How Was Neolithic Pottery Fired? An Exploration of the Effects of Firing Dynamics on Ceramic Products

Abstract

The presented study is focused on the development of a new methodology for estimating the heating rate during firing as one of the principal characteristics of the firing process. We experimentally determined the limits of the heating dynamics (heating rate, cooling rate and soaking time) of the firing processes for two basic alternatives for pottery firing considered for the Early Neolithic in Central Europe—bonfires and single-chamber kilns—and analysed the thermal gradient within the walls of the fired pottery as the effect of these heating dynamics. Mineralogical transformations caused by the firing procedures were estimated by X-ray diffraction in order to apply the results of the experimental measurements in a study of archaeological ceramics. The difference between the maximum temperatures on the outer surfaces and in the cores of the vessel walls at the places where the pottery is exposed to the fastest heating and cooling rates appears to be a usable basis for distinguishing between the tested firing structures. XRD analysis has demonstrated that temperature differences measured and modelled experimentally can be traced to the products of these processes with sufficient reliability. The results of the experimental study were applied in the interpretation of the firing process employed in the manufacture of Early Neolithic pottery obtained from the Linear Pottery culture settlement in Bylany (Czech Republic).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Allegretta, I., Eramo, G., Pinto, D., & Hein, A. (2014). The effect of temper on the thermal conductivity of traditional ceramics: nature, percentage and granulometry. Thermochimica Acta, 581, 100–109.

    Article  Google Scholar 

  2. Allegretta, I., Pinto, D., & Eramo, G. (2016). Effects of grain size on the reactivity of limestone temper in a kaolinitic clay. Applied Clay Science, 126, 223–234.

    Article  Google Scholar 

  3. Arnold, D. E. (1985). Ceramic theory and cultural process. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Arnold III, P. J. (1991). Domestic ceramic production and spatial organization: a Mexican case study in ethnoarchaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  5. Benghezal, A. (1989). Groupes de Référence des Poteries Gallo-Romaines de Seeb (ZH-Suisse) et Oberwinterthur (ZH-Suisse): Caracteristiques minéralogiques, chimiques et techniques (Diploma thesis). Fribourg: University of Fribourg.

  6. Bong, W. S. K., Matsumura, K., & Nakai, I. (2008). Firing technologies and raw materials of typical early amd middle Bronze Age pottery from Kaman-Kalehöyük: a statistical and chemical analysis. Anatolian Archaeological Studies, 17, 295–311.

    Google Scholar 

  7. Bradley, R. (2001). Orientations and origins: a symbolic dimension to the long house in Neolithic Europe. Antiquity, 75/287, 50–56.

    Article  Google Scholar 

  8. Brönnimann, D., Ismail-Meyer, K., Rentzel, P., Pümpin, C., & Lisá, L. (2017). Excrements of herbivores. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 55–65). Oxford: Wiley-Blackwell.

    Google Scholar 

  9. Childe, V. G. (1925). The dawn of European civilization. London: Routledge and Kegan Paul.

    Google Scholar 

  10. Comsol Multiphysics (Version 4.3b) [Computer software] (2013). Burlington MA: Comsol, Inc.

  11. Coudart, A. (2015). The Bandkeramik longhouses. A material, social, and mental metaphor for small-scale sedentary societies. In C. Fowler, J. Harding, & D. Hofmann (Eds.), The Oxford handbook of neolithic Europe (pp. 309–325). Oxford: Oxford University Press.

    Google Scholar 

  12. Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O., & de la Torre, M. J. (2001). Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621–634.

    Article  Google Scholar 

  13. Dobres, M.-A. (2000). Technology and social agency: outlining the practice framework for archaeolgy. Oxford, Malden: Blackwell.

    Google Scholar 

  14. Drost, D. (1967). Töpferei in Afrika. Technologie. Berlin: Akademie-Verlag.

    Google Scholar 

  15. Echallier, J.-C., & Mery, S. (1992). L’évolution minéralogique etphysico-chimique des pâtes calcaires au cours de la cuisson: expérimentation en laboratoire etapplication archéologique. In S. Mery (Ed.), Sciences de la Terre et Céramiques Archéologiques (Documents et travaux., pp. 87–120). Cergy: Institut Géologique Albert de Lapparent.

