Advertisement

Journal of Archaeological Method and Theory

, Volume 25, Issue 1, pp 117–154 | Cite as

Building an Experimental Comparative Reference Collection for Lithic Micro-Residue Analysis Based on a Multi-Analytical Approach

  • A. Pedergnana
  • A. Ollé
Article

Abstract

Residue analysis applied to stone tools is a useful aid for better understanding their past function and, by extension, reconstructing early human behaviour. However, if the nature of residues found on the lithic tools is misinterpreted, so will be our understanding of their archaeological context. As a consequence, correctly identifying residues in the domain of lithic studies is of paramount importance. With this main goal in mind, we analysed different experimental materials likely to have been involved in daily tasks in the prehistoric context (e.g. bone, wood, meat). Microscopic analyses were then carried out using two (comparable) techniques: Optical Light Microscopy and Scanning Electron Microscopy. Also, energy dispersive X-rays spectroscopy (EDX or EDS) was applied to the experimental samples to determine their elemental composition. Advantages and disadvantages of both microscopic methods and their implications for correct residue identification are discussed. The distribution of residues on lithic surfaces is also considered. This study resulted in the construction of a data-set including both photographic material and EDX spectra for each residue analysed. The main result is that, compared to OLM scanning, SEM analyses highly improves the accuracy of residue identification.

Keywords

Micro-residue analysis Optical light microscopy Scanning electron microscopy Energy dispersive X-rays spectroscopy Stone tools 

Notes

Acknowledgments

This work was supported by the MINECO-FEDER (project CGL2015-65387-C3-1-P), by the AGAUR (project SGR 2014-899) and by the URV (projects 2014, 2015 and 2016PFR-URV-B2-17), and it is framed in CERCA Programme / Generalitat de Catalunya. A.P. is the beneficiary of a FI-DGR pre-doctoral grant from the Generalitat de Catalunya (2014FI_B 00539).

We are thankful to the Servei de Recursos Científics i Tècnics team of the Rovira i Virgili University (Tarragona, Spain) for their help during SEM sessions. We warmly thank Deborah Barsky for the language revision of this text. We are also grateful to two anonymous reviewers, whose comments have significantly improved our manuscript.

