Skip to main content

A Study of Fractured Proboscidean Bones in Recent and Fossil Assemblages

Abstract

Reliable methods are needed to distinguish anthropogenic from non-anthropogenic causes of proboscidean limb bone breakage in fossil assemblages because of theoretical uncertainty about human-proboscidean relationships in the Pleistocene. This paper compares experimentally broken bones of African elephants (Loxodonta africana) and mammoths (Mammuthus spp.) after establishing that limb bone fracture dynamics are the same for those proboscidean taxa. We show that features thought exclusively diagnostic of percussive fracturing of green proboscidean long bones such as notched fracture edges, smooth fracture surfaces, and curvilinear fracture outlines also can be created on non-green bones and on bones affected by non-anthropogenic processes. The information reported here can be applied in analyses or re-analyses of fossil proboscidean bone assemblages and may either support or potentially alter current interpretations of hominin behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Data Availability

Data are reported in this paper. The materials were examined and photographed in the field.

References

  • Agam, A., & Barkai, R. (2018). Elephant and mammoth hunting during the Paleolithic: a review of the relevant archaeological, ethnographic and ethno-historical records. Quaternary, 1(3), 1–28.

    Google Scholar 

  • Agenbroad, L. D. (1989). Spiral fractured mammoth bone from nonhuman taphonomic processes at Hot Springs Mammoth Site. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 139–147). Orono: University of Maine, Center for the Study of the First Americans.

    Google Scholar 

  • Aguirre E. (1984). Industria ósea de Torralba: criterios para su estudio. Primeras Jornadas de Metodología de Investigación prehistórica. Soria 1981, 175–181. Madrid: Ministerio de Cultura. Dirección General de Bellas Artes y Archivos.

  • Alms, M. (1961). Fracture mechanics. The Journal of Bone and Joint Surgery, 43B(1), 162–165.

    Article  Google Scholar 

  • Andrews, P., & Armour-Chelu, M. (1998). Taphonomic observations on a surface bone assemblage in a temperate environment. Bulletin de la Société Géologique de France, 169(3), 433–442.

    Google Scholar 

  • Andrews, P., & Cook, J. (1985). Natural modifications to bones in a temperate setting. Man, 20(4), 675–691.

    Article  Google Scholar 

  • Andrews, P., & Whybrow, P. (2005). Taphonomic observations on a camel skeleton in a desert environment in Abu Dhabi. Palaeontologia Electronica, 8(1), 23A, 17 pp.

    Google Scholar 

  • Angeli W (1952) Der Mammutjägerhalt von Langmannersdorf an der Perschling. Mitteilungen der prähistorischen Kommission der Österreichischen Akademie der Wissenschaften, Wien, Band 6

  • Arroyo-Cabrales, J., Gonzalez, S., Morett, A. L., Polaco, O., Sherwood, G., & Turner, A. (2003). The Late Pleistocene paleoenvironments of the Basin of Mexico – Evidence from the Tocuila Mammoth site. Deinsea, 9, 267–272.

    Google Scholar 

  • Arroyo-Cabrales, J., Johnson, E., & Morett, L. (2001). Mammoth bone technology in the Basin of Mexico. In G. Cavarratta, P. Gioia, M. Mussi, & M. R. Palombo (Eds.), La Terra Degli Elefanti (The World of Elephants). Atti del 1o Congresso Internazionale (Proceedings of the 1st International Congress), Roma, 16–20 Ottobre 2001 (pp. 419–423). Consiglio Nazionale delle Ricerche: Rome.

    Google Scholar 

  • Bachmayer, F., Kollmann, H.A., Schultz, O., & Summersberger, H. (mit Beiträgan von Angeli, W., Niedermayr, G., & Schultz, O.). (1971). Eine Mammutfundstelle im Bereich der Ortschaft Ruppersthal (Groß-Weikersdorf) bei Kirchberg am Wagram, NÖ. Annales Naturhistorischen Museums in Wien, 75, 263–282.

  • Backwell, L. R., & d’Errico, F. (2004). The first use of bone tools: a reappraisal of the evidence from Olduvai Gorge, Tanzania. Palaeontologica Africana, 40, 95–158.

    Google Scholar 

  • Barbour, E. H. (1925). Skeletal parts of the Columbian mammoth Elephas maibeni, sp.nov. Nebraska State Museum Bulletin, 10, 95–118.

    Google Scholar 

  • Barkai, R. (2019). An elephant to share: rethinking the origins of meat and fat sharing in Palaeolithic societies. In N. Lavi & D. E. Friesem (Eds.), Towards a broader view of hunter-gatherer sharing (pp. 153–167). Cambridge: McDonald Institute for Archaeological Research.

    Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4(2), 150–162.

    Article  Google Scholar 

  • Ben-Dor, M., Gopher, A., Hershkovitz, I., & Barkai, R. (2011). Man the fat hunter: the demise of Homo erectus and the emergence of a new hominin lineage in the Middle Pleistocene (ca. 400 kyr) Levant. PLoS ONE, 6(12), e28689.

    Article  Google Scholar 

  • Biberson, P., & Aguirrre, E. (1965). Experiences de taille d'outils préhistoriques dans des os d'élephant. Quaternaria, 7, 165–183.

    Google Scholar 

  • Binford, L. R. (1981). Bones: ancient men and modern myths. New York: Academic Press.

