., & Schwarcz, H. (1983). Marine and terrestrial protein in prehistoric diets on the British Columbia Coast. Current Anthropology, 24(3), 396–398.

    Article  Google Scholar 

  • Crawford, G. (2009). Agricultural origins in North China pushed back to the Pleistocene-Holocene boundary. Proceedings of the National Academy of Sciences of the United States of America, 106, 7271–7272.

    Article  Google Scholar 

  • DeNiro, M., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 42(5), 495–506.

    Article  Google Scholar 

  • DeNiro, M., & Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 45(3), 341–351.

    Article  Google Scholar 

  • Fernandes, R., Grootes, P., Nadeau, M.-J., & Nehlich, O. (2015). Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). American Journal of Physical Anthropology, 158(2), 325–340.

    Article  Google Scholar 

  • Fernandes, R., Millard, A., Brabec, M., Nadeau, M., & Grootes, P. (2014). Food reconstruction using isotopic transferred signals (FRUITS): a Bayesian model for diet reconstruction. PLoS One, 9(2), e87436.

    Article  Google Scholar 

  • Fernandes, R., Nadeau, M., & Grootes, P. (2012). Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeological and Anthropological Sciences, 4(4), 291–301.

    Article  Google Scholar 

  • Finucane, B. (2009). Maize and sociopolitical complexity in the Ayacucho Valley, Peru. Current Anthropology, 50(4), 535–545.

    Article  Google Scholar 

  • Fraser, R., Bogaard, A., Charles, M., Styring, A., Wallace, M., Jones, G., Ditchfield, P., & Heaton, T. (2013). Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of Archaeobotanical cereals and pulses. Journal of Archaeological Science, 40(12), 4754–4766.

    Article  Google Scholar 

  • Fry, B. (2013). Minmax solutions for underdetermined isotope mixing problems: eeply to Semmens et al. (2013). Marine Ecology Progress Series, 490, 291–294.

    Article  Google Scholar 

  • Guiry, E., Hepburn, J., & Richards, M. (2016). High-resolution serial sampling for nitrogen stable isotope analysis of Archaeological mammal teeth. Journal of Archaeological Science, 69, 21–28.

    Article  Google Scholar 

  • Guiry, E., Noël, S., Tourigny, E., & Grimes, V. (2012). A stable isotope method for identifying transatlantic origin of pig (Sus scrofa) remains at French and English fishing stations in Newfoundland. Journal of Archaeological Science, 39(7), 2012–2022.

    Article  Google Scholar 

  • Guo, Y., Hu, Y., Zhu, J., Zhou, M., Wang, C., & Richards, M. (2011). Stable carbon and nitrogen isotope evidence of human and pig diets at the Qinglongquan site, China. Science China Earth Sciences, 54(4), 519–527.

    Article  Google Scholar 

  • Haines, E. B. (1976). Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnology and Oceanography, 21(6), 880–883.

    Article  Google Scholar 

  • Hall, R. (1967). Those late corn dates: isotopic fractionation as a source of error in carbon-14 dates. Michigan Archaeologist, 13, 171–180.

    Google Scholar 

  • Hedges, R., & Reynard, L. (2007). Nitrogen isotopes and the trophic level of humans in archaeology. Journal of Archaeological Science, 34(8), 1240–1251.

    Article  Google Scholar 

  • Hobson, K., & Collier, S. (1984). Marine and terrestrial protein in Australian Aboriginal diets. Current Anthropology, 25(2), 238–240.

    Article  Google Scholar 

  • Hopkins III, J., & Ferguson, J. (2012). Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS One, 7, 1–13.

    Article  Google Scholar 

  • Hou, Y., Campbell, R., Zhang, Y., & Li, S. (2019). Animal use in a Shang Village: the Guandimiao zooarchaeological assemblage. International Journal of Osteoarchaeology, 29(2), 335–345.

    Article  Google Scholar 

  • Hu, Y., Ambrose, S., & Wang, C. (2006). Stable isotopic analysis of human bones from Jiahu site, Henan, China: implications for the transition to agriculture. Journal of Archaeological Science, 33(9), 1319–1330.

    Article  Google Scholar 

  • Jim, S., Jones, V., Ambrose, S., & Evershed, R. (2006). Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. British Journal of Nutrition, 95(6), 1055–1062.

    Article  Google Scholar 

  • Kassambara, A., & Mundt, F. (2017). factoextra: extract and visualize the results of multivariate data analyses.

  • Katzenberg, M. (2008). Stable isotope analysis: a tool of studying past diet, demography, and life history. In M. Katzenberg & S. Saunders (Eds.), Biological Anthropology of the Human Skeleton Second (Edition ed., pp. 413–441). Hoboken, NJ: John Wiley & Sons, Inc..