References

  1. Anderson, P. C. (1980). A testimony of prehistoric tasks: Diagnostic residues on stone tool working edges. World Archaeology, 12, 181–193.CrossRefGoogle Scholar
  2. Anderson-Gerfaud, P. C. (1986). A few comments concerning residue analysis of stone plant-processing tools. In L. Owen & G. Unrath (Eds.), Technical aspects of microwear studies on stone tools (pp. 69–81). Early Man News.Google Scholar
  3. Barnard, H., & Eerkens, J. W. (Eds.). (2007). Theory and Practice in Archaeological Residue Analysis. BAR international Series 1650. Oxford: Archaeopress.Google Scholar
  4. Barnard, H., Ambrose, S. H., Beehr, D. E., Forster, M. D., Lanehart, R. E., Malainey, M. E., Parr, R. E., Rider, M., Solazzo, C., & Yohe II, R. M. (2007). Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. Journal of Archaeological Science, 34, 28–37.CrossRefGoogle Scholar
  5. Boëda, E., Bonilauri, S., Connan, J., Jarvie, D., Mercier, N., Tobey, M., Valladas, H., al Sakhel, H., & Muhesen, S. (2008). Middle Palaeolithic bitumen use at umm el Tlel around 70 000 BP. Antiquity, 82, 853–861.CrossRefGoogle Scholar
  6. Borel, A., Ollé, A., Vergès, J. M., & Sala, R. (2014). Scanning electron and optical light microscopy: Two complementary approaches for the understanding and interpretation of usewear and residues on stone tools. Journal of Archaeological Science, 48, 46–59.CrossRefGoogle Scholar
  7. Briuer, F. L. (1976). New clues to stone tool function: Plant and animal residues. American Antiquity, 41(4), 478–484.CrossRefGoogle Scholar
  8. Byrne, L., Ollé, A., & Vergès, J. M. (2006). Under the hammer: Residues resulting from production and microwear on experimental stone tools. Archaeometry, 48, 546–564.CrossRefGoogle Scholar
  9. Carbonell, E., Esteban, M., Martín, A., Mosquera, M., Rodríguez, X. P., Ollé, A., Sala, R., Vergès, J. M., Bermúdez de Castro, J. M., & Ortega, A. I. (1999). The Pleistocene site of Gran Dolina, Sierra de Atapuerca, Spain: A history of the archaeological investigations. Journal of Human Evolution, 37, 313–324.CrossRefGoogle Scholar
  10. Carbonell, E., Huguet, R., Cáceres, I., Lorenzo, C., Mosquera, M., Ollé, A., Rodríguez, X. P., Saladié, P., Vergès, J. M., García-Medrano, P., Rosell, J., Vallverdú, J., Carretero, J. M., Navazo, M., Ortega, A. I., Marinón-Torres, M., Morales, J. I., Aranburu, A., Canals, A., Carrancho, A., Castilla, M., Expósito, I., Fontanals, M., Francés, M., Galindo-Pellicena, M. A., García-Antón, D., García, N., García, A., García, R., Gómez-Merino, G., Iriarte, E., Lombera-Hermida, A., López-Polín, L., Lozano, M., Made van der, J., Martínez, I., Mateos, A., Pérez-Romero, A., Poza-Rey, E., Quam, R., Rodríguez-Hidalgo, A., Rodríguez, J., Rodríguez, L., Santos, E., Terradillos, M., Bermúdez de Castro, J. M., & Arsuaga, J. L. (2014). Sierra de Atapuerca archaeological sites. In R. Sala (Ed.), Pleistocene and Holocene hunter-gatherers in Iberia and the Gibraltar Strait: The current archaeological record (pp. 534–560). Burgos: Universidad de Burgos-Fundación Atapuerca.Google Scholar
  11. Cârciumaru, M., Ion, R. M., Niţu, E. C., & Ştefănescu, R. (2012). New evidence of adhesive as hafting material on Middle and upper Palaeolithic artefacts from Gura Cheii-Râşnov Cave (Romania). Journal of Archaeological Science, 39, 1942–1950.CrossRefGoogle Scholar
  12. Charrié-Duhaut, A., Porraz, G., Cartwright, C. R., Igreja, M., Connan, J., Poggenpoel, C., & Texier, P. J. (2013). First molecular identification of a hafting adhesive in the late Howiesons Poort at Diepkloof rock shelter (wester cape, South Africa). Journal of Archaeological Science, 40(9), 3506–3518.CrossRefGoogle Scholar
  13. Chen, P. Y., Stokes, A. G., & McKittrick, J. (2009). Comparison of structure and mechanical properties of bovine femur bone and antler of the north American elk (Cervus elaphus Canadensis). Acta Biomaterialia, 5, 693–706.CrossRefGoogle Scholar
