Skip to main content

Increasing the Robustness of Meta-analysis Through Life History and Middle-Range Models: an Example from the Northeast Pacific

Abstract

While most comparative and meta-analysis in archaeology would like to assume that taphonomic factors act randomly and do not bias the results of studies with many data points, archaeological records may suffer from systematic biases in preservation, sampling, recovery methods, analytic methods, reporting practices, or yet other factors. Using a life history and middle-range perspective, we outline an approach for assessing possible systematic biases and for explicitly evaluating factors that affect assemblages included in comparative analysis at any scale. We demonstrate the usefulness of the life history concept as a framework for holistically evaluating bias with a zooarchaeological case study from the northeast Pacific. Our comparative analysis of regional fishbone records shows that unusually high abundances of sablefish (Anoplopoma fimbria)—a nutritious and highly valued, yet rarely reported, species—at one large Native American village on the coast of Washington State, USA, cannot be explained by post-depositional destruction, screen size effects, sample size effects, or differences in fishbone identification methods. Though this study focuses on zooarchaeology, the framework we present has potential value for any large-scale meta-analysis that seeks to identify cultural and environmental patterns in “noisy” archaeological data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. We use “bias” to refer to any factor or process that affects a sample’s condition with respect to particular target measures or research questions. All samples are biased to some extent. There is no “mythical unbiased assemblage.” In meta-analysis, our task is to assess how biases affect the comparability of assemblages when addressing a particular research goal. For example, all archaeological assemblages that have been sieved are biased against specimens that are smaller than the minimum screen size used, but they can still be suitable for comparisons of small-bodied animal remains if suitably fine mesh was used in each case. Meanwhile, comparisons of other sample types may not be affected by which screen size was used, but they are still biased by other aspects of archaeological recovery practices.

  2. We hasten to add that materials in archaeological contexts may continue to play important symbolic roles in behavioral systems, even if they are only physically subject to natural forces (see Gifford-Gonzalez 2014; Lightfoot et al. 2011; McNiven 2012). Furthermore, humans may also cause post-depositional disturbances or reclaim deposited animal remains for new uses, temporarily reintroducing them to a systemic context.

  3. We follow Wolverton et al. (2016a) in assessing both statistical significance (the likelihood that a result was produced by chance) and practical significance, also called effect size (an assessment of whether a result has meaningful implications). As an example of the difference between these two concepts, consider two populations of fish with normally distributed fork lengths. If a statistical comparison shows that there is a difference between the mean fork lengths in each population at the α = 0.05 level of confidence, we would say the difference is statistically significant. But if the difference between the mean fork lengths is very small (say, 1 mm) relative to the pooled standard deviation of the two populations (± 10 mm), then we would say there is no practically significant difference (Cohen’s d = 0.1). Results can also be statistically insignificant, but highly practically significant.

  4. Animal remains small enough to fall through 3.2 mm mesh were cataloged and are available for particular research questions, such as that related to sablefish scarcity. However, since we do not know the finest mesh size that was used, or if it was used consistently during excavation, patterns in fish representation in these fine mesh samples are difficult to interpret.

References

  • Arima, E., & Dewhirst, J. (1990). Nootkans of Vancouver Island. In W. Sturtevant (General Editor) & W. Suttles (Volume Editor) (Eds.), Handbook of North American Indians (pp. 391–411). Washington, D.C.: Government Printing Office.

  • Atici, L., Kansa, S. W., Lev-Tov, J., & Kansa, E. C. (2013). Other people’s data: a demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 20(4), 663–681. https://doi.org/10.1007/s10816-012-9132-9.

    Article  Google Scholar 

  • Baxter, M. J. (2001). Methodological issues in the study of assemblage diversity. American Antiquity, 66(4), 715–725.

    Article  Google Scholar 

  • Behrensmeyer, A. K., & Kidwell, S. M. (1985). Taphonomy’s contributions to paleobiology. Paleobiology, 11(1), 105–119.

    Article  Google Scholar 

  • Bettinger, R. L., Garvey, R., & Tushingham, S. (2015). Hunter-gatherers: archaeological and evolutionary theory (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Binford, L. R. (1977). General introduction. In L. R. Binford (Ed.), For theory building in archaeology (pp. 1–10). New York: Academic Press.

    Google Scholar 

  • Binford, L. R. (1981). Bones: ancient men and modern myths. New York: Academic Press.

    Google Scholar 

  • Blackman, M. B. (1990). Haida: traditional culture. In W. C. Sturtevant (General Editor) & W. Suttles (Volume Editor) (Eds.), Handbook of North American Indians (pp. 240–260). Washington, D.C.: Government Printing Office.