    Chapter  Google Scholar 

  • Kline Jr., T., Goering, J., Mathisen, O., Poe, P., Parker, P., & Scalan, R. (1993). Recycling of elements transported upstream by runs of Pacific salmon: II. δ15N and δ13C Evidence in the Kvichak River Watershed, Bristol Bay, Southwestern Alaska. Canadian Journal of Fisheries and Aquatic Sciences, 50(11), 2350–2365.

    Article  Google Scholar 

  • Krogh, A. (1937). The use of isotopes as indicators in biological research. Science, 85(2199), 187–191.

    Article  Google Scholar 

  • Krueger, H., & Sullivan, C. (1984). Models for carbon isotope fractionation between diet and bone. Stable Isotopes in Nutrition, (pp. 205-220) American Chemical Society.

  • Ladurie, M. (1976). The Peasants of Languedoc. Urbana and Chicago: University of Illinois Press.

    Google Scholar 

  • Larsen, C. (2003). Animal source foods and human health during evolution. The Journal of Nutrition, 133(11), 3893S–3897S.

    Article  Google Scholar 

  • Lee-Thorp, J., Sealy, J., & van der Merwe, N. (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science, 16(6), 585–599.

    Article  Google Scholar 

  • Lee, G., Crawford, G., Liu, L., & Chen, X. (2007). Plants and people from the Early Neolithic to Shang Periods in North China. Proceedings of the National Academy of Sciences of the United States of America, 104, 1087–1092.

    Article  Google Scholar 

  • Lynott, M., Boutton, T., Price, J., & Nelson, D. (1986). Stable carbon isotopic evidence for maize agriculture in Southeast Missouri and Northeast Arkansas. American Antiquity, 51(1), 51–65.

    Article  Google Scholar 

  • Maufras, O., Hernandez, J., Rochette, M., & Thomas, B. (2018). Aimargues - Madame - Saint-Gilles le Vieux: Missignac, villa médiévale et ses abords ( Ve - Xiiie s.).

  • McConnaughey, T., & McRoy, C. P. (1979). Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Marine Biology, 53(3), 257–262.

    Article  Google Scholar 

  • Mion, L., Herrscher, E., André, G., Hernandez, J., Donat, R., Fabre, M., Forest, V., & Salazar-García, D. (2018). The influence of religious identity and socio-economic status on diet over time, an example from Medieval France. Archaeological and Anthropological Sciences.

  • Müldner, G., Chenery, C., & Eckardt, H. (2011). The ‘headless Romans’: multi-isotope investigations of an unusual burial ground from Roman Britain. Journal of Archaeological Science, 38(2), 280–290.

    Article  Google Scholar 

  • Müldner, G., & Richards, M. (2007). stable isotope evidence for 1500 years of human diet at the City of York, UK. American Journal of Physical Anthropology, 133(1), 682–697.

    Article  Google Scholar 

  • Nestle, M. (1999). Animal v. plant foods in human diets and health: is the historical record unequivocal? Proceedings of the Nutrition Society, 58, 211–218.

    Article  Google Scholar 

  • Newsome, S., Phillips, D., Culleton, B., Guilderson, T., & Koch, P. (2004). Dietary reconstruction of an Early to Middle Holocene human population from the Central California Coast: insights from advanced stable isotope mixing models. Journal of Archaeological Science, 31(8), 1101–1115.

    Article  Google Scholar 

  • Nifong, J., Layman, C., & Silliman, B. (2015). Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. Journal of Animal Ecology, 84(1), 35–48.

    Article  Google Scholar 

  • O'Connell, T., Kneale, C., Tasevska, N., & Kuhnle, G. (2012). The diet-body offset in human nitrogen isotopic values: a controlled dietary study. American Journal of Physical Anthropology, 149(3), 426–434.

    Article  Google Scholar 

  • Parnell, A., Phillips, D., Bearhop, S., Semmens, B., Ward, E., Moore, J., Jackson, A., & Inger, R. (2013). Bayesian stable isotope mixing models. Environmetrics, 24, 387–399.

    Google Scholar 

  • Parnell, A. C., Inger, R., Bearhop, S., & Jackson, A. L. (2010). Source partitioning using stable isotopes: coping with too much variation. PLoS One, 5(3), e9672.

    Article  Google Scholar 

  • Pate, D. (1998). Bone collagen stable nitrogen and carbon isotopes as indicators of past human diet and landscape use in Southeastern South Australia. Australian Archaeology, 46(1), 23–29.

