Skip to main content

Identifying Experimental Tool Use Through Confocal Microscopy

Abstract

Characterizing use-wear traces quantitatively is a valid way to improve the capacity of use-wear analysis. This aim has been on specialists’ agenda since the beginning of the discipline. Micropolish quantification is especially important, as this type of trace allows the identification of worked materials. During the last decade, confocal microscopy has been used as a promising approach to address this question. Following previous efforts in plant microwear characterization (Ibáñez et al. Journal of Archaeological Science, 48, 96–103, 2014; Journal of Archaeological Science, 73, 62–81, 2016), here we test the capacity of the method for correctly grouping experimental tools used for working eight types of materials: bone, antler, wood, fresh hide, dry hide, wild cereals, domestic cereals, and reeds. We demonstrate, for the first time, that quantitative texture analysis of use-wear micropolish based on confocal microscopy can consistently identify tools used for working different contact materials. In this way, we are able to move toward using texture analysis as part of the standard functional analysis of prehistoric instruments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. Anderson, P. C., Georges, J.-M., Vargiolu, R., & Zahouani, H. (2006). Insights from a tribological analysis of the tribulum. Journal of Archaeological Science, 33(11), 1559–1568.

    Article  Google Scholar 

  2. Astruc, L., Vargiolu, R., & Zahouani, H. (2003). Wear assessments of prehistoric instruments. Wear, 255(1-6), 341–347.

    Article  Google Scholar 

  3. Bamforth, D. B. (1988). Investigating microwear polishes with blind tests, the institute results in context. Journal of Archaeological Science, 15(1), 11–23.

    Article  Google Scholar 

  4. Beyries, S., Delamare, F., & Quantin, J. C. (1988). Tracéologie et rugosimétrie tridimensionnelle. In S. Beyries (Ed.), Industries lithiques, tracéologie et technologie (pp. 115–132) British Archaeological Reports International Series 411.

  5. Bietti, A., Lemorini, C., Morganti, S., Rossetti, P. & Zanello, L. (1998). Image processing and microwear analysis. In C. Arias, A. Abietti, L. Castelletti & C. Peretto, (Eds) XIII U.I.S.P.P. Congress Proceedings - Forli, 8-14 September 1996. Sections, pp. 41-46. 1. Forlì, Italia: A.B.A.C.O.

  6. Bietti, A., Morganti, S., & Zanello, L. (1994). Image processing in microwear analysis of prehistoric flint artefacts, an attempt at quantifying textural properties. In I. Johnson (Ed.), Methods in the mountains (pp. 183–188) Sydney University Archaeological Methods Series 2.

  7. Burwell, J. T. (1950). Mechanical Wear. Cleveland: American Society for Metals.

    Google Scholar 

  8. Caux, S., Galland, A., Queffelec, A., & Bordes, J. C. (2018). Aspects and characterization of chert alteration in an archaeological context: A qualitative to quantitative pilot study. Journal of Archaeological Science: Reports, 20, 210–219.

    Article  Google Scholar 

  9. Chen, P. Y., Stokes, A. G., & McKittrick, J. (2009). Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). Acta Biomaterialia, 5(2), 693–706.

    Article  Google Scholar 

  10. Claud, É., Deschamps, M., Colonge, D., Mourre, V., & Thiébaut, C. (2015). Experimental and functional analysis of late Middle Paleolithic flake cleavers from southwestern Europe (France and Spain). Journal of Archaeological Science, 62, 105–127.

    Article  Google Scholar 

  11. Clemente, I., Lazuén, T., Astruc, L., & Rodríguez, A. C. (2015). Use-wear analysis of nonflint lithic raw materials, the cases of quartz/quartzite and obsidian. In J. M. Marreiros, J. F. Gibaja, & N. Bicho (Eds.), Use-wear and residue analysis in Archaeology (pp. 59–81). Manuals in Archaeological Method, Theory and Technique). Springer International Publishing.

  12. Curwen, C. E. (1930). Prehistoric flint sickles. Antiquity, 4(14), 179–186.

    Article  Google Scholar 

  13. Dobrzański, P., & Pawlus, P. (2011). A study of filtering techniques for areal surface topography assessment. Proceedings of the Institution of Mechanical Engineers - Part B: Journal of Engineering Manufacture, 225(11), 2096–2107.

    Article  Google Scholar 

  14. Dumont, J. (1982). The quantification of microwear traces, a new use for interferometry. World Archaeology, 14(2), 206–217.