  16. Eramo, G., & Maggetti, M. (2013). Pottery kiln and drying oven from Aventicum (2nd century AD, Ct. Vaud, Switzerland): raw materials and temperature distribution. Applied Clay Science, 82, 16–23.

    Article  Google Scholar 

  17. Eramo, G., Giannossa, L. C., Rocco, A., Mangone, A., Graziano, S. F., & Laviano, R. (2014). Oil lamps from the catacombs of Canosa (Apulia, fourth to sixth centuries AD): technological features and typological imitation. Archaeometry, 56(3), 375–391.

    Article  Google Scholar 

  18. Gomart, L., Hachem, L., Hamon, C., Giligny, F., & Ilett, M. (2015). Household integration in Neolithic villages: a new model for the linear pottery culture in West-Central Europe. Journal of Anthropological Archaeology, 40(Supplement C), 230–249.

    Article  Google Scholar 

  19. Gosselain, O. P. (1992). Bonfire of the enquiries. Pottery firing temperatures in archaeology: what for? Journal of Archaeological Science, 19, 243–259.

    Article  Google Scholar 

  20. Gosselain, O. P. (1998). Social and technical identity in a clay crystal ball. In M. T. Stark (Ed.), The archaeology of social boundaries (pp. 78–106). Washington, D.C.; London: Smithsonian Institution Press.

    Google Scholar 

  21. Gosselain, O. P. (2000). Materializing identities: an African perspective. Journal of Archaeological Method and Theory, 7(3), 187–217.

    Article  Google Scholar 

  22. Grattan-Bellew, P. E., & Litvan, G. G. (1978). X-ray diffraction method for determining the firing temperature of clay brick. American Ceramic Society Bulletin, 57(5), 493–495.

    Google Scholar 

  23. Hampe, R., & Winter, A. (1962). Bei Töpfern und Töpferinnen in Kreta, Messenien und Zypern. Mainz: Verlag des Römisch-Germanischen Zentralmuseums.

    Google Scholar 

  24. Häusler, W. (2004). Firing of clays studied by X-ray diffraction and Mössbauer spectroscopy. Hyperfine Interactions, 154(1–4), 121–141.

    Article  Google Scholar 

  25. Herz, N., & Garrison, E. G. (1998). Geological methods for archaeology. Oxford: Oxford University Press.

    Google Scholar 

  26. Hofmann, D., Amkreutz, L., Haack, F., & van Wijk, I. (2016). Introduction: diversity and uniformity in LBK studies. In L. Amkreutz, F. Haack, D. Hofmann, & I. van Wijk (Eds.), Something out of the ordinary? Interpreting diversity in the Early Neolithic Linearbandkeramik and beyond (pp. 3–30). Newcastle upon Tyne: Cambridge Scholars Publishing.

    Google Scholar 

  27. Holman, J. P. (2014). Heat transfer. Boston; London: McGraw-Hill.

    Google Scholar 

  28. Hołubowicz, W. (1950). Garncarstwo wiejskie zachodnich terenów Białorusi. Toruń: Nakł. Towarzystwa Naukowego.

    Google Scholar 

  29. Ionescu, C., & Ghergari, L. (2002). Modeling and firing technology – reflected in the textural features and mineralogy of the ceramics from Neolithic sites in Transylvania (Romania). Geologica Carpathica, (53), (Spec. Iss. on CD).

  30. Ionescu, C., & Hoeck, V. (2011). Firing-induced transformations in Copper Age ceramics from NE Romania. European Journal of Mineralogy, 23(6), 937–958.

    Article  Google Scholar 

  31. Knappett, C., & Malafouris, L. (Eds.). (2008). Material agency: towards a non- anthropocentric approach. New York: Springer.

    Google Scholar 

  32. Květina, P., & Hrnčíř, V. (2013). Between archaeology and anthropology: imagining Neolithic settlements. Anthropologie, 51(2), 323–347.

    Google Scholar 

  33. Květina, P., & Končelová, M. (2013). Settlements patterns as seen in pottery decoration style: a case study from the early Neolithic site of Bylany (Czech Republic). In P. Allard, C. Hamon, & M. Ilett (Eds.), The domestic space in LBK settlements (pp. 99–110). Rahden/Westf: Verlag Marie Leidorf.

