Journal of Archaeological Method and Theory

, Volume 26, Issue 1, pp 247–275 | Cite as

Tracing Fire in Early European Prehistory: Microcharcoal Quantification in Geological and Archaeological Records from Molise (Southern Italy)

  • V. LebretonEmail author
  • A. Bertini
  • E. Russo Ermolli
  • C. Stirparo
  • R. Orain
  • M. Vivarelli
  • N. Combourieu-Nebout
  • C. Peretto
  • M. Arzarello


Fire control and conservation is a major innovation of early prehistory. It is evidenced on Early Palaeolithic sites in western Eurasia dating to between 400 and 300 ka. In southern Italy, a large group of open-air Acheulean sites, dated from 680 to 300 ka, attests to the early settlement and long-standing human occupation of the region since the Early-Middle Pleistocene. To date, these sites have yielded no evidence for early fire use. This observation raises the question of charcoal fragmentation and dispersion in the context of open-air sites. In order to diagnose early fire use on Palaeolithic sites, a protocol for the quantification of microcharcoal has been standardised. The quantification of microcharcoal has already been applied to Middle Pleistocene geological sediments and Early Palaeolithic archaeological deposits to evaluate the wildfire background and the potential use of fire by hominins. This study focuses on the Early-Middle Pleistocene (780–500 ka) and the late Middle Pleistocene (500–300 ka). It is based on microcharcoal analyses from the Boiano Basin (Campochiaro and S1 cores) as well as from the archaeological sites of Isernia La Pineta and Guado San Nicola. Wildfire background is recorded in the basin infill although runoff and long-distance transport to the basin may be responsible for the small-size particles and low concentrations observed. Fire use by hominins has not been identified in the archaeological layers from the Early Palaeolithic and the small size of the particles might be related to trampling by humans or animals. Notwithstanding the large group of archaeological sites in southern Italy, the low density of hominin populations constitutes a limitation to the dissemination of innovative techniques and new knowledge during the Early Palaeolithic.


Fire use Wildfire Archaeobotany Lower Palaeolithic Middle Pleistocene 



We wish to express our gratitude to Molise University for making the core material available. We also acknowledge the three anonymous reviewers who provided constructive comments on the original manuscript.

Funding Information

This research was financially supported by the French-Italian PHC Galileo project no. 32321UM ‘Apport de la palynologie à la valorisation des sites préhistoriques du Paléolithique inférieur de l’Italie centro-méridionale’ led by V. Lebreton (MNHN) and A. Bertini (Univ. of Firenze)/no. G14-138 ‘Apporto della palinologia alla valorizzazione dei siti preistorici del Paleolitico inferiore dell’Italia centro-meridionale’.

Supplementary material

10816_2018_9373_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 23 kb)
10816_2018_9373_MOESM2_ESM.xls (42 kb)
ESM 2 (XLS 42 kb)


  1. Alperson-Afil, N., & Goren-Inbar, N. (2010). The Acheulian site of Gesher Benot Ya’aqov volume II: ancient flames and controlled use of fire. New York: Springer.Google Scholar
  2. Amato, V., Aucelli, P. P. C., Cesarano, M., Jicha, B., Lebreton, V., Orain, R., Pappone, G., Petrosino, P., & Russo Ermolli, E. (2014). Quaternary evolution of the largest intermontane basin of the Molise Apennine (central-southern Italy). Rendiconti Lincei, 25(2), 197–216.Google Scholar
  3. Amato, V., Aucelli, P. P. C., Cesarano, M., Cifelli, F., Leone, N., Mattei, M., Russo Ermolli, E., Petrosino, P., & Rosskopf, C. M. (2016). The infill timing of a quaternary intermontane basin: New chrono-stratigraphic and palaeoenvironmental data by a 900 m deep borehole from Campochiaro (central-southern Apennine, Italy). Geophysical Research Abstracts, 18, EGU2016–EG16957.Google Scholar
  4. Anzidei, A. P., Bulgarelli, G. M., Catalano, P., Cerilli, E., Gallotti, R., Lemorini, C., Milli, S., Palombo, M. R., Pantano, W., & Santucci, E. (2012). Ongoing research at the late Middle Pleistocene site of La Polledrara di Cecanibbio (central Italy), with emphasis on human–elephant relationships. Quaternary International, 255, 171–187.Google Scholar
  5. Archibald, S. A., Kirton, A., Van der Merwe, M. R., Scholes, R. J., Williams, C. A., & Hanan, N. (2009). Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2), 251–266.Google Scholar
  6. Arzarello, M., Marcolini, F., Pavia, G., Pavia, M., Petronio, C., Petrucci, M., Rook, L., & Sardella, R. (2007). Evidence of earliest human occurrence in Europe: the site of Pirro nord (Southern Italy). Naturwissenschaften, 94(2), 107–112.Google Scholar
  7. Arzarello, M., De Weyerb, L., & Peretto, C. (2016). The first European peopling and the Italian case: peculiarities and “opportunism”. Quaternary International, 393, 41–50.Google Scholar
  8. Ascenzi, A., Biddittu, I., Cassoli, P. F., Segre, A. G., & Segre Naldini, E. (1996). A calvarium of late Homo erectus from Ceprano, Italy. Journal of Human Evolution, 31(5), 409–423.Google Scholar
  9. Asselin, H., & Payette, S. (2005). Detecting local-scale fire episodes on pollen slides. Review of Palaeobotany and Palynology, 137(1-2), 31–40.Google Scholar