  14. Cristiani, E., Pedrotti, A., & Gialanella, S. (2009). Tradition and innovation between the Mesolithic and early Neolithic in the Adige Valley (Northeast Italy). New data from a functional and residue analyses of trapezes from Gaban rockshelter. Documenta Praehistorica, 36, 191–205.CrossRefGoogle Scholar
  15. Cristiani, E., Živaljević, I., & Borić, D. (2014). Residue analysis and ornament suspension techniques in prehistory: Cyprinid pharyngeal teeth beads from late Mesolithic burials at Vlasac. Journal of Archaeological Science, 46, 292–310.CrossRefGoogle Scholar
  16. Croft, S., Monnier, G., Radini, A., Little, A., & Milner, N. (2016). Lithic residue survival and characterisation at star Carr: A burial experiment. Internet Archaeology, 42. doi: 10.11141/ia.42.5.
  17. Custer, J. F., Ilgenfritz, J., & Doms, K. R. (1988). A cautionary note on the use of chemistrips for detection of blood residues on prehistoric stone tools. Journal of Archaeological Science, 15, 343–345.CrossRefGoogle Scholar
  18. d’Errico, F., Salomon, H., Vignaud, C., & Stringer, C. (2010). Pigments from the Middle Palaeolithic levels of Es-Skhul (Mount Carmel, Israel). Journal of Archaeological Science, 37, 3099–3110.CrossRefGoogle Scholar
  19. Dinnis, R., Pawlik, A., & Gaillard, C. (2009). Bladelet cores as weapon tips? Hafting residue identification and micro-wear analysis of three carinated burins from the late Aurignacian of les Vachons, France. Journal of Archaeological Science, 36, 1922–1934.CrossRefGoogle Scholar
  20. Domínguez-Rodrigo, M., Serrallonga, J., Juan-Tresserras, J., Alcalá, L., & Luque, L. (2001). Woodworking activities by early humans: A plant residue analysis on Acheulian stone tools from Peninj (Tanzania). Journal of Human Evolution, 40, 289–299.CrossRefGoogle Scholar
  21. Dove, C. J., & Peurach, S. C. (2002). Microscopic analysis of feather and hair fragments associated with human mummified remains from Kagamil Island, Alaska. In B. Frohlich, A. B. Harper, & R. Gilberg (Eds.), To the Aleutians and beyond - the anthropology of William S. Laughlin (pp. 51–62). Copenhagen: Publications of the National Museum, Ethnographical Series, 20, The National Museum of Denmark.Google Scholar
  22. Dove, C. J., Hare, P. G., & Heacker, M. (2005). Identification of ancient feather fragmentsfound in melting alpine ice patches in Southern Yukon. Arctic, 58(1), 38–43.Google Scholar
  23. Eerkens, J. W. (2002). The preservation and identification of Piñon resins by GC-MS in pottery from the Western Great Basin. Archaeometry, 44(1), 95–105.CrossRefGoogle Scholar
  24. Eerkens, J. W. (2005). GC-MS analysis and fatty acid ratios of archaeological potsherds from the Western Great Basin of North America. Archaeometry, 47(1), 83–102.CrossRefGoogle Scholar
  25. Eerkens, J. W. (2007). Organic residue analysis and the decomposition of fatty acids in ancient postherds. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice in archaeological residue analysis (pp. 90–98). Oxford: BAR International Series, 1650, Archaeopress.Google Scholar
  26. Evershed, R. P. (2008). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 50(6), 895–924.CrossRefGoogle Scholar
  27. Evershed, R. P., Heron, C., & Goad, L. J. (1990). Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst, 115, 1339–1342.CrossRefGoogle Scholar
  28. Fiore, D., Maier, M., Parera, S. D., Orquera, L., & Piana, E. (2008). Chemical analyses of the earliest pigment residues from the uttermost part of the planet (Beagle Channel region, Tierra del Fuego, Southern South America). Journal of Archaeological Science, 35, 3047–3056.CrossRefGoogle Scholar
  29. Fullagar, R. (2006). Residues and usewear. In J. Balme & A. Paterson (Eds.), Archaeology in practice. A student guide to archaeology analyses (pp. 207–234). Malden: Blackwell Publishing.Google Scholar