    Article  Google Scholar 

  • Phillips, D., & Gregg, J. (2003). Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136(2), 261–269.

    Article  Google Scholar 

  • Phillips, D., & Koch, P. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia, 130(1), 114–125.

    Article  Google Scholar 

  • Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83(3), 703–718.

    Article  Google Scholar 

  • Richards, M. P., Jacobi, R., Stringer, C., Pettitt, P. B., & Cook, J. (2006). Marine diets in the European late Upper Paleolithic: a reply to Bocherens and Drucker (2006). Journal of Human Evolution, 51(4), 443–444.

    Article  Google Scholar 

  • Rosing, M., Ben-David, M., & Barry, R. (1998). Analysis of stable isotope data: a K nearest-neighbors randomization test. The Journal of Wildlife Management, 62(1), 380–388.

    Article  Google Scholar 

  • RStudio Team. (2018). RStudio: Integrated Development Environment for R. Boston, USA: RStudio, Inc..

    Google Scholar 

  • Schoenheimer, R., & Rittenberg, D. (1940). The study of intermediary metabolisms of animals with teh aid of isotopes. Physiological Reviews, 20(2), 218–248.

    Article  Google Scholar 

  • Schoeninger, M., & DeNiro, M. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48(4), 625–639.

    Article  Google Scholar 

  • Schoeninger, M., & Moore, K. (1992). Bone stable isotope studies in archaeology. Journal of World Prehistory, 6, 246–296.

    Article  Google Scholar 

  • Schwarcz, H. (1991). Some theoretical aspects of isotope paleodiet studies. Journal of Archaeological Science, 18(3), 261–275.

    Article  Google Scholar 

  • Scott, M. (2020). Chew the fat: an examination of the preservation of fatty acids in archaeological bone. Peterborough: Trent University.

    Google Scholar 

  • Semmens, B., Ward, E., Moore, J., & Darimont, C. (2009). Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS One, 4(7), e6187.

    Article  Google Scholar 

  • Semmens, B., Ward, E., Parnell, A., Phillips, D., Bearhop, S., Inger, R., Jackson, A., & Moore, J. (2013). Statistical basis and outputs of stable isotope mixing models: comment on fry (2013). Marine Ecology Progress Series, 490, 285–289.

    Article  Google Scholar 

  • Si, Y. 司. (2013). 2500 BC-1000 BC 中原地區家畜飼養策略與先民肉食資源消費 Feeding practices of domestic animals and meat consumption of ancients in the central plain of china: 2500 BC – 1000 BC. University of Chinese Academy of Sciences.

  • Stock, B., Jackson, A., Ward, E., Parnell, A., Phillips, D., & Semmens, B. (2018). Analyzing mixing systems using a new generation of bayesian tracer mixing models. PeerJ, 6, e5096.

    Article  Google Scholar 

  • Stock, B., & Semmens, B. (2016a). MixSIAR GUI User Manual. Version 3.1. https://github.com/brianstock/MixSIAR.

  • Stock, B., & Semmens, B. (2016b). Unifying error structures in commonly used biotracer mixing models. Ecology, 97(10), 2562–2569.

    Article  Google Scholar 

  • Szpak, P. (2014). Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices. Frontiers in Plant Science, 5.

  • Szpak, P., Metcalfe, J., & Macdonald, R. (2017). Best practices for calibrating and reporting stable isotope measurements in archaeology. Journal of Archaeological Science: Reports, 13, 609–616.

    Google Scholar 

  • Szpak, P., Millaire, J.-F., Chapdelaine, C., White, C., & Longstaffe, F. (2020). An integrated isotopic study of Early Intermediate Period Camelid Husbandry in the Santa Valley, Perú. Environmental Archaeology, 25(3), 279–295.

    Article  Google Scholar 

  • RStudio Team. (2019). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Tomczyk, J., Regulski, P., Lisowska-Gaczorek, A., & Szostek, K. (2020). Dental caries and stable isotopes analyses in the reconstruction of diet in Mesolithic (6815–5900 BC) Individuals from Northeastern Poland. Journal of Archaeological Science: Reports, 29, 102141.

    Google Scholar 

  • van der Merwe, N. (1982). Carbon isotopes, photosynthesis, and archaeology: different pathways of photosynthesis cause characteristic changes in carbon isotope ratios that make possible the study of prehistoric human diets. American Scientist, 70, 596–606.

    Google Scholar 

  • Vogel, J., & van der Merwe, N. (1977). Isotopic evidence for early maize cultivation in New York State. American Antiquity, 42(2), 238–242.