    Article  Google Scholar 

  15. Evans, A. A. (2014). On the importance of blind testing in archaeological science, the example from lithic functional studies. Journal of Archaeological Science, 48, 5–14.

    Article  Google Scholar 

  16. Evans, A. A., & Donahue, R. E. (2008). Laser scanning confocal microscopy, a potential technique for the study of lithic microwear. Journal of Archaeological Science, 35(8), 2223–2230.

    Article  Google Scholar 

  17. Evans, A. A., & Macdonald, D. (2011). Using metrology in early prehistoric stone tool research, further work and a brief instrument comparison. Scanning, 33(5), 294–303.

    Article  Google Scholar 

  18. Evans, A. A., Macdonald, D. A., Giusca, C., & Leach, R. K. (2014). New method development in prehistoric stone tool research: Evaluating use duration and data analysis protocols. Micron, 65, 69–75.

    Article  Google Scholar 

  19. Everitt, B. S., & Dunn, G. (2001). Applied multivariate data analysis (2nd ed.). London: Arnold.

    Book  Google Scholar 

  20. Gassin, B. (1996). Evolution socio-économique dans le Chasséen de la grotte de l’Eglise supérieure (Var). Apport de l’analyse fonctionelle des industries lithiques. Paris: CNRS, Monographie du CRA 17.

  21. Giusca, C. L., Evans, A. A., McDonald, D., & Leach, R.K. (2012). The effect of use duration on surface roughness measurements of stone tools. NPL Report ENG 35.

  22. González-Urquijo, J., & Ibáñez, J. J. (1994). Metodología del análisis funcional de instrumentos tallados en sílex. Bilbao: Universidad de Deusto, Cuadernos de Arqueología 14.

    Google Scholar 

  23. González-Urquijo, J., & Ibáñez, J. J. (2001). The contribution of functional analysis to the definition of instruments, examples of Tell Mureybit, Jerf el Ahmar and Tell Halula (N. Syrie, 10.000-7500 BP). In I. Caneva, C. Lemorini, D. Zampetti, & P. Biaggi (Eds.), Beyond tools, redefining the PPN lithic assemblages of the Levant (pp. 205–216). Venice: Ex Oriente.

    Google Scholar 

  24. González-Urquijo, J., & Ibáñez. (2003). The quantification of use-wear polish using image analysis. First results. Journal of Archaeological Science, 30(4), 481–489.

    Article  Google Scholar 

  25. Grace, R. (1989). Interpreting the function of stone tools, the quantification and computerisation of microwear analysis. Oxford: BAR international series 474.

  26. Grace, R., Graham, I. D., & Newcomer, M. H. (1987). Preliminary investigation into the quantification of wear traces on flint tools. In D. Sieveking & M. H. Newcomer (Eds.), The human uses of flint and chert (pp. 63–69). Cambridge: Cambridge University Press.

    Google Scholar 

  27. Ibañez, J. J., & González Urquijo, J. (2003). Use-wear in the 1990s in Western Europe, potential and limitations of a method. In N. Moloney & M. J. Shott (Eds.), Lithic analysis at the millennium (pp. 163–168). London: Institute of Archaeology, University College.

    Google Scholar 

  28. Ibáñez, J. J., González-Urquijo, J., & Gibaja, J. (2014). Discriminating wild vs domestic cereal harvesting micropolish through laser confocal microscopy. Journal of Archaeological Science, 48, 96–103.

    Article  Google Scholar 

  29. Ibáñez, J. J., Anderson, P. C., González-Urquijo, J., & Gibaja, J. (2016). Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. Journal of Archaeological Science, 73, 62–81.

    Article  Google Scholar 

  30. Keeley, L. H. (1980). Experimental determination of stone tool uses, a microwear analysis. Chicago: University of Chicago Press.

    Google Scholar 

  31. Key, A. J. M., Stemp, W. J., Morozov, M., Proffitt, T., & de la Torre, I. (2015). Is loading a significantly influential factor in the development of lithic microwear? An experimental test using LSCM on basalt from Olduvai Gorge. Journal of Archaeological Method and Theory, 22(4), 1193–1214.

    Article  Google Scholar 

  32. Kimball, L. R., Kimball, J. F., & Allen, P. E. (1995). Microwear polishes as viewed through the atomic force microscope. Lithic Technology, 20(1), 6–28.

    Google Scholar 

  33. Knutsson, K., Dahlquist, B., & Knutsson, H. (1988). Patterns of tool use, the microwear analysis of the quartz and flint assemblage from Bjurselet site, Västerbotten, northern Sweden. In S. Beyries (Ed.), Industries lithiques, tracéologie et technologie (pp. 253–294). Oxford: BAR International Series 411.