  10. Aucelli, P., Amato, V., Cesarano, M., Pappone, G., Rosskopf, C. M., Russo Ermolli, E., & Scarciglia, F. (2011). New morphostratigraphic and chronological constraints for the Quaternary palaeosurfaces of the Molise Apennines (southern Italy). Geologica Carpathica, 62(1), 17–26.Google Scholar
  11. Bahain, J.-J., Shao, Q., Falguères, C., Garcia, T., Douville, E., & Frank, N. (2014). Datation du site de Guado San Nicola par les méthodes de la résonance de spin électronique et du déséquilibre dans les familles de l’uranium combinées (ESR/U-Th). In B. Muttillo, G. Lembo, & C. Peretto (Eds.), L’insediamento a bifacciali di Guado San Nicola, Monteroduni, Molise (pp. 53–56). Ferrara: Annali dell’Università degli Studi di Ferrara 10/1.Google Scholar
  12. Bajocco, S., & Ricotta, C. (2008). Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer? Landscape Ecology, 23(2), 241–248.Google Scholar
  13. Bellomo, R. V. (1994). Methods of determining early hominid behavioral activities associated with the controlled use of fire at FxJj 20 Main, Koobi Fora, Kenya. Journal of Human Evolution, 27(1-3), 173–195.Google Scholar
  14. Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., & Chazan, M. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences, 109, 1215–1220.Google Scholar
  15. Bertini, A. (2010). Pliocene to Pleistocene palynoflora and vegetation in Italy: state of the art. Quaternary International, 225(1), 5–24.Google Scholar
  16. Bertini, A., Ciaranfi, N., Marino, M., & Palombo, M. R. (2010). Proposal for Pliocene and Pleistocene land–sea correlation in the Italian area. Quaternary International, 219(1-2), 95–108.Google Scholar
  17. Bertini, A., Toti, F., Marino, M., & Ciaranfi, N. (2015). Vegetation and climate across the Early–Middle Pleistocene transition at Montalbano Jonico, southern Italy. Quaternary International, 383, 74–88.Google Scholar
  18. Boscato, P., & Ronchitelli, A. (2008). Strutture di combustione in depositi del Paleolitico medio del Sud Italia. Proceedings XVII Congress of the Italian Anthropological Association, Cagliari, 26–29 September 2007. International Journal of Anthropology, special issue, 218–225.Google Scholar
  19. Boschian, G., & Saccà, D. (2010). Ambiguities in human and elephant interactions? Stories of bones, sand and water from Castel di Guido (Italy). Quaternary International, 214(1-2), 3–16.Google Scholar
  20. Bowman, D. M., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’antonio, C. M., & Kull, C. A. (2011). The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), 2223–2236.Google Scholar
  21. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: The University of Chicago Press Books.Google Scholar
  22. Brain, C. K., & Sillen, A. (1988). Evidence from the Swartkrans cave for the earliest use of fire. Nature, 336(6198), 464–466.Google Scholar
  23. Brown, K. S., Marean, C. W., Herries, A., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C., & Bernatchez, J. (2009). Fire as an engineering tool of early modern humans. Science, 325(5942), 859–862.Google Scholar
  24. Capraro, L., Asioli, A., Backman, J., Bertoldi, R., Channell, J. E. T., Massari, F., & Rio, D. (2005). Climatic patterns revealed by pollen and oxygen isotope records across the Matuyama–Brunhes Boundary in the central Mediterranean (southern Italy). In M. J. Head & P. L. Gibbard (Eds.), Early–Middle Pleistocene transitions: the land–ocean evidence (pp. 159–182). London: Geological Society, Special Publications 247.Google Scholar
  25. Carcaillet, C. (2007). Paleobotany. Charred particle analysis. In S. A. Elias (Ed.), Encyclopedia of Quaternary Science (pp. 1582–1593). Oxford: Elsevier.Google Scholar
  26. Carcaillet, C., Bouvier, M., Frechette, B., Larouche, A. C., & Richard, P. J. H. (2001). Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene, 11(4), 467–476.Google Scholar
  27. Cardoso, J. L. (2006). The Mousterian complex in Portugal. Zephyrus, 59, 21–50.Google Scholar
  28. Chiatante, D., Di Iorio, A., Sciandra, S., Scippa, G. S., & Mazzoleni, S. (2006). Effect of drought and fire on root development in Quercus pubescens Willd. and Fraxinus ornus L. seedlings. Environmental and Experimental Botany, 56(2), 190–197.Google Scholar
  29. Clark, R. B. (1984). Effects on charcoal of pollen preparation procedures. Pollen et Spores, 26, 559–576.Google Scholar
  30. Clark, J. S. (1988a). Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in northwestern Minnesota. Quaternary Research, 30(01), 81–91.Google Scholar
  31. Clark, J. S. (1988b). Particle motion and theory of charcoal analysis: source area, transport, deposition, and sampling. Quaternary Research, 30(01), 67–80.Google Scholar
  32. Clark, J. D., & Harris, J. W. K. (1985). Fire and its roles in early hominid lifeways. African Archaeological Review, 3(1), 3–27.Google Scholar
  33. Cliquet, D., & Lautridou, J.-P. (2009). Les occupations humaines du Pléistocène moyen de Normandie dans leur cadre environnemental. Quaternaire, 20, 305–320.Google Scholar