  • Bocek, B. (1986). Rodent ecology and burrowing behavior: predicted effects on archaeological site formation. American Antiquity, 51(3), 589–603.

    Article  Google Scholar 

  • Bradbury, J., Davies, D., Jay, M., Philip, G., Roberts, C., & Scarre, C. (2016). Making the dead visible: problems and solutions for “big” picture approaches to the past, and dealing with large “mortuary” datasets. Journal of Archaeological Method and Theory, 23(2), 561–591. https://doi.org/10.1007/s10816-015-9251-1.

    Article  Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted?: an introduction to African cave taphonomy. Chicago: University of Chicago Press.

    Google Scholar 

  • Butler, V. L. (2004). Fish remains. In B. A. Hicks (Ed.), Marmes Rockshelter: a final report on 11,000 years of cultural use (pp. 319–337). Pullman: Washington State University Press.

    Google Scholar 

  • Butler, V. L. (2015). Less IS more: the benefits of using a restricted set of elements in fish zooarchaeology. In Fish Remains Working Group Meeting, Lisbon.

  • Butler, V. L., & Campbell, S. K. (2004). Resource intensification and resource depression in the Pacific Northwest of North America: a zooarchaeological review. Journal of World Prehistory, 18(4), 327–405. https://doi.org/10.1007/s10963-004-5622-3.

    Article  Google Scholar 

  • Butler, V. L., & Chatters, J. C. (1994). The role of bone density in structuring prehistoric salmon bone assemblages. Journal of Archaeological Science, 21(3), 413–424.

    Article  Google Scholar 

  • Butler, V. L., & Lyman, R. L. (1996). Taxonomic identifications and faunal summaries: what should we be including in our faunal reports? Society for American Archaeology Bulletin, 14(1), 22.

    Google Scholar 

  • Butler, V. L., Bovy, K. M., Campbell, S. K., Etnier, M. A., & Sterling, S. L. (2018a). The Čḯxwicən project of Northwest Washington State, U.S.A.: opportunity lost, opportunity found. Journal of Archaeological Science: Reports. https://doi.org/10.1016/j.jasrep.2018.03.010.

  • Butler, V. L., Campbell, S. K., Bovy, K. M., & Etnier, M. A. (2018b). Exploring ecodynamics of coastal foragers using integrated faunal records from Čḯxwicən village (Strait of Juan de Fuca, Washington, U.S.A.). Journal of Archaeological Science: Reports. In preparation.

  • Butler, V. L., Hofkamp, A. R., Mohlenhoff, K. A., Nims, R., Rosenberg, J. S., & Syvertson, L. (n.d.). The Čḯxwicən fishbone project: methods, analytic protocols, and descriptive summary of fish remains. In V.L. Butler, K. M. Bovy, S. K. Campbell, M. A. Etnier, S. L. Sterling (Eds.), The Čḯx wicən Project. Released: 2018-06-06. Open Context. https://doi.org/10.5072/FK2XW4GZ1K

  • Byrd, J. E. (1997). The analysis of diversity in archaeological faunal assemblages: complexity and subsistence strategies in the southeast during the middle woodland period. Journal of Anthropological Archaeology, 16(1), 49–72. https://doi.org/10.1006/jaar.1997.0304.

    Article  Google Scholar 

  • Campbell, M. (2016). Body part representation and the extended analysis of New Zealand fishbone. Archaeology in Oceania, 51(1), 18–30. https://doi.org/10.1002/arco.5079.

    Article  Google Scholar 

  • Cannon, A. (1995). The ratfish and marine resource deficiencies on the northwest coast. Canadian Journal of Archaeology, 19, 49–60.

    Google Scholar 

  • Cannon, A. (2000). Assessing variability in northwest coast salmon and herring fisheries: bucket-auger sampling of shell midden sites on the Central Coast of British Columbia. Journal of Archaeological Science, 27(8), 725–737. https://doi.org/10.1006/jasc.1999.0498.

    Article  Google Scholar 

  • Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20(3), 397–419. https://doi.org/10.1007/s10816-012-9166-z.

    Article  Google Scholar 

  • Casteel, R. W. (1972). Some biases in the recovery of archaeological faunal remains. Proceedings of the Prehistoric Society, 38, 382–388.

    Article  Google Scholar 

  • Cooper, A., & Green, C. (2016). Embracing the complexities of ‘big data’ in archaeology: the case of the English Landscape and Identities Project. Journal of Archaeological Method and Theory, 23(1), 271–304. https://doi.org/10.1007/s10816-015-9240-4.