    Google Scholar 

  34. Lemonnier, P. (1992). Elements for anthropology of technology. Ann Arbor: University of Michigan Press.

    Google Scholar 

  35. Lemonnier, P. (Ed.). (1993). Technological choices: transformation in material cultures since the Neolithic. London; New York: Routledge.

    Google Scholar 

  36. Livingstone Smith, A. (2001). Bonfire II: the return of pottery firing temperatures. Journal of Archaeological Science, 28, 991–1003.

    Article  Google Scholar 

  37. Lucke, A. (1991). Vergleichende ethno-archäologische Untersuchungen zu Brenntechniken in vier nordmarokkanischen Töpferofen. Töpferei- und Keramikforschung Band, 2, 213–225.

    Google Scholar 

  38. Lüning, J. (1982). Forschungen zur bandkeramischen Besiedlung der Aldenhovener Platte im Rheinland. In J. Pavůk (Ed.), Siedlungen der Kultur mit Linearkeramik in Europa. Kolloquium Nové Vozokany 17.-20. November 1981 (pp. 125–156). Nitra: Archäologisches Institut der Slowakischen Akademie der Wissenschaften.

    Google Scholar 

  39. Maggetti, M. (1982). Phase analysis and its significance for technology and origin. In J. S. Olin & A. D. Franklin (Eds.), Archaeological ceramics (pp. 121–133). Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  40. Maggetti, M., Neururer, C., & Ramseyer, D. (2011). Temperature evolution inside a pot during experimental surface (bonfire) firing. Applied Clay Science, 53(3), 500–508.

    Article  Google Scholar 

  41. Mangel, T., Thér, R., & Gregor, M. (2015). K otázce hrnčířských vypalovacích zařízení s rošty z období Ha C – LT A ve střední Evropě. Archeologické rozhledy, 67, 356–399.

    Google Scholar 

  42. Maritan, L. (2004). Archaeometric study of Etruscan-Padan type pottery from the Veneto region: petrographic, mineralogical and geochemical-physical characterisation. European Journal of Mineralogy, 16, 297–307.

    Article  Google Scholar 

  43. Maritan, L. (2017). Ceramic materials. In C. Nicosia & G. Stoops (Eds.), Archaeological soil and sediment micromorphology (pp. 205–212). Oxford: Wiley-Blackwell.

    Google Scholar 

  44. Maritan, L., Mazzoli, C., Nodari, L., & Russo, U. (2005). Second Iron Age grey pottery from Este (northeastern Italy): study of provenance and technology. Applied Clay Science, 29(1), 31–44.

    Article  Google Scholar 

  45. Maritan, L., Nodari, L., Mazzoli, C., Milano, A., & Russo, U. (2006). Influence of firing conditions on ceramic products: Experimental study on clay rich in organic matter. Applied Clay Science, 31(1–2), 1–15.

    Article  Google Scholar 

  46. Martineau, R., & Pétrequin, P. (2010). La cuisson des poteries néolithiques de Chalain (Jura). Approche expérimentale et analyse archéologique. In P. Pétrequin, P. Fluzin, J. Thieriot, & P. Benoît (Eds.), Arts du feu et productions artisanales. XXe Rencontres Internationales d’Archéologie et d’Histoire d’Antibes (pp. 337–358). Association pour la Promotion et la Diffusion des Connaissances Archéologiques (APDCA).

  47. May, P., & Tuckson, M. (2000). The traditional pottery of Papua New Guinea. Adelaide: Crawford House Publishing.

    Google Scholar 

  48. McDonnell, J. G. (2001). Pyrotechnology. In D. R. Brothwell & A. M. Pollard (Eds.), Handbook of archaeological sciences (pp. 493–506). Chichester: J. Wiley.

    Google Scholar 

  49. Modderman, P. J. R. (1988). The linear pottery culture: diversity in uniformity. Berichten van de Rijksdienst voor het Ondheidkundig Bodemonderzoek, 38, 65–139.

    Google Scholar 

  50. Nodari, L., Maritan, L., Mazzoli, C., & Russo, U. (2004). Sandwich structures in the Etruscan-Padan type pottery. Applied Clay Science, 27(1–2), 119–128.

