Journal of Archaeological Method and Theory

, Volume 26, Issue 1, pp 276–312 | Cite as

Birch Bark Tar Production: Experimental and Biomolecular Approaches to the Study of a Common and Widely Used Prehistoric Adhesive

  • Maxime RageotEmail author
  • Isabelle Théry-Parisot
  • Sylvie Beyries
  • Cédric Lepère
  • Alain Carré
  • Arnaud Mazuy
  • Jean-Jacques Filippi
  • Xavier Fernandez
  • Didier Binder
  • Martine Regert


Birch bark tar, the oldest adhesive known in Europe, was widely used during Prehistory. This material, produced by the dry distillation of birch bark, has been identified in various spheres of activities and provides valuable information on the know-how and technical and territorial systems of past societies. This biomaterial can also provide evidence on socio-economic networks and mobility. However, very little is known about the production systems of birch bark tar during Prehistory, including the Neolithic period. The lack of findings in the archaeological record necessitates the development of an approach that combines experimental archaeology and biomolecular chemistry. We present here (1) the results of experiments in which different birch bark tar production systems were tested and (2) the molecular signatures of the birch bark tars produced according to different processes based on the use of ceramic vessels. The key role of bark quality is highlighted for the first time. This study also details direct archaeological inference of the experimental results obtained: a total of 23 samples from the site of Nice-Giribaldi (France, second part of the fifth century BCE) was investigated. Different categories of birch bark tars were identified during Neolithic in the south of France, providing evidence for the existence of complex manufacturing systems and procurement networks.


Birch bark tar System of production Experimental archaeology Biomolecular archaeology Neolithic Chassey culture 



The authors are very grateful to the ANR (Agence Nationale de la Recherche) and its financial support of the research programme EXSUDARCH dedicated to the chemistry, manufacture and use of plant exudates and tars. The results presented here are part of the PhD thesis of Maxime Rageot, funded by the CNRS, the Région PACA and the University of Nice Sophia Antipolis. We are grateful to these institutions for their support. The authors are also grateful to the French Polar Institute (IPEV) and its financial support of the research programme ETAPAS dedicated to the ethno-archaeology of plant use and exploitation (awarded to S. Beyries). We sincerely thank Jean-Denys Strich, Sabine Sorin and Pierre-Alain Gillioz for help in designing the figures. Lastly, we thank the reviewers for their fruitful comments.

Supplementary material

10816_2018_9372_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 12 kb)
10816_2018_9372_MOESM2_ESM.docx (29 kb)
ESM 2 (DOCX 29 kb)


  1. Aveling, E. M., & Heron, C. (1998). Identification of birch bark tar at the Mesolithic site of star Carr. Ancient Biomolecules, 2, 69–80.Google Scholar
  2. Aveling, E. M., & Heron, C. (1999). Chewing tar in the early Holocene: An archaeological and ethnographic evaluation. Antiquity, 73(281), 579–584.CrossRefGoogle Scholar
  3. Balsan, L. (1951). L’industrie de la résine dans les Causses et son extension dans l’empire romain. Gallia, 9, 53–55.CrossRefGoogle Scholar