  34. Clottes, J., Chauvet, J.-M., Brunel-Deschamps, E., Hillaire, C., Daugas, J.-P., Arnold, M., Cachier, H., Evin, J., Fortin, P., Oberlin, C., Tisnérat, N., & Valladas, H. (1995). Les peintures paléolithiques de la grotte Chauvet-Pont-d’Arc, à Vallon-Pont-d’Arc (Ardèche, France): datations directes et indirectes par la méthode du radiocarbone. Comptes Rendus de l’Académie des Sciences, 320, 1133–1140.Google Scholar
  35. Coltorti, M., Cremaschi, M., Delitalia, M. C., Esu, D., Fornaseri, M., McPherron, A., Nicoletti, M., van Otterloo, R., Sala, B., Schmidt, V., & Sevink, J. (1982). Reversed magnetic polarity at an early Lower Palaeolithic site in central Italy. Nature, 300(5888), 173–176.Google Scholar
  36. Combourieu-Nebout, N. (1993). Vegetation response to upper Pliocene glacial/interglacial cyclicity in the central Mediterranean. Quaternary Research, 40(02), 228–236.Google Scholar
  37. Combourieu-Nebout, N., & Vergnaud-Grazzini, C. (1991). Late Pliocene northern hemisphere glaciations: the continental and marine responses in the central Mediterranean. Quaternary Science Reviews, 10(4), 319–334.Google Scholar
  38. Combourieu-Nebout, N., Semah, F., & Djubiantono, T. (1990). La limite Pliocène/Pléistocène: précisions magnétostratigraphiques par l’étude sériée de la coupe type de Vrica (Crotone, Italie). Compte Rendus de l’Académie des Sciences, 311, 851–857.Google Scholar
  39. Combourieu-Nebout, N., Bertini, A., Russo Ermolli, E., Peyron, O., Montade, V., Klotz, S., Lebreton, V., Fauquette, S., Allen, J., Fusco, F., Goring, S., Huntley, B., Joannin, S., Magri, D., Orain, R., & Sadori, L. (2015). Mediterranean vegetation and increasing dryness since the Pliocene. Review of Palaeobotany and Palynology, 218, 127–147.Google Scholar
  40. Conedera, M., Tinner, W., Neff, C., Meurer, M., Dickens, A. F., & Krebs, P. (2009). Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews, 28, 435–456.Google Scholar
  41. Cour, P. (1974). Nouvelles techniques de détection des flux et retombées polliniques. Etude de la sédimentation des pollens et des spores à la surface des sols. Pollen et Spores, 16, 103–141.Google Scholar
  42. Cui, Q., Marquer, L., Arzarello, M., & Lebreton, V. (2009). An attempt to separate anthropic and natural fire signals in an archaeological context—the case of the Mousterian site Grotta Reali (Rocchetta a Volturno Molise, Central Italy). Frontiers of Earth Science in China, 3(2), 171–174.Google Scholar
  43. Daniau, A.-L., Sánchez-Goñi, M. F., Beaufort, L., Laggoun-Defarge, F., Loutre, M.-F., & Duprat, J. (2007). Dansgaard–Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quaternary Science Reviews, 26(9-10), 1369–1383.Google Scholar
  44. Daniau, A.-L., Sánchez-Goñi, M. F., & Duprat, J. (2009). Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay. Quaternary Research, 71(03), 385–396.Google Scholar
  45. de Lumley, H. (1969). A Paleolithic camp at nice. Scientific American, 220(5), 42–50.Google Scholar
  46. de Lumley, H. (2006). Il y a 400 000 ans: la domestication du feu, un formidable moteur d’homisation. Comptes Rendus Palevol, 5, 149–154.Google Scholar
  47. Dwyer, E., Pinnock, S., Gregoire, J. M., & Pereira, J. M. C. (2000). Global spatial and temporal distribution of vegetation fire as determined from satellite observations. International Journal of Remote Sensing, 21(6-7), 1289–1302.Google Scholar
  48. Faegri, K., & Iversen, I. (1989). Textbook of pollen analysis (4th ed.). Chichester: Wiley.Google Scholar
  49. Fernández Peris, J., Barciela González, V., Blasco, R., Cuartero, F., Fluck, H., Sañudo, P., & Verdasco, C. (2012). The earliest evidence of hearths in Southern Europe: the case of Bolomor Cave (Valencia, Spain). Quaternary International, 247, 267–277.Google Scholar
  50. Fessler, D. M. T. (2006). Steps toward the evolutionary psychology of a culture-dependent species. In P. Carruthers, S. Laurence, & S. Stich (Eds.), The innate mind: culture and cognition (Vol. II, pp. 91–117). New York: Oxford University Press.Google Scholar
  51. Finsinger, W., & Tinner, W. (2005). Minimum count sums for charcoal-concentration estimates in pollen slides: accuracy and potential errors. The Holocene, 15(2), 293–297.Google Scholar
  52. Foley, R., & Gamble, C. (2009). The ecology of social transitions in human evolution. Philosophical Transaction of the Royal Society B, 364(1533), 3267–3279.Google Scholar
  53. Follieri, M., Magri, D., & Sadori, L. (1988). 250,000-year pollen record from Valle di Castiglione (Roma). Pollen et Spores, 30, 329–356.Google Scholar
  54. Frazer, S. J. G. (1930). Myths of the origin of fire: an essay. London: Macmillan.Google Scholar
  55. Gamble, C. S. (1999). The palaeolithic societies of Europe. Cambridge: Cambridge University Press.Google Scholar
  56. Gibbons, A. (2007). Food for thought. Science, 316(5831), 1558–1560.Google Scholar
  57. Gilligan, I. (2010). The prehistoric development of clothing: archaeological implications of a thermal model. Journal of Archaeological Method and Theory, 17, 17–80.Google Scholar
  58. Glory, A. (1961). Le brûloir de Lascaux. Gallia Préhistoire, 4(1), 174–183.Google Scholar
  59. Goldberg, P., Dibble, H., Berna, F., Sandgathe, D., McPherron, S. J. P., & Turq, A. (2012). New evidence on Neandertal use of fire: examples from Roc de Marsal and Pech de l’Azé IV. Quaternary International, 247, 325–340.Google Scholar