    Article  Google Scholar 

  • Wang, X., Fuller, B., Zhang, P., Hu, S., Hu, Y., & Shang, X. (2018). Millet manuring as a driving force for the Late Neolithic agricultural expansion of North China. Scientific Reports, 8(1), 5552.

    Article  Google Scholar 

  • Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag.

    Book  Google Scholar 

  • Wickham, H. (2017). tidyverse: Easily Install and Load the ‘Tidyverse’.

  • Xu, Q. 許., Cao, X. 曹., Wang, X. 王., Li, Y. 李., Jing, Z. 荊., & Tang, J. 唐. (2010). 殷墟文化發生的環境背景及人類活動的影響 Generation of Yinxu culture: environmental background and impacts of human activities. 第四紀研究 Quaternary Sciences, 30, 273-286.

  • Yan, L. 閻. (2010). 穩定同位素雄陸生動物礦化組織研究中的應用 The stable isotopes analysis of biomineral tissues from terrestrial animal. University of Chinese Academy of Sciences.

  • Yang, S. 楊., & Ma, J. 馬. (2010). 商代史.卷六 – 商代經濟與科技 (Economy and Technology in Shang Dynasty). Beijing: China Social Sciences Press.

  • Yang, X., Wan, Z., Perry, L., Lu, H., Wang, Q., Zhao, C., Li, J., Xie, F., Yu, J., Cui, T., Wang, T., Li, M., & Ge, Q. (2012). Early millet use in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 109, 3726–3730.

    Article  Google Scholar 

  • Yoneda, M., Suzuki, R., Shibata, Y., Morita, M., Sukegawa, T., Shigehara, N., & Akazawa, T. (2004). Isotopic evidence of inland-water fishing by a Jomon population excavated from the Boji Site, Nagano, Japan. Journal of Archaeological Science, 31(1), 97–107.

    Article  Google Scholar 

  • Zhou, X., Li, X., Dodson, J., & Zhao, K. (2016). Rapid agricultural transformation in the Prehistoric Hexi Corridor, China. Quaternary International, 426, 33–41.

    Article  Google Scholar 

  • Zhu, Y. 朱. (2005). 關於商代中原地區野生動物諸問題的考察 The investigation on the wild animals in Zhong Yuan District in Shang Period. 殷都學刊 (Yindu Journal), 3, 1-9.

Download references

Acknowledgements

We are grateful to Drs. Eric Guiry and Leia Mion for allowing us to use their data to evaluate the performances of different SIMMs. We also thank Dr. Estelle Herrscher and the four anonymous reviewers for their helpful and constructive comments on this manuscript.

Availability of Data and Material

All archaeological data are obtained from published reports. All simulated data are provided in the Supplementary files.

Funding

CC is supported by the Agence Nationale de la Recherche (Project-ANR-17-CE27-0023 “NEOGENRE”). PS is supported by the Canada Research Chairs program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Cheung.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Code Availability

All codes used in this study are provided in the Supplementary files.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Online Resource 1:

R scripts. (DOCX 24.5 kb)

Online Resource 2:

Simulated data and modelling results for case study 1 – hypothetical coastal populations. (XLSX 126 kb)

Online Resource 3:

Data and modelling results for case study 2 – Yinxu. (XLSX 19 kb)

Online Resource 4:

Data and modelling results for case study 3 – Missignac-Saint Gilles le Vieux. (XLSX 22 kb)

Online Resource 5:

Model output comparison for case study 4 – error structures and hyperparameters. (XLSX 71 kb)

Online Resource 6:

Examples of graphical outputs from IsoSource, FRUITS, and MixSIAR, respectively, demonstrated using the TM model from the first case study (hypothetical coastal population). IsoSource: the five histograms described the distributions of the isotopically feasible contributions of the five sources to the mixture (human isotopic values): a) reindeer; b) deer; c) seal; d) walrus; marine fish. FRUITS: estimated dietary compositions of individuals 1 (f) and 8 (g) shown as boxplots; probability distributions of the five sources to individuals 1 (h) and 8 (i); and j) boxplots showing the differences in the probable amount of deer consumed by the 10 analysed individuals. MixSIAR: k) IsoSpace plot with all the source and consumer data (TDF corrected); l) posterior density distributions of proportional contributions of the five sources to the consumers (as a group); m) matrix plots – source histograms on the diagonal, contour plots of the relationship between the sources on the upper diagonal, and the correlation between the sources on the lower diagonal. (DOCX 1561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, C., Szpak, P. Interpreting Past Human Diets Using Stable Isotope Mixing Models. J Archaeol Method Theory 28, 1106–1142 (2021). https://doi.org/10.1007/s10816-020-09492-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-020-09492-5

Keywords

Navigation