    Article  Google Scholar 

  • Costanza, R., van der Leeuw, S., Hibbard, K., Aulenbach, S., Brewer, S., Burek, M., Cornell, S., Crumley, C., Dearing, J., Folke, C., Graumlich, L., Hegmon, M., Heckbert, S., Jackson, S. T., Kubiszewski, I., Scarborough, V., Sinclair, P., Sörlin, S., & Steffen, W. (2012). Developing an Integrated History and Future of People on Earth (IHOPE). Current Opinion in Environmental Sustainability, 4(1), 106–114. https://doi.org/10.1016/j.cosust.2012.01.010.

    Article  Google Scholar 

  • Dennehy, T. J., Stanley, B. W., & Smith, M. E. (2016). Social inequality and access to services in premodern cities. Archeological Papers of the American Anthropological Association, 27(1), 143–160. https://doi.org/10.1111/apaa.12079.144.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., Fernández-López, S., & Alcalá, L. (2011). How can taphonomy be defined in the XXI Century? Journal of Taphonomy, 9(1), 1–13.

    Google Scholar 

  • Driver, J. C. (2004). Food, status and formation processes: a case study from medival England. In S. J. O’Day, W. Van Neer, & A. Ervynck (Eds.), Behaviour behind bones: the zooarchaeology of ritual, religion, status and identity (pp. 244–251). Oxford: Oxbow Books.

    Google Scholar 

  • Driver, J. C. (2011). Identification, classification and zooarchaeology. Ethnobiology Letters, 2, 19–39.

    Article  Google Scholar 

  • Drucker, P. (1951). The northern and central Nootkan tribes. Washington, D.C.: Smithsonian Institution Bureau of American Ethnology. Bulletin 144. https://doi.org/10.1017/CBO9781107415324.004.

  • Echave, K., Hanselman, D. H., & Maloney, N. E. (2013). Report to industry on the Alaska Sablefish Tag Program, 1972-2012. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-AFSC-254, 47 p.

  • Erlandson, J. M. (1984). A case study in faunalturbation: delineating the effects of the burrowing pocket gopher on the distribution of archaeological materials. American Antiquity, 49(4), 785–790.

    Article  Google Scholar 

  • Ewonus, P. A. (2011). Social zooarchaeology of a Northwest Coast House. The Journal of Island and Coastal Archaeology, 6(1), 72–97. https://doi.org/10.1080/15564894.2010.504806.

    Article  Google Scholar 

  • Faniel, I. M., Kansa, E., Kansa, S. W., Barrera-Gomez, J., & Yakel, E. (2013). The challenges of digging data: a study of context in archaeological data reuse. JCDL 2013 Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, 295–304.

  • Faniel, I. M., Austin, A., Kansa, E., Kansa, S. W., France, P., Jacobs, J., Boytner, R., & Yakel, E. (2018). Beyond the archive bridging data creation and reuse in archaeology. Advances in Archaeological Practice, 6(2), 105–116. https://doi.org/10.1017/aap.2018.2.

    Article  Google Scholar 

  • Fisher, J. L. (2015). Faunal quantification and the ascendance of hunting debate: reevaluation of the data from Southeastern California. American Antiquity, 80(4), 767–775. https://doi.org/10.7183/0002-7316.80.4.767.

    Article  Google Scholar 

  • Gifford, D. P. (1981). Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines. Advances in Archaeological Method and Theory, 4, 365–438.

    Article  Google Scholar 

  • Gifford-Gonzalez, D. (1991). Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. Journal of Anthropological Archaeology, 10(3), 215–254. https://doi.org/10.1016/0278-4165(91)90014-O.

    Article  Google Scholar 

  • Gifford-Gonzalez, D. (2011). Just methodology?: a review of archaeology’s debts to Michael Schiffer. Journal of Archaeological Method and Theory, 18(4), 299–308. https://doi.org/10.1007/s10816-011-9113-4.

    Article  Google Scholar 

  • Gifford-Gonzalez, D. (2014). Constructing community through refuse disposal. African Archaeological Review, 31(2), 339–382. https://doi.org/10.1007/s10437-014-9159-2.

    Article  Google Scholar 

  • Giovas, C. M. (2018). Assessing the impact of restricted element analysis in archaeofish studies: considerations for assemblage quantification, recovery, and similarity in the prehistoric Caribbean and Pacific. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis. Springer.

  • Gobalet, K. W. (2001). A critique of faunal analysis: inconsistency among experts in blind tests. Journal of Archaeological Science, 28(4), 377–386. https://doi.org/10.1006/jasc.2000.0564.