    Google Scholar 

  34. Kononenko, N. (2007). The contribution of use-wear/residue studies of obsidian artefacts for understanding changes in settlement and subsistence patterns in West New Britain, Papua New Guinea. Bulletin of the Indo-Pacific Prehistory Association, 27, 135–143.

    Article  Google Scholar 

  35. Kruschov, M. M., & Babichev, M. A. (1960). Investigations into the wear of metals. Moscow: USSR Academy of Sciences (in Russian).

    Google Scholar 

  36. Lazuen, T. (2014). Please do not shoot the pianist. Criteria for recognizing ancient lithic weapon use. Journal of Archaeological Science, 46, 1–5.

    Article  Google Scholar 

  37. Le Goïc, G., Bigerelle, M., Samper, S., Favrelière, H., & Pillet, M. (2016). Multiscale roughness analysis of engineering surfaces, a comparison of methods for the investigation of functional correlations. Mechanical Systems and Signal Processing, 66, 437–457.

    Article  Google Scholar 

  38. Lerner, H., Du X., Costopoulos A., Ostoja-Starzewski, M. (2007). Lithic raw material physical properties and use-wear accrual. Journal of Archaeological Science 34(5): 711–722.

  39. Lix, L. M., & Sajobi, T. T. (2010). Discriminant analysis for repeated measures data, a review. Frontiers in Psychology, 1, 146. https://doi.org/10.3389/fpsyg.2010.00146.

    Article  Google Scholar 

  40. Macdonald, D. A., & Evans, A. A. (2014). Evaluating surface cleaning techniques of stone tools using laser scanning confocal microscopy. Microscopy Today, 22(3), 22–26.

    Article  Google Scholar 

  41. Mansur, M. E. (1982). Microwear analysis of natural and use striations, new clues to the mechanisms of striation formation. In D. Cahen (Ed.), Tailler! pour quoi faire, préhistoire et technologie lithique II, Recent progress in microwear studies (Vol. 2, pp. 213–233). Tervuren: Studia Praehistorica Belgica. Koninklijk Museum voor Midden-Afrika.

    Google Scholar 

  42. Mansur-Franchomme, M.E. (1983). Traces d’utilisation et technologie lithique: Exemples de la Patagonie. Theèse de 3ème. Cicle, Université de Bordeaux I.

  43. Milanfar, P. (2013). A tour of modern image filtering, new insights and methods, both practical and theoretical. IEEE Signal Processing Magazine, 30(1), 106–128.

    Article  Google Scholar 

  44. Monnier, G. F., Ladwig, J. L., & Porter, S. T. (2012). Swept under the rug, the problem of unacknowledged ambiguity in lithic residue identification. Journal of Archaeological Science, 39(10), 3284–3300.

    Article  Google Scholar 

  45. Motulsky, H. J. (2014). Common misconceptions about data analysis and statistics. The Journal of Pharmacology and Experimental Therapeutics, 351(1), 200–205.

    Article  Google Scholar 

  46. Nilsson, S. (1838–43). Skandinaviska nordens ur-invånare. Ett för -sök i komparativa ethnografien och ett bidrag till menniskoslägtets utvecklingshistoria. Lund: Berlingska.

  47. Osipowicz, G. (2007). Bone and antler, softening techniques in prehistory of the north eastern part of polish lowlands in the light of experimental archaeology and micro trace analysis, EuroREA. Journal of (Re)construction and Experiment in Archaeology, 4(/2007), 11–21.

    Google Scholar 

  48. Owen, L. R. (1993). Materials worked by hunter and gatherer groups of northern North America, implications for use-wear analysis. In P. C. Anderson, S. Beyries, M. Otte, & H. Plisson (Eds.), Traces et fonction: les gestes retrouvés (pp. 3–15). Liège: ERAUL 50.

  49. Plisson, H. (1985). Etude fonctionnelle d'outillages lithiques préhistoriques par l'analyse des micro-usures, recherche méthodologique et archéologique. Thèse de Doctorat, Paris, l'Université de Paris I.

  50. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., & Walker, A. (2005). Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 436(7051), 693–695.

    Article  Google Scholar 

  51. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., & Walker, A. (2006). Dental microwear texture analysis, technical considerations. Journal of Human Evolution, 51(4), 339–349.