    Google Scholar 

  • Blasco, R., Domínguez-Rodrigo, M., Arilla, M., Camarós, E., & Rosell, J. (2014). Breaking bones to obtain marrow: a comparative study between percussion by batting bone on an anvil and hammerstone percussion. Archaeometry, 56(6), 1085–1104.

    Article  Google Scholar 

  • Blumenschine, R. J. (1995). Percussion marks, tooth marks and the experimental determination of the timing of hominid and carnivore access of long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, 29(1), 21–51.

    Article  Google Scholar 

  • Blumenschine, R. J., & Selvaggio, M. M. (1988). Percussion marks on bone surfaces as a new diagnostic of hominid behavior. Nature, 333(6175), 763–765.

    Article  Google Scholar 

  • Blumenschine, R. J., & Selvaggio, M. M. (1991). On the marks of marrow bone processing by hammerstones and hyenas: their anatomical patterning and archaeological implications. In J. D. Clark (Ed.), Cultural beginnings: approaches to understanding early hominid life-ways in the African savanna (pp. 17–32). Bonn: R. Habelt.

    Google Scholar 

  • Boldurian, A. T. (2007). Clovis beveled rod manufacture: an elephant bone experiment. North American Archaeologist, 28(1), 29–57.

    Article  Google Scholar 

  • Bonnichsen, R. (1979). Pleistocene bone technology in the Beringian Refugium. National Museum of Man Mercury Series, Archaeological Survey of Canada Paper No. 89. Ottawa: National Museums of Canada.

    Book  Google Scholar 

  • Boschian, G., Caramella, D., Saccà, D., & Barkai, R. (2019). Are there marrow cavities in Pleistocene elephant limb bones, and was marrow available to early humans? New CT scan results from the site of Castel di Guido (Italy). Quaternary Science Reviews, 215, 86–97.

    Article  Google Scholar 

  • Brain, C. K. (1981). The Hunters and the hunted: an introduction to African cave taphonomy. Chicago: University of Chicago.

    Google Scholar 

  • Buckland, W. (1823). Reliquiae diluvianae: or, observations on the organic remains contained in caves, fissures, and diluvial gravel, and on other geological phenomena, attesting the action of an [sic] universal deluge. London: John Murray.

    Google Scholar 

  • Bulstrode, C. (1990). What happens to wild animals with broken bones. The Iowa Orthopaedic Journal, 10, 19–23.

    Google Scholar 

  • Bulstrode, C., King, J., & Roper, B. (1986). What happens to wild animals with broken bones? The Lancet, 327(8471), 29–31.

    Article  Google Scholar 

  • Byers, D. A., & Ugan, A. (2005). Should we expect large game specialization in the late Pleistocene? An optimal foraging perspective on early Paleoindian prey choice. Journal of Archaeological Science, 32(11), 1624–1640.

    Article  Google Scholar 

  • Capaldo, S. D., & Blumenschine, R. J. (1994). A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing in bovid long bones. American Antiquity, 59(4), 724–748.

    Article  Google Scholar 

  • Coil, R., Tappen, M., & Yezzi-Woodley, K. (2017). New analytical methods for comparing bone fracture angles: a controlled study of hammerstone and hyena (Crocuta crocuta) long bone breakage. Archaeometry, 59(5), 900–917.

    Article  Google Scholar 

  • Collett, J. (1881). The mammoth and mastodon. Remains in Indiana and Illinois. Indiana Geological Report. 1879–1880. From the Second Annual Report of the Bureau of Statistics and Geology, pp. 16–18. Indianapolis: Carlon and Hollenbeck.

  • Conard, N. J., Walker, S. J., & Kindle, A. W. (2008). How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3-4), 236–245.

    Article  Google Scholar 

  • de Juana, S., & Domínguez-Rodrigo, M. (2011). Testing analogical taphonomic signatures in bone breaking: a comparison between hammerstone-broken equid and bovid bones. Archaeometry, 53(5), 996–1011.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50(2), 170–194.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., Barba, R., De La Torre, I., & Mora, R. (2007). A cautionary tale about early archaeological sites: a reanalysis of FLK North 6. In M. Dominguez-Rodrigo, R. Barba, & C. P. Egeland (Eds.), Deconstructing Olduvai: a taphonomic study of the Bed I sites (pp. 101–125). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Domínguez-Rodrigo, M., Barba, R., Soto, E., Sese, C., Santonja, M., Pérez-González, A., Yravedra, J., & Galán, A. B. (2015). Another window to the subsistence of Middle Pleistocene hominins in Europe: a taphonomic study of Cuesta de la Bajada (Teruel, Spain). Quaternary Science Reviews, 126, 67–95.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., Bunn, H. T., Mabulla, A. Z. P., Baquedano, E., Uribelarrea, D., Pérez-González, A., Gidna, A., Yravedra, J., Díez-Martín, F., Egeland, C., Barba, R., Arriaza, M. C., Organista, E., & Ansón, M. (2014). On meat eating and human evolution: a taphonomic analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and its bearing on hominin megafaunal consumption. Quaternary International, 322-323, 129–152.

    Article  Google Scholar 

  • Douglas-Hamilton, I., & Douglas-Hamilton, O. (1975). Among the elephants. New York: Viking Press.