    Article  Google Scholar 

  • Gobalet, K. W. (2017). A zoologist’s perspective on presenting archaeological faunal data. Journal of California and Great Basin Anthropology 37(1), 79-88.

  • Gordon, E. A. (1993). Screen size and differential faunal recovery: a Hawaiian example. Journal of Field Archaeology, 20(4), 453–460.

    Google Scholar 

  • Grayson, D. K. (1986). Eoliths, archaeological ambiguity, and the generation of “middle-range” research. In D. J. Meltzer, D. D. Fowler, & J. A. Sabloff (Eds.), American archaeology past and future: a celebration of the Society for American Archaeology 1935–1985 (pp. 77–133). Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Grayson, D. K. (1991). Alpine faunas from the White Mountains, California: adaptive change in the late prehistoric Great Basin? Journal of Archaeological Science, 18(4), 483–506. https://doi.org/10.1016/0305-4403(91)90039-R.

    Article  Google Scholar 

  • Hart, J. L. (1973). Pacific fishes of Canada. Ottawa: Fisheries Research Board of Canada, Volume 180.

  • Huggett, J. (2015a). A manifesto for an introspective digital archaeology. Open Archaeology, 1(1), 86–95. https://doi.org/10.1515/opar-2015-0002.

    Article  Google Scholar 

  • Huggett, J. (2015b). Digital haystacks: open data and the transformation of archaeological knowledge. In A. T. Wilson & B. Edwards (Eds.), Open source archaeology: ethics and practice (pp. 6–29). Warsaw: De Gruyter Open.

    Google Scholar 

  • Huggett, J. (2018). Reuse remix recycle. Advances in Archaeological Practice, 6(2), 1–12. https://doi.org/10.1017/aap.2018.1.

    Article  Google Scholar 

  • James, S. R. (1997). Methodological issues concerning screen size recovery rates and their effects on archaeofaunal interpretations. Journal of Archaeological Science, 24(5), 385–397.

    Article  Google Scholar 

  • Jones, E. L., & Gabe, C. (2015). The promise and peril of older collections: meta-analyses and the zooarchaeology of late prehistoric/early historic New Mexico. Open Quaternary, 1(6).

  • Kansa, E. C., & Kansa, S. W. (2017). Big, slow, and linked: toward distributed and scalable data practices in archaeology. Paper presented at the 82nd Annual Meeting of the Society for American Archaeology, Vancouver, B.C.

  • King, A. (1984). Animal bones and the deitary identity of military and civilian groups in Roman Britain, Germany and Gaul. In T. F. C. Blagg & A. King (Eds.), Military and civilian in Roman Britain: cultural relationships in a frontier province (pp. 187–218). Oxford: British Archaeological Reports, British Series 136.

  • King, A. (1999). Diet in the Roman world: a regional inter-site comparison of the mammal bones. Journal of Roman Archaeology, 12, 168–202. https://doi.org/10.1017/S1047759400017979.

    Article  Google Scholar 

  • Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., Kohler, T. A., Limp, W. F., Maschner, H. D. G., Michener, W. K., Pauketat, T. R., Peregrine, P., Sabloff, J. A., Wilkinson, T. J., Wright, H. T., & Zeder, M. A. (2014). Grand challenges for archaeology. Proceedings of the National Academy of Sciences, 111(3), 879–880. https://doi.org/10.1073/pnas.1324000111.

    Article  Google Scholar 

  • Kreutzer, L. A. (1992). Bison and deer bone mineral densities: comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19(3), 271–294. https://doi.org/10.1016/0305-4403(92)90017-W.

    Article  Google Scholar 

  • Lam, Y. M., Pearson, O. M., Marean, C. W., & Chen, X. (2003). Bone density studies in zooarchaeology. Journal of Archaeological Science, 30(12), 1701–1708. https://doi.org/10.1016/S0305-4403(03)00065-7.

    Article  Google Scholar 

  • Lambrides, A. B. J., & Weisler, M. I. (2013). Assessing protocols for identifying Pacific Island archaeological fish remains: the contribution of vertebrae. International Journal of Osteoarchaeology, 25(6), 838–848. https://doi.org/10.1002/oa.2354.

    Article  Google Scholar 

  • LaMotta, V. M. (2012). Behavioral archaeology. In I. Hodder (Ed.), Archaeological theory today (pp. 62–92). Cambridge: Polity Press.

    Google Scholar 

  • Larson, L. L. (2006). Data recovery excavation and archaeological monitoring at the Tse-whit-zen site (45CA523), Clallam County, Washington. Larson anthropological/archaeological services limited, Gig Harbor, WA. Submitted to Washington State Department of Transportation, Olympic Region, Tumwater, WA.