  4. Battentier, J., Thiébault, S., Binder, D., Théry-Parisot, I., Carré, A., & Delhon, C. (2015). L’abri Pendimoun (Castellar, Alpes-Maritimes): évolution du couvert forestier et exploitation du milieu au Néolithique (5800–2000 cal. BCE). Quaternaire, 26, 279–292.CrossRefGoogle Scholar
  5. Binder, D. (2004). Giribaldi et la complexité des sociétés néolithiques. In D. Binder (Ed.), Un chantier archéologique à la loupe. Giribaldi (pp. 70–72). Nice Musées: Nice.Google Scholar
  6. Binder, D. (2016). Approvisionnement et gestion des outillages lithiques au Néolithique: l’exemple de Giribaldi en Provence orientale. In A. Tomasso, D. Binder, G. Martino, G. Porraz, P. Simon, & N. Naudinot (Eds.), Ressources lithiques, productions et transferts entre Alpes et Méditerranée. Actes de la séance de la Séance de la Société Préhistorique Française, Nice, 2013 (pp. 289-311): Société Préhistorique Française.Google Scholar
  7. Binder, D., Bourgeois, G., Benoist, F., & Vitry, C. (1990). Identification de brai de bouleau (betula) dans le néolithique de Giribaldi (Nice, France) par la spectrométrie de masse. Revue d’Archéométrie, 14, 37–42.CrossRefGoogle Scholar
  8. Binder, D., Lepère, C., & Maggi, R. (2008). Epipaléolithique et Néolithique dans l’arc Liguro-Porvençale. Bulletin du Musée d’Anthropologie préhistorique de Monaco, N 1, 49–62.Google Scholar
  9. Binder, D., & Lepère, C. (2014). From Impresso-Cardial to SMP and Chassey in Provence. Rivista di Studi Liguri, 77–79, 21–29.Google Scholar
  10. Bonfield, K. M., Heron, C., Nemcek, N. (1997). The chemical Characterisation of wood tars in prehistoric Europe: A case study from Neolithic of southern Germany. In W. B. A. W. Piotrowski (Ed.), Proceeding of the first international symposium on wood tar and pitch (pp. 203–211). State Archaeological Museum: Warsaw.Google Scholar
  11. Bosquet, D., Regert, M., Dubois, N., & Jadin, I. (2001). Identification de brai de bouleau sur quatre vases du siterubané de Fexhe-le-Haut-Clocher “Podrî l’Cortri”. Premiers résulrats. Notae Praehistoricae, 21, 119–127.Google Scholar
  12. Bourquin-Mignot, C., Brochier, J.-E., Chabal, L., Crozat, S., Fabre, L., Guibal, F., et al. (1999). La botanique (Collection “Archéologiques”). Paris: Editions Errance.Google Scholar
  13. Bruni, S., & Guglielmi, V. (2014). Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: The case of Pistacia resin (mastic) in comparison with frankincense. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 121, 613–622.Google Scholar
  14. Burri, S. (2012). Vivre de l’inculte, vivre dans l’inculte en Basse Provence centrale à la fin du Moyen Âge. Histoire, archéologie et ethnoarchéologie d’un mode de vie itinérant. PhD thesis. Université Aix-Marseille.Google Scholar
  15. Cassen, S., & François, P. (2009). Les coupes-à-socles de la Table des Marchands et du néolithique ouest-européen. Projet de recomposition d’un objet archéologique total. In S. Cassen (Ed.), Autour de la Table. Explorations archéologiques et discours savants sur des architectures néolithique à Locmariaquer, Morbihan (Table des Marchands et Grand Menhir) (pp. 568–585). Vannes: Laboratoire de recherches archéologique, CNRS et Université de Nantes.Google Scholar
  16. Charters, S., Evershed, R. P., Goad, L. J., Heron, C., & Blinkhorn, P. (1993). Ifentification of on adhesive used to repair a roman jar. Archaeometry, 35(1), 91–101.CrossRefGoogle Scholar
  17. Colombini, M. P., & Modugno, F. (2009). Organic mass spectrometry in art and archaeology. Chichester: Wiley.CrossRefGoogle Scholar