  30. Fullagar, R., Hayes, E., Stephenson, B., Field, J., Matheson, C., Stern, N., & Fitzsimmons, K. (2015). Evidence for Pleistocene seed grinding at Lake Mungo, south-eastern Australia. Archaeology in Oceania, 50, 3–19.CrossRefGoogle Scholar
  31. van Gijn, Chan B., Langejans, G., Sorensen, A., Tsoraki, C., & Verbaas, A. (Eds.) (2015). AWRANA 2015 Connecting people and technologies. Abstract book.Google Scholar
  32. Gomes, H., Collado, H., Martins, A., Nash, G. H., Rosina, P., Vaccaro, C., & Volpe, L. (2014). Pigment in Western Iberian schematic rock art: An analytical approach. Mediterranean Archaeology and Archaeometry, 15(1), 163–175.Google Scholar
  33. Gurfinkel, D. M., & Frankling, U. M. (1988). A study of the feasibility of detecting blood residue on artifacts. Journal of Archaeological Science, 15, 83–97.CrossRefGoogle Scholar
  34. Hardy, B. L., & Garufi, G. T. (1998). Identification of woodworking on stone tools through residue and use-wear analysis: Experimental results. Journal of Archaeological Science, 25, 177–184.CrossRefGoogle Scholar
  35. Hardy, B. L., & Moncel, H. M. (2011). Neanderthal use of fish, mammals, birds, starchy plants and wood 125-250,000 years ago. PloS One, 6(8), e23768. doi: 10.1371/journal.pone.0023768.CrossRefGoogle Scholar
  36. Hardy, B. L., Kay, M., Marks, A. E., & Monigal, K. (2001). Stone tool function at the Paleolithic sites of Starosele and buran Kaya III, Crimea: Behavioral implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10972–10977.CrossRefGoogle Scholar
  37. Hardy, B. L., Moncel, M. H., Daujeard, C., Fernandes, P., Béarez, P., Desclaux, E., Chacón Navarro, M. G., Puaud, S., & Gallotti, R. (2013). Impossible Neanderthals? Making string, throwing projectiles and catching small game during marine isotope stage 4 (Abri du Maras, France). Quaternary Science Reviews, 82, 23–40.CrossRefGoogle Scholar
  38. Haslam, M. (2005). The decomposition of starch grains in soils: Implications for archaeological residue analyses. Journal of Archaeological Science, 31, 1715–1734.CrossRefGoogle Scholar
  39. Haslam, M., Robertson, G., Crowther, A., Nugent, S., & Kirkwood, L. (Eds.) (2009). Archaeological science under the microscope. Studies in residues and ancient DNA analysis in honour of Thomas H. Loy. Terra Australis, 30, ANU E Press.Google Scholar
  40. Hauck, T. C., Connan, J., Charrié-Duhaut, A., Le Tensorer, J. M., & al Sakhel, H. (2013). Molecular evidence of bitumen in the Mousterian lithic assemblage of Hummal (Central Syria). Journal of Archaeological Science, 40, 3252–3262.CrossRefGoogle Scholar
  41. Helwig, K., Monahan, V., Poulin, J., & Andrews, T. D. (2014). Ancient projectile weapons from ice patches in northwestern Canada: Identification of resin and compound resin-ochre hafting adhesives. Journal of Archaeological Science, 41, 655–665.CrossRefGoogle Scholar
  42. Herdion, L., Verlaque, R., Saltonstall, K., Leriche, A., & Vila, B. (2014). Origin of the invasive Arundo donax (Poacee): A trans-Asian expedition in herbaria. Annals of Botany, 114, 455–462.CrossRefGoogle Scholar
  43. Högberg, A., Puseman, K., & Yost, C. (2009). Integration of use-wear with protein residue analysis- a study of tool use and function in the south Scandinavian early Neolilthic. Journal of Archaeological Science, 36, 1725–1737.CrossRefGoogle Scholar
  44. Hortolà, P. (2005). SEM examination of human erythrocytes in uncoated bloodstains on stone: Use of conventional as environmental-like SEM in a soft biological tissue (and hard inorganic material). Journal of Microscopy, 2(218), 94–103.CrossRefGoogle Scholar
  45. Hurcombe, L. M., (1986). Residue studies on obsidian tools. In L. R. Owen, G. Unrath (Eds), Technical Aspects of Microwear Studies on Stone Tools. Early Man News 9/10/11 (pp. 83–90).Google Scholar