  • Lau, H., & Kansa, S. W. (2018). Zooarchaeology in the era of big data: contending with interanalyst variation and best practices for contextualizing data for informed reuse. Journal of Archaeological Science, 95(181), 33–39. https://doi.org/10.1016/j.jas.2018.03.011.

    Article  Google Scholar 

  • Lawrence, B. (1973). Problems in the inter-site comparison of faunal remains. In J. Matolcsi (Ed.), Domestikationforschung und Geschichte der Haustiere (pp. 397–402). Budapest: Akademiai Kiado.

    Google Scholar 

  • Lepofsky, D., & Lertzman, K. (2005). More on richness and diversity in archaeobiological assemblages. Journal of Ethnobiology, 25(2), 175–188.

    Article  Google Scholar 

  • Lightfoot, K. G., Luby, E. M., & Pesnichak, L. (2011). Evolutionary typologies and hunter-gatherer research: rethinking the mounded landscapes of central California. In K. E. Sassaman & D. H. Holly (Eds.), Hunter gatherer archaeology as historical process (pp. 55–78). Tucson: University of Arizona Press.

    Google Scholar 

  • Love, M. S. (2011). Certainly more than you want to know about the fishes of the Pacific Coast: a postmodern experience. Santa Barbara: Really Big Press.

    Google Scholar 

  • Lyman, R. L. (1985). Bone frequencies: differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12(3), 221–236.

    Article  Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (1995). Determining when rare (zoo-)archaeological phenomena are truly absent. Journal of Archaeological Method and Theory, 2(4), 369–424. https://doi.org/10.1007/BF02229004.

    Article  Google Scholar 

  • Lyman, R. L. (2003). The influence of time averaging and space averaging on the application of foraging theory in zooarchaeology. Journal of Archaeological Science, 30(5), 595–610. https://doi.org/10.1016/S0305-4403(02)00236-4.

    Article  Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2010). What taphonomy is, what it isn’t, and why taphonomists should care about the difference. Journal of Taphonomy, 8(1), 1–16.

    Google Scholar 

  • Lyman, R. L. (2012). The influence of screen mesh size, and size and shape of rodent teeth on recovery. Journal of Archaeological Science, 39(6), 1854–1861. https://doi.org/10.1016/j.jas.2012.01.027.

    Article  Google Scholar 

  • Lyman, R. L., & Ames, K. M. (2007). On the use of species-area curves to detect the effects of sample size. Journal of Archaeological Science, 34(12), 1985–1990. https://doi.org/10.1016/j.jas.2007.01.011.

    Article  Google Scholar 

  • McKechnie, I. (2005). Five thousand years of fishing at a shell midden in the Broken Group Islands, Barkley Sound, British Columbia. Master’s thesis, Department of Archaeology, Simon Fraser University.

  • McKechnie, I. (2012). Zooarchaeological analysis of the indigenous fishery at the Huu7ii big house and back terrace, Huu-ay-aht territory, Southwestern Vancouver Island. In A. D. McMillan & D. E. S. Claire (Eds.), Huu 7 ii: household archaeology at a Nuu-Chah-Nulth Village site in Barkley Sound (pp. 154–186). Bamfield: Huu-ay-aht First Nations.

    Google Scholar 

  • McKechnie, I., & Moss, M. L. (2016). Meta-analysis in zooarchaeology expands perspectives on indigenous fisheries of the Northwest Coast of North America. Journal of Archaeological Science: Reports, 8, 470–485. https://doi.org/10.1016/j.jasrep.2016.04.006.

    Article  Google Scholar 

  • McKechnie, I., Lepofsky, D., Moss, M. L., Butler, V. L., Orchard, T. J., Coupland, G., Foster, F., Caldwell, M., & Lertzman, K. (2014). Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proceedings of the National Academy of Sciences of the United States of America, 111(9), E807–E816. https://doi.org/10.1073/pnas.1316072111.

    Article  Google Scholar 

  • McNiven, I. J. (2012). Ritualized middening practices. Journal of Archaeological Method and Theory, 20(4), 552–587. https://doi.org/10.1007/s10816-012-9130-y.

    Article  Google Scholar 

  • Miller, B. S., Simenstad, C. A., Cross, J. N., Fresh, K. L., & Steinfort, S. N. (1980). Nearshore fish and macroinvertebrate assemblages along the Strait of Juan de Fuca including food habits of the common nearshore fish. Seattle. Submitted to Environmental Protection Agency and National Oceanic and Atmospheric Administration: Marine Ecosystems Analysis, Puget Sound Region.