    Google Scholar 

  • Driscoll, K., Alcaina, J., Égüez, N., Mangado, X., Fullola, J.-M., & Tejero, J.-M. (2016). Trampled under foot: a quartz and chert human trampling experiment at the Cova del Parco rock shelter, Spain. Quaternary International, 424, 130–142.

    Article  Google Scholar 

  • Estabrook, B. (1982). Bone age man. Canadian finds in the Old Crow Basin force the history of early Homo sapiens to be rewritten and spark one of the hottest archaeological debates of the century. Equinox, 1(2), 84–96.

    Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications. Dordrecht: Springer.

    Book  Google Scholar 

  • Fladerer, F.A. 1997. Ruppersthal ─ Mammutjägerstation. In D. Döppes, G. Rabeder (Eds.), Pliozäne und Pleistozäne Faunen Österreichs (pp. 118–120). Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaftern, Band 10.

  • Fladerer, F. A. (2001). The Krems-Wachtberg camp-site: mammoth carcass utilization along the Danube 27,000 years ago. In G. Cavarretta, P. Gioia, M. Mussi, & M. R. Palombo (Eds.), La Terra Degli Elefanti (The World of Elephants). Atti del 1o Congresso Internazionale (Proceedings of the 1st International Congress), Roma, 16–20 Ottobre 2001 (pp. 432–438). Consiglio Nazionale delle Ricerche: Rome.

    Google Scholar 

  • Fosse, P., Laudet, F., Selva, N., & Wajrak, A. (2004). Premières observations néotaphonomiques sur des assemblages ossuex de Bialowieza (N.-E. Pologne): intérêts pour les gisements pléistocene d’Europe. Paleo, 16, 91–116.

    Google Scholar 

  • Fowler, M., & Mikota, S. K. (Eds.). (2008). Biology, medicine, and surgery of elephants. Ames: Blackwell.

    Google Scholar 

  • Galán, A. B., Rodríguez, M., de Juana, S., & Domínguez-Rodrigo, M. (2009). A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. Journal of Archaeological Science, 36(3), 776–784.

    Article  Google Scholar 

  • Gaudzinski, S., Turner, E., Anzidei, A. P., Àlvarez-Fernández, E., Arroyo-Cabrales, J., Cinq-Mars, J., Dobosi, V. T., Hannus, A., Johnson, E., Münzel, S. C., & Scheer, A. (2005). The use of proboscidean remains in every-day Palaeolithic life. Quaternary International, 126–128, 179–194.

    Article  Google Scholar 

  • Gifford, D. P. (1981). Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines. In M. B. Schiffer (Ed.), Advances in Archaeological Method and Theory (Vol. 4, pp. 94–106). New York: Academic Press.

    Google Scholar 

  • Goebel, T. (2004). The search for a Clovis progenitor in subarctic Siberia. In D. B. Madsen (Ed.), Entering America. Northeast Asia and Beringia before the Last Glacial Maximum (pp. 311–358). Salt Lake City: University of Utah Press.

    Google Scholar 

  • Goldthwaite, R. P. (1952). Geological situation of the Orleton Farms mastodon. The Ohio Journal of Science, 52(1), 5–9.

    Google Scholar 

  • Gonzalez, S., Huddart, D., Israde-Alcántara, I., Domínguez-Vázquez, G., & Bischoff, J. (2014). Tocuila mammoths, Basin of Mexico: Late Pleistocene-Early Holocene stratigraphy and the geological context of the bone accumulation. Quaternary Science Reviews, 96, 222–239.

    Article  Google Scholar 

  • Green, A. E., & Schultz, J. J. (2017). An examination of the transition of fracture characteristics in long bones from fresh to dry in central Florida: evaluating the timing of injury. Journal of Forensic Sciences, 62(2), 282–291.

    Article  Google Scholar 

  • Guthrie, R. D. (2006). New carbon dates link climatic change with human colonization and Pleistocene extinctions. Nature, 441, 207–209.

    Article  Google Scholar 

  • Hannus, L. A. (2018a). Bone structure and taphonomic processes. In L. A. Hannus (Ed.), Clovis mammoth butchery. The Lange/Ferguson site and associated bone tool technology (pp. 89–110). College Station: Texas A&M University Press.

    Google Scholar 

  • Hannus, L. A. (2018b). The Lange/Ferguson artifact assemblage. In L. A. Hannus (Ed.), Clovis mammoth butchery. The Lange/Ferguson site and associated bone tool technology (pp. 149–199). College Station: Texas A&M University Press.

    Google Scholar 

  • Haynes, G. (1981). Bone Modifications and Skeletal Disturbances by Natural Agencies: Studies in North America. Doctoral dissertation: Catholic University of America.

    Google Scholar 

  • Haynes, G. (1991). Mammoths, mastodonts, and elephants: biology, behavior, and the fossil record. Cambridge: Cambridge University Press.

    Google Scholar 

  • Haynes, G. (2002). The early settlement of North America: the Clovis era. Cambridge: Cambridge University Press.

    Google Scholar 

  • Haynes, G. (2015a). The Inglewood Mammoth Site (Prince George’s County, Maryland) (2nd Draft, Revised March 7, 2015). https://www.researchgate.net/publication/273202763_The_Inglewood_Mammoth_Prince_George's_County_Maryland_2nd_Draft_Revised_March_7_2015. Accessed 30 July 2020.