    Article  Google Scholar 

  51. Nodari, L., Marcuz, E., Maritan, L., Mazzoli, C., & Russo, U. (2007). Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. Journal of the European Ceramic Society, 27(16), 4665–4673.

    Article  Google Scholar 

  52. Orton, C., Tyers, P., & Vince, A. G. (1993). Pottery in archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  53. Pavlů, I. (2000). Life on a Neolithic site. Praha: Institute of Archaeology CAS.

    Google Scholar 

  54. Pavlů, I., & Zápotocká, M. (2013). The prehistory of Bohemia 2. In The Neolithic. Praha: Institute of Archaeology CAS.

    Google Scholar 

  55. Pavlů, I., Rulf, J., & Zápotocká, M. (1986). Theses on the neolithic site of Bylany. Památky archeologické, 77, 288–412.

    Google Scholar 

  56. Peters, T., & Iberg, R. (1978). Mineralogical changes during firing of calcium-rich brick clays. American Ceramic Society Bulletin, 57(5), 503–505 509.

    Google Scholar 

  57. Peterson, S. E., & Betancourt, P. P. (2009). Thin-section petrography of ceramic materials. Philadelphia, PA: INSTAP Academic Press.

    Google Scholar 

  58. Petrasch, J. (1986). Typologie und Funktion neolithischer Öfen in Mittel- und Südosteuropa. Acta Praehistorica et Archaeologica, 18, 33–83.

    Google Scholar 

  59. Pfaffenberger, B. (1992). Social anthropology of technology. Annual Review of Anthropology, 21, 491–516.

    Article  Google Scholar 

  60. Pfaffinger, M. (1997). Zur Rekonstruktion eines linienbandkeramischen Grubenofens: Ein Langzeitversuch, Zwischenbericht. In Experimentelle Archäologie. Bilanz 1996. Symposium in Hitzacker, Oktober 1995 (pp. 7–20). Oldenburg: Isensee.

    Google Scholar 

  61. Plicková, E. (1959). Pozdišovské hrnčiarstvo. Bratislava: Slovenské vydavateľstvo krásnej literatury.

    Google Scholar 

  62. Quinn, P. S. (2013). Ceramic petrography: the interpretation of archaeological pottery & related artefacts in thin section. Oxford: Archaeopress.

    Google Scholar 

  63. Rathossi, C., Pontikes, Y., & Tsolis-Katagas, P. (2010). Mineralogical differences between ancient sherds and experimental ceramics: indices for firing conditions and post-burial alteration. Bulletin of the Geological Society of Greece, 43(2), 856–865.

    Article  Google Scholar 

  64. Reina, R. E., & Hill, R. M. (1978). The traditional pottery of Guatemala. Austin: University of Texas Press.

    Google Scholar 

  65. Riccardi, M. P., Messiga, B., & Duminuco, P. (1999). An approach to the dynamics of clay firing. Applied Clay Science, 15(3–4), 393–409.

    Article  Google Scholar 

  66. Rice, P. M. (1987). Pottery analysis: a sourcebook. Chicago; London: The University of Chicago Press.

    Google Scholar 

  67. Rye, O. S. (1981). Pottery technology: principles and reconstruction. Washington, D.C.: Taraxacum.

    Google Scholar 

  68. Rye, O. S., & Evans, C. (1976). Traditional pottery techniques of Pakistan: field and laboratory studies. Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  69. Sestier, C. (2007). Étude du profil thermique d’une structure de combustion en meule (pitkiln): four ou foyer simple? In D. Gheorghiu (Ed.), Fire as an instrument: the archaeology of pyrotechnologies (pp. 25–31). Oxford: Archaeopress.

    Google Scholar 

  70. Shepard, A. O. (1956). Ceramics for the archaeologist. Washington, D.C.: Carnegie Institution of Washington.

    Google Scholar 

  71. Shoval, S. (1988). Mineralogical changes upon heating calcitic and dolomitic marl rocks. Thermochimica Acta, 135(Supplement C), 243–252.

    Article  Google Scholar 

  72. Sillar, B., & Tite, M. S. (2000). The challenge of ‘technologial choices’ for materials science approaches in archaeology. Archaeometry, 42(1), 2–20.

    Article  Google Scholar 

  73. Skibo, J. M., & Schiffer, M. B. (2008). People and things: a behavioral approach to material culture. New York: Springer.