  • Nagaoka, L. (2002). The effects of resource depression on foraging efficiency, diet breadth, and patch use in Southern New Zealand. Journal of Anthropological Archaeology, 21(4), 419–442.

    Article  Google Scholar 

  • Nagaoka, L., Wolverton, S., & Fullerton, B. (2008). Taphonomic analysis of the Twighlight Beach seals. In G. Clark, F. Leach, & S. O’Connor (Eds.), Islands of inquiry: colonisation, seafaring and the archaeology of maritime landscapes (pp. 475–498). Canberra: The Australian National University.

    Google Scholar 

  • Nims, R. (2016). Sablefish (Anoplopoma fimbria) scarcity and zooarchaeological data quality in Northwest Coast archaeological sites. Master’s thesis, Department of Anthropology, Portland state university.

  • Nims, R., & Butler, V. L. (2017). Assessing reproducibility in faunal analysis using blind tests: a case study from Northwestern North America. Journal of Archaeological Science: Reports, 11, 750–761. https://doi.org/10.1016/j.jasrep.2017.01.012.

    Article  Google Scholar 

  • Nims, R., & Butler, V. L. (n.d.). The sablefish (Anoplopoma fimbria) of Čḯxwicən: socioenvironmental lessons from an unusually abundant species. Journal of Archaeological Science: Reports. In review.

  • O’Brien, M. (2015). Evaluating the contemporaneity of households at the Eden-Farson site. International Journal of Osteoarchaeology, 25(5), 653–664. https://doi.org/10.1002/oa.2328.

    Article  Google Scholar 

  • Orchard, T. J. (2007). Otters and urchins continuity and change in Haida economy during the late Holocene and maritime fur trade periods. Ph.D. dissertation, Department of Anthropology, University of Toronto.

  • Orton, D. C., Morris, J., Locker, A., & Barrett, J. H. (2014). Fish for the city: meta-analysis of archaeological cod remains and the growth of London’s northern trade. Antiquity, 88(340), 516–530. https://doi.org/10.1017/S0003598X00101152.

    Article  Google Scholar 

  • Otaola, C. (2012). Procesos de intensificacion y aprovechamiento de medula y grasa osea en el sur de Mendoza, Argentina. Archaeofauna, 21, 235–247.

    Google Scholar 

  • Partlow, M. A. (2006). Sampling fish bones: a consideration of the importance of screen size and disposal context in the North Pacific. Arctic Anthropology, 43(1), 67–79. https://doi.org/10.1353/arc.2011.0064.

    Article  Google Scholar 

  • Peacock, E., Randklev, C. R., Wolverton, S., Palmer, R. A., & Zaleski, S. (2012). The “cultural filter,” human transport of mussel shell, and the applied potential of zooarchaeological data. Ecological Applications, 22(5), 1446–1459. https://doi.org/10.1890/11-1943.1.

    Article  Google Scholar 

  • Pegg, B. P. (1999). The taphonomic history of the vertebrate faunal assemblage from British Camp, San Juan Islands, Washington. Master’s thesis, Department of Archaeology, Simon Fraser University.

  • Pérez-Bendito, D., & Rubio, S. (1999). Environmental analytical chemistry. New York: Elsevier.

    Google Scholar 

  • Pietsch, T. W., & Orr, J. W. (2015). Fishes of the Salish Sea: a compilation and distributional analysis. Seattle: NOAA Professional Paper NMFS 18. NOAA.

  • Reetz, E. C., Lewarch, D. E., Trudel, S. E., Gillis, N., Kanipe, H. E., Sterling, S. L., et al. (2006). Chapter 4: Field Techniques. In L. L. Larson (Ed.), Data recovery excavation and archaeological monitoring at the Tse-whit-zen site (45CA523), Clallam County, Washington (Volume 1.). Gig Harbor, Washington: Report submitted to Washington State Department of Transportation, Olympic Region. Larson Anthropological Archaeological Services Limited.

  • Reitz, E. J., & Wing, E. S. (1999). Zooarchaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reitz, E. J., Quitmyer, I. R., & Marrinan, R. A. (2009). What are we measuring in the zooarchaeological record of prehispanic fishing strategies in the Georgia Bight, USA? The Journal of Island and Coastal Archaeology, 4(1), 2–36. https://doi.org/10.1080/15564890802349894.

    Article  Google Scholar 

  • Rhode, D. (1988). Measurement of archaeological diversity and the sample-size effect. American Antiquity, 53(4), 708–716.