  60. Goren-Inbar, N., Alperson, N., Kislev, M. E., Simchoni, O., Melamed, Y., Ben-Nun, A., & Werker, E. (2004). Evidence of hominin control of fire at Gesher Benot Ya’aqov, Israel. Science, 304(5671), 725–727.Google Scholar
  61. Goudsblom, J. (1986). The human monopoly on the use of fire: its origins and conditions. Human Evolution, 1(6), 517–523.Google Scholar
  62. Gowlett, J. A. J. (2006). The early settlement of northern Europe: fire history in the context of climate change and the social brain. Comptes Rendus Palevol, 5(1–2), 299–310.Google Scholar
  63. Gowlett, J. A. J. (2010). Firing up the social brain. In R. Dunbar, C. Gamble, & J. Gowlett (Eds.), Social brain and distributed mind (pp. 345–370). London: The British Academy.Google Scholar
  64. Gowlett, J. A. J. (2016). The discovery of fire by humans: a long and convoluted process. Philosophical Transaction of the Royal Society B, 371(1696), 20150164.Google Scholar
  65. Gowlett, J. A. J., Harris, J. W. K., Walton, D., & Wood, B. A. (1981). Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature, 294(5837), 125–129.Google Scholar
  66. Guglietta, D., Conedera, M., Mazzoleni, S., & Ricotta, C. (2011). Mapping fire ignition risk in a complex anthropogenic landscape. Remote Sensing Letters, 2(3), 213–219.Google Scholar
  67. Hanes, T. L. (1971). Succession after fire in the chaparral of southern California. Ecological Monographs, 41(1), 27–52.Google Scholar
  68. Isaac, G. L., & Harris, J. W. K. (1997). Sites stratified within the KBS tuff. In G. L. Isaac (Ed.), Koobi Fora research project volume 5: Plio-Pleistocene archaeology (pp. 71–99). Oxford: Clarendon Press.Google Scholar
  69. James, S. R., Dennell, R. W., Gilbert, A. S., Lewis, H. T., Gowlett, J. A., Lynch, T. F., McGrew, W. C., Peters, C. R., Pope, G. G., & Stahl, A. B. (1989). Hominid use of fire in the Lower and Middle Pleistocene: a review of the evidence. Current Anthropology, 30(1), 1–26.Google Scholar
  70. Joannin, S., Quillévéré, F., Suc, J. P., Lécuyer, C., & Martineau, F. (2007). Early Pleistocene climate changes in the central Mediterranean region as inferred from integrated pollen and foraminiferal stable isotope analyses. Quaternary Research, 67(02), 264–274.Google Scholar
  71. Joannin, S., Ciaranfi, N., & Stefanelli, S. (2008). Vegetation changes during the late Early Pleistocene at Montalbano Jonico (Province of Matera, southern Italy) based on pollen analysis. Palaeogeography Palaeoclimatology Palaeoecology, 270(1-2), 92–101.Google Scholar
  72. Jones, T. P., & Lim, B. (2000). Extraterrestrial impacts and fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 57–66.Google Scholar
  73. Karkanas, P., Shahack-Gross, R., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., Gopher, A., & Stiner, M. C. (2007). Evidence for habitual use of fire at the end of the Lower Paleolithic: site formation processes at Qesem Cave, Israel. Journal of Human Evolution, 53(2), 197–212.Google Scholar
  74. Karner, D. B., Juvigne, E., Brancaccio, L., Cinque, A., Russo Ermolli, E., Santangelo, N., Bernasconi, S., & Lirer, L. (1999). A potential Early-Middle Pleistocene tephrostratotype for the Mediterranean basin: the Vallo di Diano, Campania, Italy. Global and Planetary Change, 21(1–3), 1–15.Google Scholar
  75. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.Google Scholar
  76. Lebreton, V. (2002). Végétation et climat au Pléistocène inférieur et moyen à La Pineta (Isernia, Italie). Comptes Rendus Palevol, 1(1), 11–17.Google Scholar
  77. Lebreton, V., Thery Parisot, I., Bouby, L., Chrzavzez, J., Delhon, C., & Ruas, M.-P. (2017). Archéobotanique et Taphonomie. In J.-P. Brugal (Ed.), TaphonomieS (pp. 291–328). Paris: Editions des archives contemporaines.Google Scholar
  78. Lefèvre, D., Raynal, J., Vernet, G., Kieffer, G., & Piperno, M. (2010). Tephro-stratigraphy and the age of ancient Southern Italian Acheulean settlements: the sites of Loreto and Notarchirico (Venosa, Basilicata, Italy). Quaternary International, 223–224, 360–368.Google Scholar
  79. Lepre, J. C., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J.-P., Texier, P. J., Lenoble, A., & Feibel, C. S. (2011). An earlier origin for the Acheulian. Nature, 477(7362), 82–85.Google Scholar
  80. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003. Scholar
  81. Lourens, L. J. (2004). Revised tuning of ocean drilling program site 964 and KC01B (Mediterranean) and implications for the ó18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography, 19, PA3010. Scholar
  82. Magri, D. (2008). Two long micro-charcoal records from central Italy. In G. Fiorentino & D. Magri (Eds.), Charcoals from the past: cultural and palaeoenvironmental implications (pp. 167–175). Oxford: British Archaeological Reports International Series S1807.Google Scholar
  83. Magri, D., Di Rita, F., Aranbarri, J., Fletcher, W., & Gonzàlez-Sampériz, P. (2017). Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews, 163, 23–55.Google Scholar
  84. Marlon, J. R., Bartlein, P. J., Gavin, D. G., Long, C. J., Anderson, R. S., Briles, C. E., Brown, K. J., Colombaroli, D., Hallett, D. J., Power, M. J., Scharf, E. A., & Walsh, M. K. (2012). Long-term perspective on wildfires in the western USA. Proceedings of the National Academy of Sciences of the United States of America, 109(9), 535–543.Google Scholar