  46. Jahren, A. H., Toth, N., Schick, K., Clark, J. D., & Amundson, R. G. (1997). Determining stone tool use: Chemical and morphological analyses of residues on experimentally manufactured stone tools. Journal of Archaeological Science, 24, 245–250.CrossRefGoogle Scholar
  47. Kealhofer, L., Torrence, R., & Fullagar, R. (1999). Integrating phytoliths within use-wear/residue studies of stone tools. Journal of Archaeological Science, 26, 527–546.CrossRefGoogle Scholar
  48. Kooyman, B., Newman, M. E., & Ceri, H. (1992). Verifying the reliability of blood residue analysis on archaeological tools. Journal of Archaeological Science, 19, 265–269.CrossRefGoogle Scholar
  49. Langejans, G. H. J. (2010). Remains of the day-preservation of organic micro-residues on stone tools. Journal of Archaeological Science, 37, 971–985.CrossRefGoogle Scholar
  50. Langejans, G. H. J. (2011). Discerning use-related micro-residues on tools: Testing the multi-stranded approach for archaeological studies. Journal of Archaeological Science, 38, 985–1000.CrossRefGoogle Scholar
  51. Langejans, G. H. J. (2012). Middle stone age pièces esquillées from Sibudu Cave, South Africa: An initial micro-residue study. Journal of Archaeological Science, 39, 1694–1704.CrossRefGoogle Scholar
  52. Launey, M., Chen, P. Y., McKittrick, J., & Ritchie, R. O. (2010). Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 6, 1505–1514.CrossRefGoogle Scholar
  53. Lemorini, C., & Nunziante, S. (Eds.). (2014). Proceeding of the international conference “an integration of use wear and residues analysis for the identification of the function of archaeological stone tools”. Oxford: BAR International Series, 2649.Google Scholar
  54. Lombard, M. (2004). Distribution patterns of organic residues on Middle stone age points from Sibudu Cave, Kwazulu-Natal, South Africa. South African Archaeological Bulletin, 59(180), 37–44.CrossRefGoogle Scholar
  55. Lombard, M. (2005). Evidence of hunting during the Middle stone age at Sibudu Cave, KwaZulu-Natal, South Africa: A multianalytical approach. Human Evolution, 48, 279–300.CrossRefGoogle Scholar
  56. Lombard, M. (2008). Finding resolution for the Howiesons Poort through the microscope: Micro-residue analysis of segments from Sibudu Cave, South Africa. Journal of Archaeological Science, 35(1), 26–41.CrossRefGoogle Scholar
  57. Lombard, M., & Wadley, L. (2007). The morphological identification of micro-residues on stone tools using light microscopy: Progress and difficulties based on blind tests. Journal of Archaeological Science, 34(1), 155–165.CrossRefGoogle Scholar
  58. Loy, T. H. (1983). Prehistoric blood residues: Detection on tool surfaces and identification of species of origin. Science, 220, 1269–1271.CrossRefGoogle Scholar
  59. Loy, T. H., & Dixon, E. J. (1998). Blood residues on fluted points from eastern Beringia. American Antiquity, 63(1), 21–46.CrossRefGoogle Scholar
  60. Luo, W., Li, T., Wang, C., & Huang, F. (2012). Discovery of beeswax as binding agent on a 6th-century BC Chinese turquoise-inlaid bronze sword. Journal of Archaeological Science, 39, 1227–2137.CrossRefGoogle Scholar
  61. Manning, A. P. (1994). A cautionary note on the use of Hemastix and dot-blot assays for the detection and confirmation of archaeological blood residues. Journal of Archaeological Science, 21, 159–162.CrossRefGoogle Scholar
  62. Marreiros, J., Bicho, N., & Gibaja, J. F. (2014). International conference on use-wear analysis. Use-wear 2012. UK: Cambridge Scholar Publishing.Google Scholar
  63. Mazza, P. P. A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., Landucci, F., Lemorini, C., Modugno, F., & Ribechini, E. (2006). A new Palaeolithic discovery: Tar-hafted stone tools in a European mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 1310–1318.CrossRefGoogle Scholar
  64. Mescher, A. L., & Junqueira, L. C. U. (2013). Junqueira’s basic histology: Text and atlas. China: The McGraw-Hill Companies.Google Scholar