  • Haynes, G. (2015b). Bone breakage and other disturbances at the Inglewood mammoth site. https://www.researchgate.net/publication/274389424_Bone_Breakage_and_Other_Disturbances_at_the_Inglewood_Mammoth_Site. Accessed 30 July 2020.

  • Haynes, G. (2017). Taphonomy of the Inglewood mammoth (Mammuthus columbi) (Maryland, USA): green-bone fracturing of fossil bones. Quaternary International, 445, 171–183.

    Article  Google Scholar 

  • Haynes, G. (2018). Raining more than cats and dogs: looking back at field studies of noncultural animal-bone occurrences. Quaternary International, 466(Part B), 113–130.

    Article  Google Scholar 

  • Haynes, G. (2020). A table of global proboscidean sites which have been interpreted as killed/butchered/scavenged by hominins. https://www.researchgate.net/publication/341355918_Table_of_Global_Proboscidean_Sites_Interpreted_as_Killed. Accessed 14 Aug 2020. https://doi.org/10.13140/RG.2.2.20541.49128.

  • Haynes, G., & Klimowicz, J. (2015). A preliminary review of bone and teeth abnormalities seen in recent Loxodonta and extinct Mammuthus and Mammut, and suggested implications. Quaternary International, 379, 135–146.

    Article  Google Scholar 

  • Haynes, G., & Krasinski, K. E. (2010). Taphonomic fieldwork in southern Africa and its application in studies of the earliest peopling of North America. Journal of Taphonomy, 8(2-3), 181–202.

    Google Scholar 

  • Haynes, G., Krasinski, K., & Wojtal, P. (2020). Elephant bone breakage and surface marks made by trampling elephants: implications for interpretations of marked and broken mammoth spp. bones. Journal of Archaeological Science: Reports. (In press)

  • Heggen, H. P., Svendsen, J. I., Mangerud, J., & Lohne, Ø. S. (2012). A new palaeoenvironmental model for the evolution of the Byzovaya Palaeolithic site, northern Russia. Boreas, 41(4), 527–545.

    Article  Google Scholar 

  • Hill, C.L. (2018). Sedimentary geology and taphonomy of a Pleistocene fossil assemblage from a debris flow. Geological Society of America abstracts with Programs 50, No. 6.

  • Holen, S. R. (2006). Taphonomy of two Last Glacial Maximum mammoth sites in the central Great Plains of North America: a preliminary report on La Sena and Lovewell. Quaternary International, 142-143, 30–43.

    Article  Google Scholar 

  • Holen, S. R., Deméré, T. A., Fisher, D. C., Fullagar, R., Paces, J. B., Jefferson, G. T., Beeton, J. M., Cerutti, R. A., Rountrey, A. N., Vescera, L., & Holen, K. A. (2017). A 130,000-year-old archaeological site in southern California, USA. Nature, 544(7651), 479–483.

    Article  Google Scholar 

  • Holen, S. R., Harington, C. R., & Holen, K. A. (2017). New radiocarbon ages on percussion-fractured and flaked proboscidean limb bones from Yukon, Canada. Arctic, 70(2), 141–150.

    Article  Google Scholar 

  • Holen, K., & Holen, S. R. (2007). An elephant bone breakage experiment in Tanzania, east Africa. Denver Museum of Science and Nature Anthopology Department Newsletter, 1(1), 5–6.

    Google Scholar 

  • Holen, K., & Holen, S. (2010). Experimental elephant limb bone breakage as an analogy for mammoth bone breakage patterns: implications for the early peopling of North America. Paper presented at the 75th Annual Meeting of the Society for American Archaeology, 14–18 April, St Louis, MO.

  • Holen, S., & Holen, K. (2012). Evidence for a human occupation of the North American Great Plains during the Last Glacial Maximum. In I. C. Jiménez López, C. Serrano Sánchez, A. González González, & F. J. Aguilar Arrelano (Eds.), IV Simposio Internacional el hombre temprano en América (pp. 85–105). Mexico City: Instituto Nacional de Antopología y Historia.

    Google Scholar 

  • Holen, K., & Holen, S.R. (2017a). Comparison of proboscidean bone notches to experimental dynamic and static notches on cow bone. Poster presented at 82nd Annual Meeting of the Society for American Archaeology, 29 Mar.–2 Apr., Vancouver.

  • Holen, S., & Holen K. (2017b). Use wear and breakage patterns on cow and elephant limb bone produced from anvil contact during breakage experiments. Poster presented at 82nd Annual Meeting of the Society for American Archaeology, 29 Mar.–2 Apr., Vancouver.

  • Huckell, B., Rowe, T., McFadden, L., Meyer, G., & Merriman, C. (2016). The Hartley mammoth, north-central New Mexico. Paper presented at the 81st Annual Meeting of the Society for American Archaeology, 6–10 April, Orlando.

  • Irving, W. N. (1987). New dates from old bones. Natural History, 96(2), 8–10 12–13.

    Google Scholar 

  • Irving, W. N., & Harington, C. R. (1973). Upper Pleistocene radiocarbon-dated artefacts from the northern Yukon. Science, 179(4071), 335–340.