  85. Marquer, L., Otto, T., Nespoulet, R., & Chiotti, L. (2010). A new approach to study the fuel used in hearths by hunter-gatherers at the Upper Palaeolithic site of Abri Pataud (Dordogne, France). Journal of Archaeological Science, 37(11), 2735–2746.Google Scholar
  86. Marquer, L., Despriée, J., Otto, T., Migaud, B., & Renault-Miskovsky, J. (2011). Apport de l’étude des microcharbons à la compréhension de la taphonomie des charbons végétaux dans les sites magdaléniens du coteau de « la Garenne » (Indre, France). Cahiers d’Archéologie Romande, 120, 19–34.Google Scholar
  87. Marquer, L., Lebreton, V., Otto, T., Valladas, H., Haesaerts, P., Messager, E., Nuzhni, D., & Péan, S. (2012). Charcoal scarcity in Epigravettian settlements with mammoth bone dwellings: the taphonomic evidence from Mezhyrich (Ukraine). Journal of Archaeological Science, 39(1), 109–120.Google Scholar
  88. Marquer, L., Lebreton, V., Otto, T., & Messager, E. (2015). Etude des macro-, méso- et micro-charbons du site épigravettien de Mezhyrich (Ukraine): données taphonomiques etanthracologiques. L’Anthropologie, 115, 487–504.Google Scholar
  89. Mazza, P. P. A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., Landucci, F., Lemorini, C., Modugno, F., & Ribechini, E. (2006). A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33(9), 1310–1318.Google Scholar
  90. Meignen, L. (1993). L’abri des Canalettes, un habitat moustérien sur les Grands Causses (Nant, Aveyron). Paris: CNRS Editions, Monographie du CRA 10.Google Scholar
  91. Michel, D. (1982). Le gisement préhistorique de Port Pignot à Fermanville (Manche)— I. Étude archéologique. Gallia Préhistoire, 25(1), 1–68.Google Scholar
  92. Moncel, M.-H., Moigne, A.-M., & Combier, J. (2005). Pre-Neandertal behaviour during isotopic stage 9 and the beginning of stage 8: New data concerning fauna and lithics in the different occupation levels of Orgnac 3 (Ardèche, South-East France): occupation types. Journal of Archaeological Science, 32(9), 1283–1301.Google Scholar
  93. Monnier, J.-L., Hallegouet, B., Hinguant, S., & Molines, N. (2001). La datation de l’habitat paléolithique inférieur de Menez-Dregan 1 (Plouhinec, Finistère, France): argumentation géologique et archéologique. In J.-N. Barradon, P. Guibert, & V. Michel (Eds.), DATATION, actes des XXIème rencontres internationales d’archéologique et d’historie d’Antibes (pp. 261–277). Antibes: APDCA.Google Scholar
  94. Munno, R., Petrosino, P., Russo Ermolli, E., & Juvigné, E. (2001). A late Middle Pleistocene climatic cycle in Italy inferred from pollen analysis and tefrostratigraphy of the Acerno lacustrine succession. Géographie Physique et Quaternaire, 55(1), 87–99.Google Scholar
  95. Muttillo, B., Lembo, G., & Peretto, C. (2014). L’insediamento a bifacciali di Guado San Nicola, Monteroduni. Molise: Annali dell’Università degli Studi di Ferrara 10/1.Google Scholar
  96. Nomade, S., & Pereira, A. (2014). Datation 40Ar/39Ar du site de Guado San Nicola. In B. Muttillo, G. Lembo, & C. Peretto (Eds.), L’insediamento a bifacciali di Guado San Nicola, Monteroduni, Molise (pp. 49–52). Ferrara: Annali dell’Università degli Studi di Ferrara 10/1.Google Scholar
  97. Nomade, S., Muttoni, G., Guillou, H., Robin, E., & Scardia, G. (2011). First 40Ar/39Ar age of the Ceprano man (central Italy). Quaternary Geochronology, 6(5), 453–457.Google Scholar
  98. Oakley, K. P. (1955). Fire as a Paleolithic tool and weapon. Proceedings of the Prehistoric Society, 21, 36–48.Google Scholar
  99. Oakley, K. P. (1961). On man’s use of fire, with comments on tool-making and hunting. In S. L. Washburn (Ed.), Social life of early man (pp. 176–193). Chicago: Aldine Publishing Co..Google Scholar
  100. Orain, R., Lebreton, V., Russo Ermolli, E., Aucelli, P., & Amato, V. (2012). Végétation et climat au Pléistocène moyen en Italie méridionale. Quaternaire, 23, 35–46.Google Scholar
  101. Orain, R., Lebreton, V., Russo Ermolli, E., Sémah, A.-M., Nomade, S., Shao, Q., Bahain, J.-J., Thun Hohenstein, U., & Peretto, C. (2013). Hominin responses to environmental changes during the Middle Pleistocene in central and southern Italy. Climate of the Past, 9(2), 687–697.Google Scholar
  102. Orain, R., Russo Ermolli, E., Lebreton, V., Di Donato, V., Bahain, J.-J., & Sémah, A.-M. (2015). Vegetation sensitivity to local environmental factors and global climate changes during the Middle Pleistocene in southern Italy—a high resolution pollen record from the Molise Apennines. Review of Palaeobotany and Palynology, 220, 69–77.Google Scholar
  103. Ozenda, P. (1994). La végétation du continent européen. Lausanne: Delachaux and Nestlé.Google Scholar
  104. Palombo, M. R., & Sardella, R. (2007). Biochronology and biochron boundaries: a real dilemma or a false problem? An example based on the Pleistocene large mammalian faunas from Italy. Quaternary International, 160(1), 30–42.Google Scholar
  105. Parfitt, S. A., Ashton, N. M., Lewis, S. G., Abel, R. L., Coope, R., Field, M. H., Gale, R., Hoare, P. G., Larkin, N. R., Lewis, M. D., Karloukovski, V., Maher, B. A., Peglar, S. M., Preece, R. C., Whittaker, J. E., & Stringer, C. B. (2010). Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature, 466(7303), 229–233.Google Scholar
