Journal of Archaeological Method and Theory

, Volume 26, Issue 3, pp 1106–1124 | Cite as

Human Remains Detection Dogs as a New Prospecting Method in Archaeology

  • Vedrana GlavašEmail author
  • Andrea Pintar


Detecting burial sites in archaeology often involves various prospecting methods such as field survey, ground-penetrating radar (GPR), electrical resistivity, and remote sensing. This paper presents the results of utilizing human remains detection dogs in detecting prehistoric burials dated to the Iron Age in Europe. Human remains detection (HRD) dogs or cadaver dogs are commonly used in criminal cases. However, they are used less frequently for detecting historic burials. Our research was conducted at the burial site of the prehistoric hillfort of Drvišica (Croatia) located on the littoral slope of the Velebit mountains. A total of four HRD dogs were used in both a blinded and double-blinded search. Those locations where an HRD dog produced an indication were subjected to both visual inspection and archaeological excavation. This research has resulted in the discovery of five new prehistoric tombs as well as HRD dogs detecting previously excavated tombs. Therefore, in this paper, we demonstrate that HRD dogs are a valuable tool for locating burials like other non-destructive archaeological search methods.


Human remains detection (HRD) dogs Cadaver dogs Burial sites Prehistoric burials Archaeological prospection Detection Canine reliability 



This project benefited from the Ministry of Croatian Veterans affair, Department for Detainees and Missing Persons, by providing technical support. This project would not be possible without the members of S.PAS Centre such as Chris Nikolić, Zlatko Balaš, and Josip Granić. We are also grateful to Ken Nystrom for reading the paper and improving the manuscript by his comments. We are thankful to Lorna Irish and Ana Bakašun for helping us to improve the English language of the manuscript. And finally, we want to thank sincerely the students and researchers who worked on the excavation of the burial sites.