  18. Colombini, M. P., Giachi, G., Iozzo, M., & Ribechini, E. (2009). An Etruscan ointment from Chiusi (Tuscany, Italy): Its chemical characterization. Journal of Archaeological Science, 6(36), 1488–1495.CrossRefGoogle Scholar
  19. Connan, J., Maurin, B., Long, L., & Sebire, H. (2002). Identification de poix et de résine de Conifère dans des échantillons archéologiques du lac de Sanguinet : Exportation de poix en Atlantique à l’époque gallo-romaine. Revue d’Archéométrie, 26, 177–196.CrossRefGoogle Scholar
  20. Czarnowski, E., & Neubauer, D. (1990). Aspekte zur Production und Verarbeitug von Birkenpech. Acta Praehistorica Archaeologica, 23, 11–13.Google Scholar
  21. Czarnowski, E., Neubauer, D., & Schwörer, P. (1990). Zur Herstellung von Birkenpech im Neolithikum. Acta Praehistorica et Archaeologica, 22, 169–173.Google Scholar
  22. Daher, C., Paris, C., Le Hô, A.-S., Bellot-Gurlet, L., & Echard, J.-P. (2010). A joint use of Raman and infrared spectroscopies for the identification of natural organicmedia used in ancient varnishes. Journal of Raman Spectroscopy, 41, 1494–1499.CrossRefGoogle Scholar
  23. Dal Ri, L., & Tecchiati, U. (2003). Una distilleria per la pece della fine dell’età del bronzo dal lago di Ledro nel Trentino (loc. Longhini-Assat). In S. G (Ed.), Attraverso le Alpi (pp. 175–181). Stuttgart: Uomini, Vie, Beni, Konrad Theiss Verlag.Google Scholar
  24. Ekman, R. (1983). The suberin monomers and triterpenoids from outer bark of Betula verrucosa Ehrh. Holforschung, 37, 205–211.CrossRefGoogle Scholar
  25. Egenberg, I. M., Aasen, J. A. B., Holtekjølen, A. K., & Lundanes, E. (2002). Characterisation of traditionally kiln produced pine tar by gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis, 62, 143–155.CrossRefGoogle Scholar
  26. Egenberg, I. M., Holtekjølen, A. K., & Lundanes, E. (2003). Characterisation of naturally and artificially weathered pine tar coatings by visual assessment and gas chromatography-mass spectrometry. Journal of Cultural Heritage, 4, 221–241.CrossRefGoogle Scholar
  27. Evans, K., & Heron, C. (1993). Glue, disinfectant and chewing gum: Natural products chemistry in archaeology. Chemistry and Industry, 21, 446–449.Google Scholar
  28. Evershed, R. P., Jerman, K., & Eglinton, G. (1985). Pine wood origin for pitch from the Mary rose. Nature, 314, 528–530.CrossRefGoogle Scholar
  29. Gaillard, Y., Chesnaux, L., Girard, M., Burr, A., Darque-Ceretti, E., Felder, E., et al. (2016). Assessing hafting adhesive efficiency in the experimental shooting of projectile points: A new device for instrumented and ballistic experiments. Archaeometry, 58, 465–483.CrossRefGoogle Scholar
  30. Garnier, N. (1999). Détermination de la structure moléculaire d’écorces actuelles et d’adhésifs archéologiques par chromatographie en phase gazeuse couplée à la spectrométrie de masse (CPG-SM). Master thesis. Univesité Paris VI, Paris.Google Scholar
  31. Gast, M. (1999). G63. Goudron. In G. Camps (Ed.), Encyclopédie berbère (pp. 3170–3174). Aix-en-Provence: Edisud.Google Scholar
  32. Grünberg, J. M. (2002). Middle Palaeolithic birch-bark pitch. Antiquity, 76, 15–16.CrossRefGoogle Scholar
  33. Guillon, S. (2014). Dynamique de la végétation alluviale côtière dans le Sud-Est de la France (bassins versants du Loup et de la Cagne, Alpes-Maritimes) au cours de la première moitié de l’Holocène. PhD thesis. Nice: Université Nice Sophia-Antipolis.Google Scholar