  106. Patterson, W. A., Edwards, K. J., & Maguire, D. J. (1987). Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews, 6(1), 3–23.Google Scholar
  107. Pereira, A. (2017). Apport de la datation 40Ar/39Ar à la compréhension de l’évolution culturelle des pré-néanderthaliens en Italie centrale et méridionale entre 750 et 250 ka. Unpublished thesis, Muséum national d’Histoire naturelle.Google Scholar
  108. Pereira, A., Nomade, S., Voinchet, P., Bahain, J.-J., Falguères, C., Garon, H., Lefèvre, D., Raynal, J.-P., Scao, V., & Piperno, M. (2015). The earliest securely dated hominin fossil in Italy and evidence of Acheulian occupation during glacial MIS 16 at Notarchirico (Venosa, Basilicata, Italy). Journal of Quaternary Science, 30(7), 639–650.Google Scholar
  109. Pereira, A., Nomade, S., Shao, Q., Bahain, J.-J., Arzarello, M., Douville, E., Falguères, C., Frank, N., Garcia, T., Lembo, G., Muttillo, B., Scao, V., & Peretto, C. (2016). Ar/Ar and ESR/U-series dates for Guado San Nicola, Middle Pleistocene key site at the Lower/Middle Palaeolithic transition in Italy. Quaternary Geochronology, 36, 67–75.Google Scholar
  110. Peretto, C. (1994). Le industrie litiche del giacimento paleolitico di Isernia la Pineta. La tipologia, le trace di utilizzazione, la sperimentazione. Istituto regionale per gli studi storici del Molise. Isernia: Cosmo Iannone Editore.Google Scholar
  111. Peretto, C. (1996). I reperti paleontologici di Isernia La Pineta. Istituto regionale per gli studi storici del Molise. Isernia: Cosmo Iannone Editore.Google Scholar
  112. Peretto, C. (1999). I suoli d’abitato del giacimento paleolitico di Isernia La Pineta. Natura e distribuzione dei reperti. Istituto regionale per gli studi storici del Molise. Isernia: Cosmo Iannone Editore.Google Scholar
  113. Peretto, C. (2013). Isernia La Pineta. Isernia: Cosmo Iannone Editore.Google Scholar
  114. Peretto, C., Arnaud, J., Moggi-Cecchi, J., Manzi, G., Nomade, S., Pereira, A., Falguères, C., Bahain, J.-J., Grimaud-Hervé, D., Berto, C., Sala, B., Lembo, G., Muttillo, B., Gallotti, R., Thun Hohenstein, U., Vaccaro, C., Coltorti, M., & Arzarello, M. (2015). A human deciduous tooth and new 40Ar/39Ar dating results from the Middle Pleistocene archaeological site of Isernia La Pineta, southern Italy. PLoS One, 10(10), e0140091.Google Scholar
  115. Peretto, C., Arzarello, M., Bahain, J.-J., Boulbes, N., Dolo, J.-M., Douville, E., Falguères, C., Frank, N., Garcia, T., Lembo, G., Moigne, A.-M., Muttillo, B., Nomade, S., Pereira, A., Rufo, M. A., Sala, B., Shao, Q., Thun Hohenstein, U., Tessari, U., Turrini, M. C., & Vaccaro, C. (2016). The Middle Pleistocene site of Guado San Nicola (Monteroduni, Central Italy) on the Lower/Middle Palaeolithic transition. Quaternary International, 411, 301–315.Google Scholar
  116. Perlès, C. (1977). Préhistoire du feu. Paris: Masson.Google Scholar
  117. Petrosino, P., Jicha, B., Mazzeo, F. C., & Russo Ermolli, E. (2014a). A high resolution tephrochronological record of MIS 14-12 in the Southern Apennines (Acerno basin, Italy). Journal of Volcanology and Geothermal Research, 274, 34–50.Google Scholar
  118. Petrosino, P., Russo Ermolli, E., Donato, P., Jicha, B., Robustelli, G., & Sardella, R. (2014b). Using tephrocronology and palynology to date MIS 13 in the lacustrine sediments of the Mercure basin (Southern Apennines—Italy). Italian Journal of Geosciences, 133(2), 169–186.Google Scholar
  119. Piperno, M. (1999). Notarchirico: un sito del Pleistocene medio antico nel bacino di Venosa. Venosa: Ed. Osanna.Google Scholar
  120. Preece, R. C., Gowlett, J. A. J., Parfitt, S., Bridgland, D. R., & Lewis, S. G. (2006). Humans in the Hoxnian: habitat, context and fire use at Beeches Pit, West Stow, Suffolk, UK. Journal of Quaternary Science, 21(5), 485–496.Google Scholar
  121. Pruetz, J. D., & LaDuke, T. C. (2010). Brief communication: Reaction to fire by savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal: conceptualization of “fire behavior” and the case for a chimpanzee model. American Journal of Physical Anthropology, 141(4), 646–650.Google Scholar
  122. Pyne, S. J. (1995). World fire—the culture of fire on earth. New York: Henry Holt and Co..Google Scholar
  123. Pyne, S. J., Andrews, P. L., & Laven, R. D. (1996). Introduction to wildland fire. New York: Wiley.Google Scholar
  124. Radmilli, A. M., & Boschian, G. (1996). Gli scavi a Castel di Guido. Il più antico giacimento di cacciatori nell’Agro Romano. Pisa: ETS.Google Scholar
  125. Rhodes, A. N. (1998). A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores. The Holocene, 8(1), 113–117.Google Scholar
  126. Rius, D., Vanniere, B., & Galop, D. (2009). Fire frequency and landscape management in the north-western Pyrenean piedmont (France) since the early Neolithic (8000 cal. BP). The Holocene, 19(6), 847–859.Google Scholar
  127. Robustelli, G., Russo Ermolli, E., Petrosino, P., Jicha, B., Sardella, R., & Donato, P. (2014). Tectonic and climatic controls on geomorphological and sedimentary evolution of the Mercure basin, Southern Apennines, Italy. Geomorphology, 214, 423–435.Google Scholar
  128. Roebroeks, W., & Villa, P. (2011). On the earliest evidence for habitual use of fire in Europe. Proceedings of the National Academy of Sciences, 108(13), 5209–5214.Google Scholar