Funding Information

This work received financial support from the Ministry of Culture, Republic of Croatia and Karlobag municipality, which provided funds for excavation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abrantes, R. (2010). Mission SMAF - Bringing scientific precision into animal training. Wakan Tanka Publishers.Google Scholar
  2. Abrantes, R. (2014a). Animal learning. Wakan Tanka Publishers.Google Scholar
  3. Abrantes, R. (2014b). Canine scent detection - The practical manual. Wakan Tanka Publishers.Google Scholar
  4. Aitkenhead-Peterson, J. A., Owings, C. G., Alexander, M. B., Larison, N., & Bytheway, J. A. (2012). Mapping the lateral extent of human cadaver decomposition with soil chemistry. Forensic Science International, 216(1–3), 127–134.CrossRefGoogle Scholar
  5. Alexander, M. B., Hodges, T. K., Blytheway, J., & Aitkenhead-Peterson, J. A. (2015). Application of soil in forensic science: residual odour and HRD dogs. Forensic Science International, 249, 304–313.CrossRefGoogle Scholar
  6. Alexander, M. B., Hodges, T. K., Wescott, D. J., & Aitkenhead-Peterson, J. A. (2016). The effects of soil texture on the ability of human remains detection dogs to detect buried human remains. Journal of Forensic Sciences, 61(3), 649–655.CrossRefGoogle Scholar
  7. Batović, Š. (1987). Liburnska grupa. In Praistorija jugoslavenskih zemalja. Željezno doba (Vol. V, pp. 339–391). Sarajevo.Google Scholar
  8. Baxter, C. L., & Hargrave, M. L. (2015). Guidance on the use of historic human remains detection dogs for locating unmarked cemeteries. (pp. 114): The US Army Engineer Research and Development Center (ERDC).Google Scholar
  9. Bereuter, T. L., Mikenda, W., & Reiter, C. (1997). Iceman’s mummification - implications from infrared spectroscopical and histological studies. Chemistry: A European Journal, 3(7), 1032–1038.CrossRefGoogle Scholar
  10. Blečić Kavur, M. (2014). At the crossroads of worlds at the turn of the millennium: the Late Bronze Age in the Kvarner region (Vol. XI, Musei archaeologici Zagrabiensis Catalog Monographiae). Zagreb: Arheološki muzej u Zagrebu.Google Scholar
  11. Blečić Kavur, M., & Miličević-Capek, I. (2011). O horizontu ratničkih grobova 5. stoljeća pr. Kr. na prostoru istočne obale Jadrana i njezina zaleđa: primjer novog nalaza iz Vranjeva Sela kod Neuma. Prilozi Instituta za arheologiju u Zagrebu, 28, 31–94.Google Scholar
  12. Braut, I., & Majer Jurišić, K. (2017). Sv. Vid nad Karlobagom - prilog poznavanju srednjovjekovne sakralne arhitekture Podvelebitskog primorja. Godišnjak zaštite spomenika kulture Hrvatske, 40, 57–68.Google Scholar
  13. Brunšmid, J. (1899). Arheološke bilješke iz Dalmacije i Panonije II. Vjesnik arheološkog muzeja u Zagrebu, n.s., 3, 150–205.Google Scholar
  14. Brunšmid, J. (1901). Arheološke bilješke iz Dalmacije i Panonije II. Vjesnik arheološkog muzeja u Zagrebu, n.s., 3, 87–168.Google Scholar
  15. Buis, R., Rust, L., Nizio, K., Rai, T., Stuart, B., & Forbes, S. (2015). Investigating the sensitivity of cadaver-detection dogs to decomposition fluid. Journal of Forensic Identification, 65(6), 985–997.Google Scholar
  16. Cablk, M. E., & Sagebiel, J. C. (2011). Field capability of dogs to locate individual human teeth. Journal of Forensic Sciences, 56(4), 1018–1024. Scholar
  17. Cablk, M. E., Szelagowski, E. E., & Sagebiel, J. C. (2012). Characterization of the volatile organic compounds present in the headspace of decomposing animal remains, and compared with human remains. Forensic Science International, 220(1–3), 118–125.CrossRefGoogle Scholar
  18. Conyers, L. B. (2006). Ground-penetrating radar. In J. K. Johnson (Ed.), Remote sensing in archaeology. an explicitly North American perspective (pp. 131–161). Tuscaloosa: The University of Alabama Press.Google Scholar
  19. Drnić, I., & Tonc, A. (2014). Kasnolatenske i ranocarske fibule s japodskog prostora. Prilozi Instituta za arheologiju u Zagrebu, 31, 181–214.Google Scholar
  20. Dupras, T. L., Schultz, J. J., Wheeler, S. M., & Williams, L. J. (2006). Forensic recovery of human remains: archaeological approaches. Boca Raton: Taylor & Francis.Google Scholar
  21. Faivre, S. (1994). Strukturno-geomorfološka analiza tipova dolinske mreže Sjevernog Velebita i Senjskog bila. Senjski zbornik, 21.Google Scholar
  22. Fiedler, S., & Graw, M. (2003). Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften, 90(7), 291–300.CrossRefGoogle Scholar
  23. Fiedler, S., Buegger, F., Klaubert, B., Zipp, K., Dohrmann, R., Witteyer, M., Zarei, M., & Graw, M. (2009). Adipocere withstands 1600 years of fluctuating groundwater levels in soil. Journal of Archaeological Science, 36(7), 1328–1333.CrossRefGoogle Scholar
  24. Forbes, S. L., Keegan, J., Stuart, B. H., & Dent, B. B. (2003). A gas chromatography-mass spectrometry method for the detection of adipocere in grave soils. European Journal of Lipid Science and Technology, 105(12), 761–768. Scholar
  25. Forbes, S. L., Dent, B. B., & Stuart, B. H. (2005). The effect of soil type on adipocere formation. Forensic Science International, 154(1), 35–43.CrossRefGoogle Scholar
  26. Ford, D. C., & Williams, P. W. (2007). Karst geomorphology and hydrology. West Sussex: John Wiley & Sons Ltd..CrossRefGoogle Scholar
  27. Forenbacher, S. (1990). Velebit i njegov biljni svijet. Zagreb: Školska knjiga.Google Scholar
  28. Fründ, H. C., & Schoenen, D. (2009). Quantification of adipocere degradation with and without access to oxygen and to the living soil. Forensic Science International, 188(1-3), 18–22.CrossRefGoogle Scholar
  29. Furton, K. G. (2010). Enhancing the performance of canine teams through research and implementation of the Scientific Working Group on Dog and Orthogonal Detector Guidelines (SWGDOG). In Thirty-eigth Annual National Association for Search and Rescue Conference Tunica: NASAR, May 14, 2010. Google Scholar