  34. Groom, P., Schenck, T., & Pedersen, G. M. (2015). Experimental explorations into the aceramic dry distillation of Betula pubescens (downy birch) bark tar. Archaeological and Anthropological Sciences, 7, 47–58.CrossRefGoogle Scholar
  35. Hastorf, C. A., & Popper, V. S. (1989). Current paleoethnobotany: Analytical methods and cultural interpretations of archaeological plant remains (prehistoric archaeology and ecology series). Chicago: University of Chicago Press.Google Scholar
  36. Hayek, E. W. H., Krenmayr, P., Lohninger, H., Jordi, U., Moche, W., & Sauter, F. (1990). Identification of archaeological and recent wood tar pitches using gas chromatography/mass spectrometry and pattern recognition. Analytical Chemistry, 62, 2038–2043.CrossRefGoogle Scholar
  37. Henry, A., & Théry-Parisot, I. (2014). From Evenk campfires to prehistoric hearths: Charcoal analysis as a tool for identifying the use of rotten wood as fuel. Journal of Archaeological Science, 52, 321–336.CrossRefGoogle Scholar
  38. Henry, A., Théry-Parisot, I., & Voronkova, E. (2009). La gestion du bois de feu en Forêt Boréale : problématique archéo-anthracologique et étude d’un cas ethnographique (Région De l’Amour, Sibérie). In I. Théry-Parisot, S. Costamagno, & A. Henry (Eds.), Gestion des combustibles au paléolithique et au mésolithique Nouveaux outils, nouvelles interprétations Fuel Management during the Palaeolithic and Mesolithic Periods New tools, new interpretations (pp. 17–37): BAR 1914. Oxford: Archaeopress.Google Scholar
  39. Hjulström, B., Isaksson, S., & Hennius, A. (2006). Organic geochemical evidence for pine tar production in middle eastern Sweden during the roman iron age. Journal of Archaeological Science, 33, 283–294.CrossRefGoogle Scholar
  40. Jauch, V. (1994). Eine römanische Teersiederei im antiken Tasgetium–Eschenz. Archéologie suisse, 17(3), 11–119.Google Scholar
  41. Julin, M. (2008). Tar production – traditional medicine and potential threat to biodiversity in the Marrakesh region An ethnobotanical study. Degree project in biology. Sweden: Uppsala University.Google Scholar
  42. Koller, J., & Baumer, U. (2001). High-tech in the middle Palaeolithic: Neandertal-manufactured pitch identified. European Journal of Archaeology, 4(3), 385–397.CrossRefGoogle Scholar
  43. Kozowyk, P. R. B., Soressi, M., Pomstra, D., & Langejans, G. H. J. (2017). Experimental methods for the Palaeolithic dry distillation of birch bark: Implications for the origin and development of Neandertal adhesive technology. Scientific Reports, 7, 8033.CrossRefGoogle Scholar
  44. Krasutsky, P. A. (2006). Birch bark research and development. Natural Product Reports, 23(6), 919–942.CrossRefGoogle Scholar
  45. Kurt, Y., Suleyman Kaçar, M., & Isik, K. (2008). Traditional tar production from Cedrus libani A. Rich on the Taurus Mountains in southern Turkey. Economic Botany, 62(4), 615–620.CrossRefGoogle Scholar
  46. Kurt, Y., & Isik, K. (2012). Comparison of tar produced by traditional and laboratory methods. Studies on Ethno-Medicine, 6(2), 77–83.CrossRefGoogle Scholar
  47. Kurzweil, A., & Todtenhaupt, D. (1991). Technologie der Holzteergewinnung. Acta Praehistorica et Archaeologica, 23, 63–91.Google Scholar
  48. Lavoie, S. (2001). Contribution à la synthèse de dérivés de l’acide bétulnique à partir du betulinol extrait de l’ecorce du bouleau blanc (betula papyrifera). Master thesis, Université du Québec à Chicoutimi.