    Article  Google Scholar 

  • Irving, W. N., Jopling, A. V., & Beebe, B. F. (1986). Indications of pre-Sangamon humans near Old Crow, Yukon, Canada. In A. L. Bryan (Ed.), New Evidence for the pleistocene peopling of the Americas (pp. 27–48). Orono: University of Maine, Center for the Study of the First Americans.

    Google Scholar 

  • Irving, W. N., Jopling, A. V., & Kritsch-Armstrong, I. (1989). Studies of bone technology and taphonomy, Old Crow Basin, Yukon Territory. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 347–379). Orono: University of Maine, Center for the Study of the First Americans, Institute of Quaternary Studies.

    Google Scholar 

  • Jochim, M. A. (1976). Hunter-gatherer subsistence and settlement: a predictive model. New York: Academic Press.

    Google Scholar 

  • Johnson, E. (2006). The taphonomy of mammoth localities in Southeastern Wisconsin (USA). Quaternary International, 142-143, 58–78.

    Article  Google Scholar 

  • Johnson, E. (2007). Along the ice margin – the cultural taphonomy of late Pleistocene mammoth in Southeastern Wisconsin (USA). Quaternary International, 169-170, 64–83.

    Article  Google Scholar 

  • Kahlke, R.-D. (1999). Overview and first quantitative data on the taphonomy of the Lower Pleistocene fossil site of Untermassfeld (Thuringia, Germany). In The role of early humans in the accumulation of European Lower and Middle Palaeolithic bone assemblages, Ergebisse eines Kolloquiums (pp. 7–19). Mainz: Monographien des Römisch-Germanischen Zentralmuseums 42.

  • Karr, L. P. (2015). Human use and reuse of megafaunal bones in North America: bone fracture, taphonomy, and archaeological interpretation. Quaternary International, 361, 332–341.

    Article  Google Scholar 

  • Karr, L. P., & Outram, A. K. (2012). Tracking changes in bone fracture morphology over time: environment, taphonomy, and the archaeological record. Journal of Archaeological Science, 39(2), 555–559.

    Article  Google Scholar 

  • Kashchenko, N. (1901). Skelet’ mamonta so sledami upotrobleniya nekotorikh chastey tyela etovo zhivotnovo v pishchu sovremennym’ yemu chelovekom’. Zapiskiy Imperatorskoy Akademii Nauk VIII series, Po Fiziko-Matematicheskomu Otdeleniyu, 11(7).

  • Koons, R.C. (2014). A study of cut marks on the Orleton Farms Mastodon and the potential implications of anthropogenic modification. Senior Thesis for the B.Sc. degree, Ohio State University.

  • Krasinski, K.E. (2010). Broken bones and cutmarks: taphonomic analyses and implications for the peopling of North America. Doctoral dissertation, University of Nevada, Reno.

  • Krasinski, K., & Haynes, G. (2009). Broken and flaked bones of mammoths and modern African elephants. Paper presented at the 74th Annual Meeting of the Society for American Archaeology, 22-26 April, Atlanta.

  • Krasinski, K., & Haynes, G. (2010). Eastern Beringian Quaternary extinctions: chronology, climate, and people. Alaska Journal of Anthropology, 8(1), 43–64.

    Google Scholar 

  • Kubiak, H. (1990). Eine Mammutfundstelle im Bereich der Ortschaft Ruppersthal (Großweikersdorf) bei Kirchberg am Wagram, NÖ. Annalen des Naturhistorischen Museums in Wien, 91(A), 39–51.

    Google Scholar 

  • Larramendi, Asier. (2016). Shoulder height, body mass, and shape of proboscideans. Acta Palaeontologica Polonica, 61(3) (https://doi.org/10.4202/app.00136.2014), pp. 537–574, and Supplementary Online Material, https://www.app.pan.pl/archive/published/SOM/app61-Larramendi_SOM.pdf. Accessed 14 Dec 2019.

  • Lawn, B. (1993). Fracture of brittle solids – second edition. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Leakey, M. D. (1971). Olduvai Gorge, volume 3: excavations in Beds I and II. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lev, M., & Barkai, R. (2015). Elephants are people, people are elephants: elephant food taboos as a case for cross-cultural animal humanization in recent and Paleolithic times. Quaternary International, 406(2), 239–245.

    Google Scholar 

  • Lister, A. M. (2009). Late-glacial mammoth skeletons (Mammuthus primigenius) from Condover (Shropshire, UK): anatomy, pathology, taphonomy and chronological significance. Geological Journal, 44(4), 447–479.

    Article  Google Scholar 

  • Lupo, K. D., & Schmitt, D. N. (2016). When bigger is not better: the economics of hunting megafauna and its implications for Plio-Pleistocene hunter-gatherers. Journal of Anthropological Archaeology, 44, 185–197.

    Article  Google Scholar 

  • Lyman, R. L., & Fox, G. L. (1989). A critical evaluation of bone weathering as an indication of bone assemblage formation. Journal of Archaeological Science, 16(3), 293–317.

    Article  Google Scholar 

  • Martin, H. (1910). La percussion osseuse et les esquilles qui en dérivent. Expérimentation. Bulletin de la Société préhistorique de France, 7(5), 299–304.