    Article  Google Scholar 

  • Richards, J. (2017). Size isn’t everything: are our data good enough to be big? Paper presented at the 82nd Annual Meeting of the Society for American Archaeology, Vancouver

  • Robinson, E., Kelly, R. L., & Naudinot, N. (2017). The future of “big data” in archaeology. Frison Institute Symposium presented at the 82nd Annual Meeting of the Society for American Archaeology, Vancouver

  • Rutecki, T. L., & Varosi, E. R. (1997). Migrations of juvenile sablefish, Anoplopoma fimbria, in Southeast Alaska. In M. E. Wilkins & M. W. Saunders (Eds.), Biology and management of sablefish, Anoplopoma fimbria (pp. 123–130). Seattle: NOAA Technical Report NMFS 130.

    Google Scholar 

  • Schiffer, M. B. (1972). Archaeological context and systemic context. American Antiquity, 37(2), 156–165.

    Article  Google Scholar 

  • Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Schiffer, M. B. (2011). A behavioral archaeologist responds. Journal of Archaeological Method and Theory, 18(4), 336–348. https://doi.org/10.1007/s10816-011-9109-0.

    Article  Google Scholar 

  • Skibo, J. M. (2013). Understanding pottery function: manuals in archaeological method, theory and technique. New York: Springer.

    Book  Google Scholar 

  • Smethurst, N. H. (2014). Inscribed on the landscape: stories of stone traps and fishing in Laxyuup Gitxaała. Master’s thesis, Department of Anthropology, University of British Columbia, Vancouver.

  • Smith, R. E., Butler, V. L., Orwoll, S., & Wilson-Skogen, C. (2011). Pacific cod and salmon structural bone density. In M. L. Moss & A. Cannon (Eds.), The archaeology of North Pacific fisheries (pp. 45–56). Fairbanks: University of Alaska Press.

    Google Scholar 

  • Sogard, S. M. (2011). Interannual variability in growth rates of early juvenile sablefish and the role of environmental factors. Bulletin of Marine Science, 87(4), 857–872. https://doi.org/10.5343/bms.2010.1045.

    Article  Google Scholar 

  • Spielmann, K. A., & Kintigh, K. W. (2011). The digital archaeological record: the potentials of archaeozoological data integration through TDAR. The SAA Archaeological Record, 11(1), 22–25.

    Google Scholar 

  • Swan, J. G. (1887). Report on the black cod of the North Pacific. In Sessional papers: first session of the Sixth Parliament of the Dominion of Canada (Volume 16., pp. 262–265). Ottawa: MacLean, Roger & Co., Parliamentary Printers.

  • Swanton, J. R. (1905). Haida texts and myths: Skidegate dialect. Bureau of Ethnology Bulletin 29. Washington Government Printing Office.

  • Szuter, C. R. (1989). Hunting by prehistoric horticulturalists. Ph.D. dissertation, Department of Anthropology, University of Arizona.

  • Szuter, C. R., & Bayham, F. E. (1989). Sedentism and prehistoric animal procurement among desert horticulturalists of the North American Southwest. In S. Kent (Ed.), Farmers as hunters: the implications of sedentism (pp. 80–95). Cambridge: Cambridge University Press.

    Google Scholar 

  • Thomas, D. H. (1979). Archaeology. New York: Holt, Rinehart, and Winston.

    Google Scholar 

  • Trigger, B. G. (2006). A history of archaeological thought (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Trost, T. (2005). Forgotton waters: a zooarchaeological analysis of the Cove Cliff Site (DhRr 18), Indian Arm, British Columbia. Master’s thesis, Department of Archaeology, Simon Fraser University.

  • Trost, T. (2010). Vertebrate remains. In R. F. Schalk & M. A. Nelson (Eds.), The archaeology of Cama Beach Shell Midden (45IS2) Camano Island, Washington (pp. 105–140). Report Submitted to Washington State Parks and Recreation Commission. Cascadia Archaeology, Seattle.

  • Tushingham, S., & Hopt, J. (2017). Animal bones and archaeology: a reply to Gobalet. Journal of California and Great Basin anthropology, 37(1), 89–95.

    Google Scholar 

  • U.S. Department of Agriculture (2014). USDA National Nutrient Database for Standard Reference, Release 27. Nutrient Data Laboratory Home Page. accessed February 14, 2015: http://www.ars.usda.gov/ba/bhnrc/ndl.

  • Watson, J. P. N. (1972). Fragmentation analysis of animal bone samples from archaeological sites. Archaeometry, 14(2), 221–228. https://doi.org/10.1111/j.1475-4754.1972.tb00064.x.

    Article  Google Scholar 

  • Wigen, R. J. (1995). Appendix 5: Fish 45KI428 and 45KI429. In L. L. Larson & D. E. Lewarch (Eds.), The archaeology of west point: 4,000 years of hunter-fisher-gatherer land use in Southern Puget Sound (Vol. 2). Seattle: Larson anthropological/archaeological services.