  49. Lepers, C. (1997). Brai, résine, goudron et autres. Bulletin des chercheurs de la Wallonie, 37,113–132.Google Scholar
  50. Li, T.-S., Wang, J.-X., & Zheng, X.-J. (1998). Simple synthesis of allobetulin, 28-oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids. Journal of Chemical Society Perkin Transactions, 1(23), 3957–3966.CrossRefGoogle Scholar
  51. Lucquin, A., March, R. J., & Cassen, S. (2007). Analysis of adhering organic residues of two “couple-à-socles” from the neolithic funerary site “la Hougue Bie” in Jersey: Evidences of birch bark tar utilisation. Journal of Archaeological Science, 34, 704–710.CrossRefGoogle Scholar
  52. Mazza, P. P. A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., et al. (2006). A new Palaeolithic discovery: Tar-hafted stone tools in a European mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 1310–1318.CrossRefGoogle Scholar
  53. Mirabaud, S., Pétrequin, A.-M., Pétrequin, P., & Regert, M. (2015). Système de production des adhésifs exploités à Clairvaux VII et Clairvaux XIV. In P. Pétrequin, & A.-M. Pétrequin (Eds.), Clairvaux et le “Néolithique Moyen Bourguignon” (Vol. Tome 2, pp. 1001-1021). Centre de Recherche Archéologique de la Vallée de l’Ain: Presses universitaires de Franche-Comté.Google Scholar
  54. Mitkidou, S., Dimitrakoudi, E., Urem-Kotsou, D., Papadopoulou, D., Kotsakis, K., Stratis, J. A., et al. (2008). Organic residue analysis of Neolithic pottery from North Greece. Microchimica Acta, 160, 493–498.CrossRefGoogle Scholar
  55. Neubauer-Saurer, D. (1997). Birkenpechproduktion im Neolithikum (ein mögliches verfahren). In W. B. A. W. Piotrowski (Ed.), Poceeding of the first international symposium on wood tar and pitch (pp. 41–44). State Archaeological Museum: Warsaw.Google Scholar
  56. Orengo, H. A., Palet, J., Ejarque, A., Miras, Y., & Riera, S. (2013). Pitch production during the roman period: An intensive mountain industry for a globalised economy? Antiquity, 87, 802–814.CrossRefGoogle Scholar
  57. Osgood, C. (1959). Ingalik mental culture (Vol. 56): Yale university publications in anthropology. New Haven: Yale UniversityGoogle Scholar
  58. Osipowicz, G. (2005). A method of wood tar production, without the use of ceramics. In (RE)constrution and experiment in archaeology. European Platform, 2, 11–17.Google Scholar
  59. Palmer, F. (2007). Die Entstehung von Birkenpech in einer Feuerstelle unter paläolithischen Bedingungen. Mitteilungen der Gesellschaft für Urgeschichte, 16, 75–83.Google Scholar
  60. Pawlik, A. (2011). Die funktionale Analyse der Steingeräte und die Rekonstruktion der Aktivitäten am Ullafelsen. In D. Schäfer (Ed.), Mensch und Umwelt im Holozän Tirols (Vol. 1, pp. 319–424). Innsbruck: Philipp von Zabern.Google Scholar
  61. Pradeau, J.-V., Binder, D., Verati, C., Lardeaux, J.-M., Dubernet, S., Lefrais, Y., et al. (2016). Procurement strategies of Neolithic colouring materials: Territoriality and networks from 6th to 5th millennia BCE in north-western Mediterranean. Journal of Archaeological Science, 71, 10–23.CrossRefGoogle Scholar
  62. Rameau, J. C., Manson, D., & Dumé, G. (1993). Flore forestière française Tome 2, Montagnes. Dijon-Quetigny: Institut Pour Le Developpement Forestier.Google Scholar
  63. Rameau, J. C., Manson, D., & Dumé, G. (2008). Flore forestière française Tome 3, Région Méditerranéenne. Dijon-Quetigny: Institut Pour Le Developpement Forestier.Google Scholar