    Article  Google Scholar 

  • Martin, J.E. (1987). Paleoenvironment of the Lange/Ferguson Clovis kill site in the Badlands of South Dakota. InGraham, R.W., Semken, H.A., Jr., Graham, M.A. (Eds.), Late Quaternary mammalian biogeography and environments of the Great Plains and prairies (pp. 314–332). Illinois State Museum Scientific Papers, Vol. XXII.

  • McNabb, J. (2019). Evaluating claims for an early peopling of the Americas. Antiquity, 93(369), 802–807.

    Article  Google Scholar 

  • McPherron, S. P., Braun, D. R., Dogandžić, T., Archer, W., Desta, D., & Lin, S. C. (2014). An experimental assessment of the influences on edge damage to lithic artifacts: a consideration of edge angle, substrate grain size, raw material properties, and exposed face. Journal of Archaeological Science, 49, 70–82.

    Article  Google Scholar 

  • Mikota, S. K. (2006). Hemolymphatic system. In M. E. Fowler & S. K. Mikota (Eds.), Biology, medicine, and surgery of elephants (pp. 325–345). Ames: Blackwell Publishing.

    Chapter  Google Scholar 

  • Moclán, A., Domínguez-Rodrigo, M., & Yravedra, J. (2019). Classifying agency in bone breakage: an experimental analysis of fracture planes to differentiate between hominin and carnivore dynamic and static loading using machine learning (ML) algorithms. Archaeological and Anthropological Sciences, 11(9), 4663–4680.

    Article  Google Scholar 

  • Morett Alatorre, L., & Arroyo Cabrales, J. (2001). El yacimiento paleontológico de Tocuila. Texcoco: Universidad Autónima Chapinga y Museo Nacional de Agricultura.

    Google Scholar 

  • Morin, E., & Soulier, M.-C. (2017). New criteria for the archaeological identification of bone grease processing. American Antiquity, 82(1), 96 ̶–9122.

    Article  Google Scholar 

  • Morlan, R.E. (1980). Taphonomy and archaeology in the Upper Pleistocene of the northern Yukon Territory: a glimpse of the peopling of the New World. Archaeological Survey of Canada Paper No. 94, Mercury Series. Ottawa: National Museum of Man.

  • Mosquera, M., Saladié, P., Ollé, A., Cáceres, I., Huguet, R., Villalaín, J. J., Carrancho, A., Bourlès, D., Braucher, R., & Vallverdú, J. (2015). Barranc de la Boella (Catalonia, Spain): an Acheulean elephant butchering site in the European late Early Pleistocene. Journal of Quaternary Science, 30(7), 651 ̶–65666.

    Article  Google Scholar 

  • Nganvongpanit, K., Siengdee, P., Buddhachat, K., Brown, J. L., Klinhom, S., Pitakarnnop, T., Angkawanish, T., & Thitaram, C. (2017). Anatomy, histology and elemental profile of long bones and ribs of the Asian elephant (Elephas maximus). Anatomical Science International, 94(4), 554 ̶–55568.

    Article  Google Scholar 

  • Oliva, M. (Ed.). (2009). Milovice: site of the mammoth people below the Pavlov Hills. Anthropos: Studies in Anthropology, Palaeoethnology, Palaeontology and Quaternary Geology, vol. 27 (N.S. 19). Brno: Moravské Zemské Muzeum.

    Google Scholar 

  • Outram, A. K. (2001). A new approach to identifying bone marrow and grease exploitation: why the “indeterminate” fragments should not be ignored. Journal of Archaeological Science, 28(4), 401–410.

    Article  Google Scholar 

  • Pickering, T. R., & Egeland, C. P. (2006). Experimental patterns of hammerstone percussion damage on bones: implications for inferences of carcass processing by humans. Journal of Archaeological Science, 33(4), 459–469.

    Article  Google Scholar 

  • Radbruch-Hall, D. H. (1978). Gravitational creep of rock masses on slopes. In B. Voight (Ed.), Rockslides and Avalanches, 1: Natural Phenomena (pp. 607 ̶–60657). Amsterdam: Elsevier Scientific Publishing Co.

    Chapter  Google Scholar 

  • Roebroeks, W., Gaudzinski-Windheuser, Baales, M., & Kahlke, R.-D. (2017). Uneven data quality and the earliest occupation of Europe – the case of Untermassfeld (Germany). Journal of Paleolithic Archaeology, 1(1), 5–31. https://doi.org/10.1007/s41982-017-0003-5.

    Article  Google Scholar 

  • Rooney, J. R. (1977). (reprint of 1969 edition). Biomechanics of Lameness in Horses. Huntington: Robert E. Krieger.

    Google Scholar 

  • Salcher-Jedrasiak, T. A. (2012). Mammut, Mensch und große Karnivoren – Die Mensch-Tier-Beziehung im Jungpaläolithikum Niederösterreichs. Doctoral dissertation: Universität Wien.

    Google Scholar 

  • Shipman, P. (2018). A scanning electron microscopy evaluation of the Lange/Ferguson mammoth bone assemblage. Bone fracture, technology, and use-wear in taphonomic context. In L. A. Hannus (Ed.), Clovis mammoth butchery: the Lange/Ferguson site and associated bone tool technology (pp. 117–136). College Station: Texas A&M University Press.