    Google Scholar 

  • Williams, A. N. (2013). A new population curve for prehistoric Australia. Proceedings of the Royal Society B, 280(1761), 20130486.

    Article  Google Scholar 

  • Wolverton, S. (2002). NISP:MNE and %whole in analysis of prehistoric carcass exploitation. North American Archaeologist, 23(2), 85–100. https://doi.org/10.2190/EGDQ-CQ1Q-LLD2-H3TP.

    Article  Google Scholar 

  • Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20(3), 381–396. https://doi.org/10.1007/s10816-012-9161-4.

    Article  Google Scholar 

  • Wolverton, S., Nagaoka, L., Densmore, J., & Fullerton, B. (2008). White-tailed deer harvest pressure & within-bone nutrient exploitation during the mid-to late Holocene in Southeast Texas. Before Farming, 2008(2), 1–23. https://doi.org/10.3828/bfarm.2008.2.3.

    Article  Google Scholar 

  • Wolverton, S., Randklev, C. R., & Kennedy, J. H. (2010). A conceptual model for freshwater mussel (Family: Unionidae) remain preservation in zooarchaeological assemblages. Journal of Archaeological Science, 37(1), 164–173. https://doi.org/10.1016/j.jas.2009.09.028.

    Article  Google Scholar 

  • Wolverton, S., Dombrosky, J., & Lyman, R. L. (2016a). Practical significance: ordinal scale data and effect size in zooarchaeology. International Journal of Osteoarchaeology, 26(2), 255–265. https://doi.org/10.1002/oa.2416.

    Article  Google Scholar 

  • Wolverton, S., Nagaoka, L., & Rick, T. C. (2016b). Applied zooarchaeology: five case studies. New York: Eliot Werner Publications, Inc.

    Google Scholar 

  • Woo, K., Faulkner, P., & Ross, A. (2015). The effects of sampling on the analysis of archeological molluscan remains: a quantitative approach. Journal of Archaeological Science: Reports. https://doi.org/10.1016/j.jasrep.2015.08.001.

Download references

Acknowledgements

We are grateful to the Lower Elwha Klallam Tribe for their on-going support of the Čḯxwicən project, and we thank the Puyallup Tribe of Indians and the West Point Tribal Oversight Committee for supporting our reanalysis of Burton Acres and West Point fish remains. Most of the funding for Čḯxwicən analysis came from the National Science Foundation [grant numbers 1219468, 1353610, and 1663789]. Laura Phillips (Burke Museum, University of Washington) facilitated the loan of materials from Čḯxwicən, and the reanalysis of materials from Burton Acres, English Camp, and West Point. Kevin Cannell (Bonneville Power Administration) facilitated the loan of materials from Decatur Island. Washington State Department of Transportation helped subsidize loan costs for the Čḯxwicən collections. Dennis Lewarch and Lynn Larson (formerly of LAAS, Ltd.) directed site excavations at Čḯxwicən. Čḯxwicən geo-zooarchaeological project Co-PIs (Kristine Bovy, Sarah Campbell, Michael Etnier, Sarah Sterling) provided fundamental assistance with project development. We are extremely grateful for the contributions of the Pacific Northwest ichthyoarchaeologists whose work we review. Ross Smith (University of Oregon), Bob Kopperl (Willamette Cultural Resources Associates, Ltd.), and Iain McKechnie and Rebecca Wigen (both University of Victoria) loaned comparative fish skeletons and/or assisted with identifications. Former PSU students Tony Hofkamp, Kathryn Mohlenhoff, Emily Rocha, Shoshanna Rosenberg, and Laura Syvertson assisted in the lab. Siri Linz, Jess Milhausen, and Roger Crowley provided assistance at the Burke Museum. Kristina Dick and Laura Syvertson assisted with database management. Todd Rosenstiel (Portland State University) provided support for manuscript preparation. Finally, we thank Ken Ames and Shelby Anderson for serving on Nims’ thesis committee, and for discussions which led directly to our viewing metadata analysis as a middle-range research problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reno Nims.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nims, R., Butler, V.L. Increasing the Robustness of Meta-analysis Through Life History and Middle-Range Models: an Example from the Northeast Pacific. J Archaeol Method Theory 26, 581–618 (2019). https://doi.org/10.1007/s10816-018-9383-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-018-9383-1

Keywords

  • Data quality
  • Data reuse
  • Life history models
  • Meta-analysis
  • Middle-range theory
  • Taphonomy