  64. Rageot, M. (2015). Les substances naturelles en Méditerranée nord-occidentale (VIe-Ie Millénaire BCE) : chimie et archéologie des matériaux exploités pour leurs propriétés adhésives et hydrophobes. Unpublished PhD thesis. Nice: Université Nice Sophia Antipolis.Google Scholar
  65. Rageot, M., Pêche-Quilichini, K., Py, V., Filippi, J. J., Fernandez, X., & Regert, M. (2016). Exploitation of beehive products, plant exudates and tars in Corsica during the early iron age. Archaeometry, 58, 315–332.CrossRefGoogle Scholar
  66. Rajewski, Z. (1970). Pech und Teer bei den Slaven. Zeitschrift für Achäologie, 4, 46–53.Google Scholar
  67. Regert, M. (1996). Les composés organiques en préhistoire : nouvelles approches analytiques. Unpublished PhD thesis. Nanterr: Université Paris X.Google Scholar
  68. Regert, M., Delacotte, J.-M., Menu, M., Pétrequin, P., & Rolando, C. (1998). Identification of neolithic hafting adhesives from two lake dwellings at Chalain (Jura, France). Ancient Biomolecules, 2, 81–96.Google Scholar
  69. Regert, M., Garnier, N., Binder, D., & Pétrequin, P. (2000). Les adhésifs néolithiques : quels matériaux utilisés, quelles techniques de production dans quel context social? L’exemple des adhésifs des sites de Giribaldi et de Chalain. In Arts du feu et productions artisanales. XXe rencontres internationales d’archéologie et d’histoire Antibes (pp. 585–604). Antibes: Editions APDCA.Google Scholar
  70. Regert, M., & Rolando, C. (2002). Identification of archaeological adhesives using direct inlet electron ionization mass spectrometry. Analytical Chemistry, 74(5), 965–975.CrossRefGoogle Scholar
  71. Regert, M., Vacher, S., Moulherat, C., & Decavallas, O. (2003). Ahesive production and pottery function during the iron age at the site of grand Aunay (Sarthe, France). Archaeometry, 45(1), 101–120.CrossRefGoogle Scholar
  72. Regert, M., Alexandre, V., Thomas, N., & Lattuati-Derieux, A. (2006). Molecular characterisation of birch bark tar by headspace solid-phase microextraction gas chromatography-mass spectrometry: A new way for identifying archaeological glues. Journal of Chromatography A, 1101, 245–253.CrossRefGoogle Scholar
  73. Regert, M., Devièse, T., Le Hô, A.-S., & Rougeulle, A. (2008). Reconstructing ancient Yemeni commercial routes during the middle ages using structural characterization of terpenoid resins. Archaeometry, 50(4), 668–695.CrossRefGoogle Scholar
  74. Regert, M., & Mirabaud, S. (2014). Substances naturelles exploitées sur les sites de Chalain et Clairvaux : nature et fonction des matériaux organiques amorphes. In R.-M. Arbogast, & A. Greffier-Richard (Eds.), Entre archéologie et écologie, une Préhistoire de tous les milieux. Mélanges offerts à Pierre Pétrequin (pp. 79-91). Besançon: Presses universitaires de Franche-Comté.Google Scholar
  75. Reunanen, M., Ekman, R., & Hafizoglu, H. (1996). Composition of tars from softwoods and birch. Holzforschung, 50(2), 118–120.Google Scholar
  76. Ribechini, E., Bacchiocchi, M., Deviese, T., & Colombini, M. P. (2011). Analytical pyrolysis with in situ thermally assisted derivatisation, Py(HMDS)-GC/MS, for the chemical characterization of archaeological birch bark tar. Journal of Analytical and Applied Pyrolysis, 91, 219–223.CrossRefGoogle Scholar
  77. Sauter, F., Ulrich, J., Graf, A., Werther, W., & Varmuza, K. (2000). Studies in organic archaeometry I: Identification of the prehistoric adhesive used by “Tyrolean icemen” to fix his weapons. Arkivoc, 5, 735–747.Google Scholar