    Google Scholar 

  • Shoshani, J. (1996). Skeletal and other basic anatomical features of elephants. In J. Shoshani & P. Tassy (Eds.), The Proboscidea: evolution and palaeoecology of elephants and their relatives (pp. 9–20). Oxford: Oxford University Press.

    Google Scholar 

  • Siebe, C., Schaaf, P., & Urrutia-Fucugauchi, J. (1999). Mammoth bones embedded in a late Pleistocene lahar from Popocatapetl volcano, near Tocuila, central Mexico. Geological Society of America Bulletin, 111(10), 1550–1562.

    Article  Google Scholar 

  • Sikes, S. K. (1971). The natural history of the African elephant. London: Weidenfeld and Nicolson.

    Google Scholar 

  • Slimak, L., Svendsen, J. I., Mangerud, J., Plisson, H., Heggen, H. P., Brugere, A., & Pavlov, P. Y. (2011). Supporting Online Material for Late Mousterian persistence near the Arctic Circle. Science, 332(6031), 841–845. https://doi.org/10.1126/science.1203866.

    Article  Google Scholar 

  • Speth, J. D. (1987). Early hominid subsistence strategies in seasonal habitats. Journal of Archaeological Science, 14(1), 13–29.

    Article  Google Scholar 

  • Speth, J. D. (2015). When did humans learn to boil? PaleoAnthropology, 2015, 54–67.

    Google Scholar 

  • Stanford, D. J. (1987). The Ginsberg experiment. Natural History, 96(9), 10–13.

    Google Scholar 

  • Stanford, D., Bonnichsen, R., & Morlan, R. E. (1981). The Ginsberg experiment: modern and prehistoric evidence of a bone flaking technology. Science, 212(4493), 438–440.

    Article  Google Scholar 

  • Stanistreet, I. G., Stollhofen, H., Njau, J. K., Farrugia, P., Pante, M. C., Masao, F. T., Albert, R. M., & Bamford, M. K. (2018). Lahar inundated, modified, and preserved 1.88 Ma early hominin (OH24 and OH56) Olduvai DK site. Journal of Human Evolution, 116, 27–42.

    Article  Google Scholar 

  • Steele, D. G., & Carlson, D. L. (1989). Excavation and taphonomy of mammoth remains from the Duewall-Newberry site, Brazos County, Texas. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 413–430). Orono: University of Maine, Center for the Study of the First Americans.

    Google Scholar 

  • Sutcliffe, A. J. (1990). Rate of decay of mammalian remains in the permafrost environment of the Canadian High Arctic. In C. R. Harington (Ed.), Canada’s missing dimension. Science and history in the Canadian Arctic Islands volume I (pp. 161–186). Canadian Museum of Nature: Ottawa.

    Google Scholar 

  • Tappen, N. C. (1969). The relationship of weathering cracks to split-line orientation in bone. American Journal of Physical Anthropology, 31(2), 191–198.

    Article  Google Scholar 

  • Tappen, M. (1994). Bone weathering in the tropical rain forest. Journal of Archaeological Science, 21(5), 667–673.

    Article  Google Scholar 

  • Thomas, E. S. (1952). The Orleton Farms mastodon. The Ohio Journal of Science, 52(1), 1–5.

    Google Scholar 

  • Thompson, J. C., Carvalho, S., Marean, C. W., & Alemseged, Z. (2019). Origins of the human predatory pattern: the transition to large-animal exploitation by early hominins. Current Anthropology, 60(1), 1–23.

    Article  Google Scholar 

  • Thorson, R. M., & Guthrie, R. D. (1984). River ice as a taphonomic agent: an alternative hypothesis for bone “artifacts”. Quaternary Research, 22, 172–188.

    Article  Google Scholar 

  • Turner II, C. G., Ovodov, N. D., Martynovich, N. V., & Popov, A. N. (2001). Working definitions for perimortem taphonomy of natural and anthropogenic bone damage in Late Pleistocene and Holocene Siberia and Primorye. Archaeology, Ethnology & Anthropology of Eurasia, 4(8), 21–29.

    Google Scholar 

  • Vettese, D., Blasco, R., Cáceres, I., Gaudzinski-Windheuser, S., Moncel, M.-H., Hohenstein, U. T., & Daujeard, C. (2020). Towards an understanding of hominin marrow extraction strategies: a proposal for a percussion mark terminology. Archaeological and Anthropological Sciences, 12, 48 https://doi-org.unr.idm.oclc.org/10.1007/s12520-019-00972-8.

    Article  Google Scholar 

  • Vettese, D., Daujeard, C., Borel, A., & Moncel, M.-H. (2018). A focus on percussion notches to approach the variability of Neanderthal behaviours: the example of Abri du Maras and Saint Marcel cave (Ardèche, France). Presentation at the XVIIIe World International Union of the Prehistoric and Protohistoric Sciences Congress, 4–9 June, 2018, Paris.

  • Villa, P., Anzidei, A.P., & Cerilli, E. (1999). Bones and bone modifications at La Polledrara, a Middle Pleistocene site in Italy. In The role of early humans in the accumulation of European Lower and Middle Palaeolithic bone assemblages, Ergebisse eines Kolloquiums (pp. 197–206). Mainz: Monographien des Römisch-Germanischen Zentralmuseums 42.

  • Villa, P., & Bartram, L. (1996). Flaked bone from a hyena den. Paléo, 8(1), 143–159.