  30. Glavaš, V. (2015). Romanizacija autohtonih civitates na prostoru sjevernog i srednjeg Velebita. Zadar: University of Zadar.Google Scholar
  31. Glavičić, A. (1996). Ostaci crkvica sv. Vida u Senju i Karlobagu. Senjski zbornik, 23, 41–58.Google Scholar
  32. Goodman, D., & Piro, S. (2013). GPR Remote Sensing in Archaeology (Vol. 9). Berlin: Springer-Verlag.Google Scholar
  33. Hoffman, E. M., Curran, A. M., Dulgerian, N., Stockham, R. A., & Eckenrode, B. A. (2009). Characterization of the volatile organic compounds present in the headspace of decomposing human remains. Forensic Science International, 186(1-3), 6–13.CrossRefGoogle Scholar
  34. Hunter, J., & Cox, M. (2005). Forensic archaeology: advances in theory and practice. New York: Routledge.Google Scholar
  35. Judah, J. C., & Sargent, T. (2015). How to train a human remains detection dog. United States of America: CreateSpace Independent Publishing Platform.Google Scholar
  36. Kennedy, D. (2011). The “Works of the Old Men” in Arabia: remote sensing in interior Arabia. Journal of Archaeological Science, 38(12), 3185–3203.CrossRefGoogle Scholar
  37. Komar, D. (1999). The use of cadaver dogs in locating scattered, scavenged human remains: preliminary field test results. Journal of Forensic Sciences, 44(2), 405–408.CrossRefGoogle Scholar
  38. Kukoč, S. (2011). Liburnska nekropola u prirodnom i kulturnom okolišu. Histria antiqua: časopis Međunarodnog istraživačkog centra za arheologiju, 20, 189–221.Google Scholar
  39. Lasseter, A. E., Jacobi, K. P., Farley, R., & Hensel, L. (2003). Cadaver dog and handler team capabilities in the recovery of buried human remains in the southeastern United States. Journal of Forensic Sciences, 43, 1–5.Google Scholar
  40. Lit, L., Schweitzer, J. B., & Oberbauer, A. M. (2011). Handler beliefs affect scent detection dog outcomes. Animal Cognition, 14(3), 387–394.CrossRefGoogle Scholar
  41. Mine detection dogs: training, operations and odour detection (2003). In I. G. McLean (Ed.), Geneva International Centre for Humanitarian Demining (GICHD).Google Scholar
  42. Nystrom, K. (2016). Analysis of human skeletal remains from Drvišica hillfort (personal communication).Google Scholar
  43. Oesterhelweg, L., Krober, S., Rottmann, K., Willhoft, J., Braun, C., Thies, N., et al. (2008). Cadaver dogs - a study on detection of contaminated carpet squares. Forensic Science International, 174(1), 35–39.CrossRefGoogle Scholar
  44. Perica, D., & Orešić, D. (1999). Klimatska obilježja Velebita. Senjski zbornik, 26, 1–50.Google Scholar
  45. Pototschnig, T. (2013). Searching for a World War II mass grave in Austria. In International conference on cultural heritage and new technologies, Vienna, 2012 (pp. 2–10): Museen der Stadt Wien – Stadtarchäologie.Google Scholar
  46. Radić, D. (2017). Metalni nalazi. In I. Fadić & A. Eterović Borzić (Eds.), GRAD MRTVIH NAD POLJEM ŽIVOTA Nekropola gradinskog naselja Kopila na otoku Korčuli (pp. 85–99). Zadar: Muzej antičkog stakla u Zadru.Google Scholar
  47. Radić, D., Borzić, I., & Eterović Borzić, A. (2017). Katalog. In I. Fadić & A. Eterović Borzić (Eds.), GRAD MRTVIH NAD POLJEM ŽIVOTA Nekropola gradinskog naselja Kopila na otoku Korčuli (pp. 148–204). Zadar: Muzej antičkog stakla u Zadru.Google Scholar
  48. Rebmann, A., David, E., & Sorg, M. H. (2000). Cadaver dog handbook: forensic training and tactics for the recovery of human remains. Boca Raton: CRC Press Ltd.Google Scholar
  49. Riezzo, I., Neri, M., Rendine, M., Bellifemina, A., Cantatore, S., Fiore, C., & Turillazzi, E. (2014). Cadaver dogs: Unscientific myth or reliable biological devices? Forensic Science International, 244, 213–221.CrossRefGoogle Scholar
  50. Rogić, V. (1957). Velebitska primorska padina. Hrvatski geografski glasnik, 19, 61–100.Google Scholar
  51. Rosier, E., Loix, S., Develter, W., Van de Voorde, W., Tytgat, J., & Cuypers, E. (2015). The search for a volatile human specific marker in the decomposition process. PLoS One, 10(9), e0137341. Scholar
  52. Schmitt, S. (2001). Mass graves and the collection of forensic evidence: genocide, war crimes, and crimes against humanity. In D. Haglund & M. H. Sorg (Eds.), Advances in forensic taphonomy. Method, theory, and archaeological perspectives (pp. 277–292). Boca Raton: CRC Press.CrossRefGoogle Scholar
  53. Škoberne, Ž. (2003). Nalaz neuobičajene višeglave igle s budinjačke nekropole. Opvscvla Archaeologica, 27, 199–210.Google Scholar
  54. Statheropoulos, M., Agapiou, A., Spiliopoulou, C., Pallis, G. C., & Sianos, E. (2007). Environmental aspects of VOCs evolved in the early stages of human decomposition. The Science of the Total Environment, 385(1–3), 221–227.CrossRefGoogle Scholar
  55. Ubelaker, D. H., & Zarenko, K. M. (2011). Adipocere: what is known after over two centuries of research. Forensic Science International, 208, 167–172.CrossRefGoogle Scholar
  56. Vass, A. A. (2012). Odor mortis. Forensic Science International, 222(1–3), 234–241.CrossRefGoogle Scholar
  57. Vass, A. A., Smith, R. R., Thompson, C. V., Burnett, M. N., Wolf, D. A., Synstelien, J. A., Dulgerian, N., & Eckenrode, B. A. (2004). Decompositional odor analysis database. Journal of Forensic Science, 49(4), 1–10.CrossRefGoogle Scholar
  58. Vass, A. A., Smith, R. R., Thompson, C. V., Burnett, M. N., Dulgerian, N., & Eckenrode, B. A. (2008). Odor analysis of decomposing buried human remains. Journal of Forensic Science, 53(2), 384–391.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of archaeologyUniversity of ZadarZadarCroatia
  2. 2.“Canine Caffe” - consultation, education, scientific and technical activitiesDonja StubicaCroatia

Personalised recommendations