  78. Sauter, F., Varmuza, K., Werther, W., & Stadler, P. (2002). Studies in organic archaeometry V: Chemical analysis of organic material found in traces on an Neolithic terracotta idol statuette excavated in lower Austria. Arkivoc, 1, 54–60.Google Scholar
  79. Schenck, T., & Groom, P. (2018). The aceramic production of Betula pubescens (downy birch) bark tar using simple raised structures. A viable Neanderthal technique? Archaeological and Anthropological Sciences, 10(1), 19–29.CrossRefGoogle Scholar
  80. Schoknecht, U., & Schwartze, E. (1964). Hinweise zur Pechbereitung in fruhslawischer Zeit. Ausgrabung und Funde, 12, 205–210.Google Scholar
  81. Stern, B., Heron, C., Tellefsen, T., & Serpico, M. (2008). New investigations into Uluburun resin cargo. Journal of Archaeological Science, 35, 2188–2203.CrossRefGoogle Scholar
  82. Szafranski, W. (1997). Die frühmittelalterlische teerschwele in Biskupin. In W. B. A. W. Piotrowski (Ed.), Poceeding of the first international symposium on wood tar and pitch. Warsaw: State archaeological museum.Google Scholar
  83. Théry-Parisot, I., Thiebault, S., Delannoy, J. J., Ferrier, C., Feruglio, V., Fritz, C., et al. (accepted). Lluminating the cave, drawing with black wood charcoal: New insights from la Grotte Chauvet (Vallon-Pont d’Arc, France) through charcoal fragments analysis. Antiquity.Google Scholar
  84. Thiébault, S. (2010). Archéologie environnementale de la France. Paris: La Découverte.Google Scholar
  85. Trintignac, A. (2003). La production de poix dans la cité des gabales (Lozère) à l’époque gallo-romaine. RAP. 1/2, 239–248.Google Scholar
  86. Ukkonen, F. K., & Erä, V. (1979). Birch bark extractives. Kemia-Kemi, 5, 217–220.Google Scholar
  87. Urem-Kotsou, D., Stern, B., Heron, C., & Kotsakis, K. (2002). Birch bark tar at Neolithic Makriyalos, Greece. Antiquity, 76, 962–967.CrossRefGoogle Scholar
  88. Voß, R. (1997). Slawische keramik zur teergewinnung vom 7.-12. Jh. in Mecklenburg und Vorpommern. In W. B. A. W. Piotrowski (Ed.), Proceedings of the first international symposium on wood tar and pitch (pp. 81–86). State Archaeological Museum: Warsaw.Google Scholar
  89. Zakoscielna, A., & Gurba, J. (1997). Frühmittelalterliche holzteergruben in Lopiennik Dolny in der Woiwodschaft Chelm. In W. B. A. W. Piotrowski (Ed.), Proceedings of the first international symposium on wood tar and pitch (pp. 73–79). State Archaeological Museum: Warsaw.Google Scholar
  90. Zasada, J. (2000). Birch saps arisin’! So what you ask?—Some considerations about non-timber forest products from paper birch. In H. Chen, A. Luke, & W. Bidwell (Eds.), Proceedings for the ecology and management of white birch workshop, Wawa, Ontario, 2000 (pp. 3): Ontario.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maxime Rageot
    • 1
    • 2
    • 3
    Email author
  • Isabelle Théry-Parisot
    • 1
  • Sylvie Beyries
    • 1
  • Cédric Lepère
    • 1
    • 4
  • Alain Carré
    • 1
  • Arnaud Mazuy
    • 1
  • Jean-Jacques Filippi
    • 2
  • Xavier Fernandez
    • 2
  • Didier Binder
    • 1
  • Martine Regert
    • 1
  1. 1.CNRS, CEPAMUniversité Côte d’AzurNiceFrance
  2. 2.CNRS, ICNUniversité Côte d’AzurNiceFrance
  3. 3.Department of Pre- and ProtohistoryUniversity of TübingenTübingenGermany
  4. 4.Eveha- Etudes et Valorisation ArchéologiquesLyonFrance

Personalised recommendations