    Article  Google Scholar 

  • Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21(1), 27–48.

    Article  Google Scholar 

  • Voight, B. (Ed.). (1978). Rockslides and avalanches, 1: natural phenomena. Amsterdam: Elsevier Scientific Publishing Co..

    Google Scholar 

  • Warren, J. C. (1855). The Mastodon Giganteus of North America. In Second edition, with additions. Boston: John Wilson and Son.

    Google Scholar 

  • Waters, M. R., & Stafford Jr., T. W. (2013). The first Americans: a review of the evidence for the Lat-Pleistocene peopling of the Americas. In K. E. Graf, C. V. Ketron, & M. R. Waters (Eds.), Paleoamerican odyssey (pp. 541–560). College Station: Texas A&M University, Center for the Study of the First Americans.

    Google Scholar 

  • Wheatley, B. P. (2008). Perimortem or postmortem bone fractures? An experimental study of fracture patterns in deer femora. Journal of Forensic Sciences, 53(1), 69–72.

    Article  Google Scholar 

  • White, T. D. (1992). Prehistoric cannibalism at Mancos 5MTUMR-2346. Princeton University Press: Princeton.

    Book  Google Scholar 

  • Wieberg, D. A. M., & Wescott, D. J. (2008). Estimating the timing of long bone fractures: correlation between the postmortem interval, bone moisture content, and blunt force trauma fracture characteristics. Journal of Forensic Sciences, 53(5), 1028–1034.

    Google Scholar 

  • Wolfe, A. L., & Broughton, J. M. (2020). A foraging theory perspective on the associational critique of North American Pleistocene overkill. Journal of Archaeological Science, 119, 105162. https://doi.org/10.1016/j.jas.2020.105162.

    Article  Google Scholar 

  • Yravedra, J., Aramendi, J., Maté-González, M. A., Courtenay, L. A., & González-Aguilera, D. (2018). Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric morphometrics. PLoS One, 13(3), 30194324.

    Article  Google Scholar 

  • Yravedra, J., Panera, J., Rubio-Jara, S., Manzano, I., Expósito, A., Pérez-González, A., Soto, E., & López-Recio, M. (2014). Neanderthal and Mammuthus interactions at EDAR Culebro 1 (Madrid, Spain). Journal of Archaeological Science, 42, 500–508.

    Article  Google Scholar 

  • Yravedra, J., Rubio-Jara, S., Panera, J., Uribelarrea, D., & Pérez-González, A. (2012). Elephants and subsistence. Evidence of the human exploitation of extremely large mammal bones from the Middle Palaeolithic site of PRERESA (Madrid, Spain). Journal of Archaeological Science, 39(4), 1063–1071.

    Article  Google Scholar 

  • Zutovski, K., & Barkai, R. (2016). The use of elephant bones for making Acheulian handaxes: a fresh look at old bones. Quaternary International, 406(Part B), 227–238.

    Article  Google Scholar 

Download references

Acknowledgments

Experimental work with elephant bones in Zimbabwe was made possible by the Zimbabwe Parks and Wildlife Management Authority, which provided research permits and generous assistance in the field. Taphonomic fieldwork by G.Haynes was supported by seven grants from the National Geographic Society (numbers 2456-82, 2645-83, 2844-84, 3018-85, 3245-85, 3654-87, 4488-91), two awards from the Leakey Foundation (in 1990 and 1993), a Sub-Saharan Africa Research Grant from the Fulbright Foundation (in 1993), and faculty awards from the University of Nevada – Reno. Participation by K.Krasinski was partially supported by grants to Haynes. Participation by P.Wojtal was supported by the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences and grants from the National Science Centre, Poland (grant decisions No. DEC-2011/01/B/ST10/06889 and UMO-2015/17/B/HS3/00165). Our studies of curated mammoth bone collections were facilitated by staff at the Smithsonian Institution’s National Museum of Natural History and the Museum Support Facility, the Vienna Museum of Natural History, the Polish State Geological Institute in Warsaw, the Institute of Systematics and Evolution of Animals of the Polish Academy of Sciences in Kraków, the Instituto Nacional de Antropología e Historia in Mexico City, the University of Alaska Museum of the North in Fairbanks, the Milwaukee Public Museum, the Royal Ontario Museum in Toronto, the Denver Museum of Nature and Science, the Czech Moravské Zemské Muzeum in Brno and Budisova, and the Zoological Institute of the Russian Academy of Sciences in Leningrad. We thank the reviewers for helpful comments.

Funding

To Gary Haynes: National Geographic Society, Leakey Foundation, Fulbright Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Gary Haynes: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, Writing - original draft, review & editing. Kathryn Krasinski: Data curation, Formal analysis, Investigation, Writing - original draft, review & editing. Piotr Wojtal: Data curation, Investigation, Writing - review and editing

Corresponding author

Correspondence to Gary Haynes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haynes, G., Krasinski, K. & Wojtal, P. A Study of Fractured Proboscidean Bones in Recent and Fossil Assemblages. J Archaeol Method Theory 28, 956–1025 (2021). https://doi.org/10.1007/s10816-020-09486-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-020-09486-3

Keywords

  • Proboscideans
  • Green-bone fracturing
  • Fracture dynamics
  • Experimental archeology
  • Neotaphonomy