    Article  Google Scholar 

  52. Semenov, S. (1964). Prehistoric technology. London: Cory, Adams and Mackay.

    Google Scholar 

  53. Stemp, W. J., & Chung, S. (2011). Discrimination of surface wear on obsidian tools using LSCM and RelA: Pilot study results (area-scale analysis of obsidian tool surfaces). Scanning, 33(5), 279–293. https://doi.org/10.1002/sca.20250.

    Article  Google Scholar 

  54. Stemp, W. J., Childs, B. E., Vionnet, S., & Brown, C. A. (2009). Quantification and discrimination of lithic use-wear, surface profile measurements and length-scale fractal analysis. Archaeometry, 51(3), 366–382.

    Article  Google Scholar 

  55. Stemp, W. J., Lerner, H. J., & Kristant, E. H. (2013). Quantifying microwear on experimental Mistassini quartzite scrapers: Preliminary results of exploratory research using LSCM and scale-sensitive fractal analysis. Scanning, 35(1), 28–39.

    Article  Google Scholar 

  56. Stemp, W. J., Andruskiewicz, M. D., Gleason, M. A., & Rashid, Y. H. (2015a). Experiments in ancient Maya bloodletting: Quantification of surface wear on obsidian blades. Archaeological and Anthropological Sciences, 7(4), 423–439. https://doi.org/10.1007/s12520-014-0204-5.

    Article  Google Scholar 

  57. Stemp, W. J., Mikhail, M., & Alastair, J. M. K. (2015b). Quantifying lithic microwear with load variation on experimental basalt flakes using LSCM and area-scale fractal complexity (Asfc). Surface Topography: Metrology and Properties, 3(3), 034006.

    Google Scholar 

  58. Stemp, W. J., Watson, A. S., & Evans, A. A. (2016). Surface analysis of stone and bone tools. Surface Topography: Metrology and Properties, 4, 013001.

    Google Scholar 

  59. Stemp, W. J., Lerner, H. J., & Kristant, E. H. (2018). Testing area-scale fractal complexity (Asfc) and laser scanning confocal microscopy (LSCM) to document and discriminate microwear on experimental quartzite scrapers. Archaeometry, 60(4), 660–677. https://doi.org/10.1111/arcm.12335.

    Article  Google Scholar 

  60. Stevens, N. E., Harro, D. R., & Hicklin, A. (2010). Practical quantitative lithic use-wear analysis using multiple classifiers. Journal of Archaeological Science, 37, 2671–2678.

    Article  Google Scholar 

  61. Sullivan, P. J. (2001). Surface topography filtering. In E. Mainsah, J. A. Greenwood, & D. G. Chetwynd (Eds.), Metrology and properties of engineering surfaces (pp. 113–167). Boston: Springer.

    Chapter  Google Scholar 

  62. Van Gijn, A. (1989). The Wear and Tear of Flint. Principles of Functional Analysis applied to Dutch Neolithic Assemblages. Analecta Prehistorica Leidensia, Leiden.

  63. Van Gijn, A. L. (2014). Science and interpretation in microwear studies. Journal of Archaeological Science, 48, 166–169.

    Article  Google Scholar 

  64. Vaughan, P.C. (1981). Lithic microwear experimentation and the functional analysis of a Lower Magdalenian stone tool assemblage. Ph.D. Thesis. University of Pennsylvania.

  65. Vaughan, P. C. (1985). Use-Wear analysis of flaked stone tools. Tucson: University of Arizona Press.

    Google Scholar 

  66. Vila, A., & Gallart, F. (1991). Aplicacion del analisis digital de imagenes en Arqueologia, el caso de los micropulidos de uso. In A. Vila (Ed.), Arqueologia-CSIC (pp. 131–139). Madrid: CSIC, Nuevas Tendencias.

    Google Scholar 

  67. Werner, J. J. (2018). An experimental investigation of the effects of post-depositional damage on current quantitative use-wear methods. Journal of Archaeological Science: Reports, 17, 597–604.

    Article  Google Scholar 

Download references

Funding

This study is part of the projects HAR2016-74999-P, HAR2015-68566-P, and HAR2016-81971-REDT funded by the Spanish Ministerio de Ciencia, Innovación y Universidades.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. J. Ibáñez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(SAV 195 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibáñez, J.J., Lazuen, T. & González-Urquijo, J. Identifying Experimental Tool Use Through Confocal Microscopy. J Archaeol Method Theory 26, 1176–1215 (2019). https://doi.org/10.1007/s10816-018-9408-9

Download citation

Keywords

  • Use-wear
  • Confocal microscopy
  • Lithic tools
  • Experimentation