  129. Roebroeks, W., & Villa, P. (2012). Some reflections on the use of fire usage in the Middle Palaeolithic. In M. J. L. Niekus, R. N. E. Barton, M. Street, & T. Terberger (Eds.), A Mind Set on Flint: Studies in Honour of Dick Stapert (pp. 41–48). Groningen: Groningen Archaeological Studies 16.Google Scholar
  130. Rolland, N. (2004). Was the emergence of home bases and domestic fire a punctuated event? A review of the Middle Pleistocene record in Eurasia. Asian Perspectives, 34, 248–280.Google Scholar
  131. Ronchitelli, A., Freguglia, M., & Boscato, P. (2010). Paléoécologie et stratégies de subsistance à l’Abri du Molare de Scario (S. Giovanni a Piro-Salerne-Italie du Sud): niveaux Paléolithique moyen 44–49, données préliminares. In N. J. Conard & A. Delagnes (Eds.), Settlement dynamics of the Middle Palaeolithic and Middle Stone Age (Vol. 3, pp. 249–264). Tübingen: Kerns Verlag.Google Scholar
  132. Rufo, M. A., Minelli, A., & Peretto, C. (2009). L’industrie en calcaire du site Paléolithique d’Isernia la Pineta: un modèle interprétatif de stratégie comportementale. L’Anthropologie, 113(1), 78–95.Google Scholar
  133. Russo Ermolli, E. (1994). Analyses polliniques de la succession lacustre pléistocène du Vallo di Diano (Campanie, Italie). Annales de la Société Géologique de Belgique, 117(2), 333–354.Google Scholar
  134. Russo Ermolli, E., & Bertini, A. (2014). The Pleistocene flora of southern Italy. Naturmuseum Sudtirol, 9, 329–341.Google Scholar
  135. Russo Ermolli, E., Aucelli, P., Di Rollo, A., Mattei, M., Petrosino, P., Porreca, M., & Rosskopf, C. (2010). An intergrated stratigraphical approach to the late Middle Pleistocene succession of the Sessano lacustrine basin (Molise, Italy). Quaternary International, 225(1), 114–127.Google Scholar
  136. Russo Ermolli, E., Di Donato, V., Orain, R., Lebreton, V., & Piovesan, G. (2015). Vegetation patterns in the southern Apennines (Italy) during MIS 13. Deciphering pollen variability along a NW-SE transect. Review of Palaeobotany and Palynology, 218, 167–183.Google Scholar
  137. Sañudo, P., Blasco, R., & Fernàndez Peris, J. (2016). Site formation dynamics and human occupations at Bolomor Cave (Valencia, Spain): An archaeostratigraphic analysis of levels I to XII (100–200 ka). Quaternary International, 417, 94–104.Google Scholar
  138. Sauer, C. O. (1963). Fire and early man. In J. Leighly (Ed.), Land and Life (pp. 288–299). Berkeley: University of California Press.Google Scholar
  139. Scott, A. C. (2000). The pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4), 281–329.Google Scholar
  140. Segre Naldini, E., Muttoni, G., Parenti, F., Scardia, G., & Segre, A. G. (2009). Nouvelles recherches dans le bassin Plio-Pléistocène d’Anagni (Latium méridional, Italie). L’Anthropologie, 113(1), 66–77.Google Scholar
  141. Shahack-Gross, R., Berna, F., Karkanas, P., Lemorini, C., Gopher, A., & Barkai, R. (2014). Evidence for the repeated use of a central hearth at Middle Pleistocene (300 ky ago) Qesem Cave, Israel. Journal of Archaeological Science, 44, 12–21.Google Scholar
  142. Shimelmitz, R., Kuhn, S. L., Jelinek, A. J., Ronen, A., Clark, A. E., & Weinstein-Evron, M. (2014). ‘Fire at will’: the emergence of habitual fire use 350,000 years ago. Journal of Human Evolution, 77, 196–203.Google Scholar
  143. Sorensen, A., Roebroeks, W., & van Gijn, A. (2014). Fire production in the deep past? The expedient strike-a-light model. Journal of Archaeological Science, 42, 476–486.Google Scholar
  144. Stahlschmidt, M. C., Miller, C. E., Ligouis, B., Hambach, U., Goldberg, P., Berna, F., Richter, D., Urban, B., Serangeli, J., & Conard, N. J. (2015). On the evidence for human use and control of fire at Schöningen. Journal of Human Evolution, 89, 181–201.Google Scholar
  145. Stiner, M. C., Gopher, A., & Barkai, R. (2011). Hearth-side socioeconomics, hunting and paleoecology during the late Lower Paleolithic at Qesem Cave, Israel. Journal of Human Evolution, 60(2), 213–233.Google Scholar
  146. Suc, J.-P. (1980). Contribution à la connaissance du Pliocène et du Pléistocène inférieur des régions méditerranéennes d’Europe occidentale par l’analyse palynologique des dépôts du Languedoc-Roussillon (sud de la France) et de la Catalogne (nord-est de l’Espagne). PhD, Univ. Montpellier.Google Scholar
  147. Texier, P. J., Lemorini, C., Brugal, J.-P., & Wilson, L. (1998). Fonction dun site du Paléolithique moyen en marge d’un territoire: labri de La Combette (Bonnieux, Vaucluse). In J.-P. Brugal, L. Meignen, & M. Patou-Mathis (Eds.), Economie Préhistorique, les comportements de subsistance au Paléolitique, actes des XVIII ème rencontres internationales d’archéologie et d’histoire d’Antibes (pp. 325–348). Antibes: Editions APDCA.Google Scholar
  148. Théry-Parisot, I., & Meignen, L. (2000). Économie des combustibles (bois et lignite) dans l’abri moustérien des Canalettes—De l’expérimentation à la simulation des besoins énergétiques. Gallia Préhistoire, 42(1), 45–55.Google Scholar
  149. Théry-Parisot, I., & Texier, P.-J. (2006). La collecte du bois de feu dans le site moustérien de la Combette (Bonnieux, Vaucluse, France): implications paléo-économiques et paléo-écologiques. Approche morphométrique des charbons de bois. Bulletin de la Société Préhistorique Française, 103(3), 453–463.Google Scholar