    Google Scholar 

  74. Soudský, B. (1962). The Neolithic site of Bylany. Antiquity, 36(143), 190–200.

    Article  Google Scholar 

  75. Stark, M. T. (1998). Technical choices and social boundaries in material culture patterning: an introduction. In M. T. Stark (Ed.), The archaeology of social boundaries (pp. 1–11). Washington, D.C.; London: Smithsonian Institution Press.

    Google Scholar 

  76. Staššikova-Štukovska, D. (2002). The Stone and Middle Age ovens in loess sites of Slovakia. Influence on their quality for food preparation. In Pain, fours et foyers des temps passes: archéologie et traditions boulangères des peuples agriculteurs d’Europe et du Proche Orient / Bread, ovens and hearths of the past: archaeology and baking traditions of agriculture civilisations in Europe and the Near East (pp. 259–269). Bruxelles: Université Libre.

  77. Stoops, G. (2003). Guidelines for analysis and description of soil and regolith thin sections. Madison: Soil Science Society of America.

    Google Scholar 

  78. Thér, R. (2014). Identification of pottery firing structures using the thermal characteristics of firing. Archaeometry, 56, 78–99.

    Article  Google Scholar 

  79. Thér, R., & Gregor, M. (2011). Experimental reconstruction of the pottery firing process of Late Bronze Age pottery from north-eastern Bohemia. In S. Scarcella (Ed.), Archaeological ceramics: a review of current research (pp. 128–142). Oxford: Archaeopress.

    Google Scholar 

  80. Tichý, R. (1962a). Osídlení s volutovou keramikou na Moravě. Památky archaeologické, 53(2), 245–305.

    Google Scholar 

  81. Tichý, R. (1962b). Volutové nálezy z Mohelnice u Zábřeha. Sborník Československé společnosti archeologické, 2, 201–204.

    Google Scholar 

  82. Tite, M. S. (1995). Firing temperatures determinations: how and why? In A. Lindahl & O. Stilborg (Eds.), The aim of laboratory analyses of ceramics in archaeology, April 7–9, 1995 in Lund Sweden (pp. 42–47). Stockholm: Kungl. Vitterhets historie och antikvitets akademien.

    Google Scholar 

  83. Tomber, R., Cartwright, C., & Gupta, S. (2011). Rice temper: technological solutions and source identification in the Indian Ocean. Journal of Archaeological Science, 38(2), 360–366.

    Article  Google Scholar 

  84. Trindade, M. J., Dias, M. I., Coroado, J., & Rocha, F. (2009). Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42(3–4), 345–355.

    Article  Google Scholar 

  85. Tschegg, C., Ntaflos, T., & Hein, I. (2009). Thermally triggered two-stage reaction of carbonates and clay during ceramic firing—a case study on Bronze Age Cypriot ceramics. Applied Clay Science, 43(1), 69–78.

    Article  Google Scholar 

  86. van der Leeuw, S. E. (1993). Giving the potter a choice: conceptual aspects of pottery techniques. In Technological choices: transformation in material cultures since the Neolithic (pp. 238–288). London and New York: Routledge.

    Google Scholar 

  87. Velde, B., & Druc, I. C. (1999). Archaeological ceramic materials: origin and utilization. Berlin; New York: Springer.

    Google Scholar 

  88. Whittle, A. (1996). Europe in the Neolithic: the creation of new worlds. Cambridge; New York: Cambridge University Press.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their inspiring comments which helped to improve the manuscript.

Funding

The research described in this paper was accomplished with support from the project ‘Variability of Neolithic pottery technology as a marker of social identity’ (Project 14-07062S), financed by the Czech Science Foundation, and by internal program of Institute of Geology, CAS in Prague RVO 67985831.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Thér.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thér, R., Kallistová, A., Svoboda, Z. et al. How Was Neolithic Pottery Fired? An Exploration of the Effects of Firing Dynamics on Ceramic Products. J Archaeol Method Theory 26, 1143–1175 (2019). https://doi.org/10.1007/s10816-018-9407-x

Download citation

Keywords

  • Pottery technology
  • Pottery firing
  • X-ray diffraction
  • Experimental archaeology
  • Numerical modelling
  • Linear pottery culture
  • Neolithic
  • Central Europe