  150. Théry-Parisot, I., Chabal, L., & Chrzavzez, J. (2010). Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2), 142–153.Google Scholar
  151. Thieme, H. (1997). Lower Palaeolithic hunting spears from Germany. Nature, 385(6619), 807–810.Google Scholar
  152. Tinner, W., Conedera, M., Ammann, B., Gäggeler, H. W., Gedye, S., Jones, R., & Sagesser, B. (1998). Pollen and charcoal in lake sediments compared with historically documented forest fires in southern Switzerland since AD 1920. The Holocene, 8(1), 31–42.Google Scholar
  153. Toti, F. (2015). Interglacial vegetation patterns at the Early-Middle Pleistocene transition: a point of view from the Montalbano Jonico section (Southern Italy). Alpine and Mediterranean Quaternary, 28, 131–143.Google Scholar
  154. Trabaud, L. (2002). Post-fire reconstitution of the flowering phenology in Mediterranean shrubland plants. In L. Trabaud & R. Prodon (Eds.), Fire and biological processes (pp. 99–113). Leiden: Backhuys Publishers.Google Scholar
  155. Trabaud, L., & Prodon, R. (1993). Fire in Mediterranean ecosystems. Ecosystem Research Report no. 5. Brussels: Commission European Communities.Google Scholar
  156. Twomey, T. (2013). The cognitive implications of controlled fire use by early humans. Cambridge Archaeological Journal, 23(01), 113–128.Google Scholar
  157. Twomey, T. (2014). How domesticating fire facilitated the evolution of human cooperation. Biology and Philosophy, 29(1), 89–99.Google Scholar
  158. Tzedakis, P. C. (2007). Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quaternary Science Reviews, 26(17-18), 2042–2066.Google Scholar
  159. Umbanhowar, C. E., & McGrath, M. J. (1998). Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene, 8(3), 341–346.Google Scholar
  160. Valladas, H., Tisnérat-Laborde, N., Cachier, H., Arnold, M., Bernaldo de Quiros, F., Cabreara-Valdes, V., Clottes, J., Courtin, J., Fortea-Perez, J., Gonzales-Sainz, C., & Moure-Romanillo, A. (2001). Radiocarbon AMS dates for Paleolithic cave paintings. Radiocarbon, 43(2B), 977–986.Google Scholar
  161. Vallverdú, J., Alonso, S., Bargalló, A., Bartrolí, R., Campeny, G., Carrancho, A., Expósito, I., Fontanals, M., Gabucio, J., Gómez, B., Prats, J. M., Sañudo, P., Solé, A., Vilalta, J., & Carbonell, E. (2012). Combustion structures of archaeological level O and Mousterian activity areas with use of fire at the Abric Romaní rockshelter (NE Iberian Peninsula). Quaternary International, 247, 313–324.Google Scholar
  162. van Vliet-Lanoë, B., Cliquet, D., Auguste, P., Folz, E., Keen, D., Schwenninger, J.-L., Mercier, N., Alix, P., Roupin, Y., Meurisse, M., & Seignac, H. (2006). L’abri sous-roche du Rozel (France, Manche): un habitat de la phase récente du Paléolithique moyen dans son contexte géomorphologique. Quaternaire, 17, 207–258.Google Scholar
  163. Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., & Magny, M. (2008). Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quaternary Science Reviews, 27(11-12), 1181–1196.Google Scholar
  164. Vértes, L., & Dobosi, V. T. (1990). Fireplaces of the settlement. In M. Kretzoi & V. T. Dobosi (Eds.), Vértesszölös Site, Man and Culture (pp. 519–521). Budapest: Akadémiai Kiadó, Budapest.Google Scholar
  165. Vescovi, E., Ammann, B., Ravazzi, C., & Tinner, W. (2010). A new Late-glacial and Holocene record of vegetation and fire history from Lago del Greppo, northern Apennines, Italy. Vegetation History and Archaeobotany, 19(3), 219–233.Google Scholar
  166. Villa, P. (1983). Terra Amata and the Middle Pleistocene archaeological record of Southern France. Berkeley: University of California Press.Google Scholar
  167. Walker, M. J., Anesina, D., Angeluccia, D. E., Avilés-Fernández, A., Berna, F., Buitrago-López, A. T., Fernández-Jalvo, Y., Haber-Uriarte, M., López-Jiménez, A., López-Martínez, M., Martín-Lerma, I., Ortega-Rodrigáñez, J., Polo-Camacho, J.-L., Rhodes, S. E., Richter, D., Rodríguez-Estrella, T., Schwenninger, J.-L., & Skinner, A. R. (2016). Combustion at the late Early Pleistocene site of Cueva Negra del Estrecho del Río Quípar (Murcia, Spain). Antiquity, 90(351), 571–589.Google Scholar
  168. Webb, J., & Domanski, M. (2009). Fire and stone. Science, 325(5942), 820–821.Google Scholar
  169. Weiner, S., Xu, Q., Goldberg, P., Liu, J., & Bar-Yosef, O. (1998). Evidence for the use of fire at Zhoukoudian, China. Science, 281(5374), 251–253.Google Scholar
  170. Wrangham, R. W. (2009). Catching fire: how cooking made us human. New York: Basic Books.Google Scholar
  171. Wrangham, R. W., Jones, H. J., Laden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: cooking and the ecology of human origins. Current Anthropology, 40(5), 567–594.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département Homme et Environnement du Muséum National d’Histoire NaturelleUMR 7194 CNRS - HNHPParisFrance
  2. 2.Dipartimento di Scienze della TerraUniversità di FirenzeFlorenceItaly
  3. 3.Dipartimento di Scienze della Terra, dell’Ambiente e delle RisorseUniversità di Napoli Federico IINaplesItaly
  4. 4.Dipartimento di Studi UmanisticiUniversità degli Studi di FerraraFerraraItaly

Personalised recommendations