  65. Monnier, G. F., Ladwig, J. L., & Porter, S. T. (2012). Swept under the rug: The problem ofunacknowledged ambiguity in lithic residue identification. Journal of Archaeological Science, 39, 3284–3300.CrossRefGoogle Scholar
  66. Monnier, G. F., Hauck, T. C., Feinberg, J. M., Luo, B., Le Tensorer, J. M., & al Sakhel, H. (2013). A multi-analytical methodology of lithic residue analysis applied to Paleolithictools from Hummal, Syria. Journal of Archaeological Science, 40, 3722–3739.CrossRefGoogle Scholar
  67. Monnier, G. F., Frahm, E., Luo, B., & Missal, K. (2017). Developing FTIR microspectroscopy for analysis of plant residues on stone tools. Journal of Archaeological Science, 78, 158–178.CrossRefGoogle Scholar
  68. Ollé, A., & Vergès, J. M. (2014). The use of sequential experiments and SEM in documenting stone tool microwear. Journal of Archaeological Science, 48, 60–72.CrossRefGoogle Scholar
  69. Ollé, A., Mosquera, M., Rodríguez, X. P., de Lombera-Hermida, A., García-Antón, M. D., García-Medrano, P., Pena, L., Menendez, L., Navazo, M., Terradillos, M., Bargallo, A., Márquez, B., Sala, R., & Carbonell, E. (2013). The early and Middle Pleistocene technological record from Sierra de Atapuerca (Burgos, Spain). Quaternary International, 295, 138–167.CrossRefGoogle Scholar
  70. Ollé, A., Pawlik, A. F., Longo, L., Skakun, N., Gibaja, J. F., & Sala, R. (2017). New contributions to the functional analysis of prehistoric tools. Quaternary International, 427B, 2–5.Google Scholar
  71. Oudemans, T. F. M., Eijkel, G. B., & Boon, J. J. (2007). Identifying biomolecular origins of solid residues preserved in iron pottery using DTMS and MVA. Journal of Archaeological Science, 34, 173–193.CrossRefGoogle Scholar
  72. Pawlik, A. F. (2004a). Identification of hafting traces and residues by scanning electron microscopy and energy-dispersive analysis of x-rays. In E. A. Walker, F. Wenban Smith, & F. Healy (Eds.), Lithics in Action: Papers from the conference “lithic studies in the year 2000” (pp. 169–179). Oxford: Oxbow Books.Google Scholar
  73. Pawlik, A. F. (2004b). An early bronze age pocket lighter. In E. A. Walker, F. Wenban-Smith, & F. Healy (Eds.), Lithics in Action: Papers from the conference “lithic studies in the year 2000” (pp. 153–155). Oxford: Oxbow Books.Google Scholar
  74. Pawlik, A. F., & Thissen, J. P. (2011). Hafted armatures and multi-component design atthe Micoquian site of Inden-Altdorf, Germany. Journal of Archaeological Science, 38, 1699–1708.CrossRefGoogle Scholar
  75. Pedergnana, A., & Blasco, R. (2016). Characterising the exploitation of avian resources: An experimental combination of lithic use-wear, residue and taphonomic analyses. Quaternary International, 421, 255–269.CrossRefGoogle Scholar
  76. Pedergnana, A., & Ollé, A. (2017). Monitoring and interpreting the use-wear formation processes on quartzite flakes through sequential experiments. Quaternary International, 427B, 35–65.Google Scholar
  77. Pedergnana, A., Asryan, L., Fernández-Marchena, J. L., & Ollé, A. (2016). Modern contaminants affecting microscopic residue analysis on stone tools: A word of caution. Micron, 86, 1–21.CrossRefGoogle Scholar
  78. Pedergnana, A., García-Antón, M. D., & Ollé, A. (2017). Structural study of two quartzite varieties from the Utrillas facies formation (Olmos de Atapuerca, Burgos, Spain): From a petrographic characterisation to a functional analysis design. Quaternary International, 433, 163–178.Google Scholar
  79. Perrault, K. A., Stefanuto, P. H., Dubois, L., Cnuts, D., Rots, V., & Focant, J. F. (2016). A new approach for the characterization of organic residues from stone tools using GCxGC-TOFMS. Separations, 2016, 3(16). doi: 10.3390/separations3020016.Google Scholar
  80. Piperno, D. R. (1984). A comparison and differentiation of phytoliths from maize and wild grass: Use of morphological criteria. American Antiquity, 49(2), 361–383.CrossRefGoogle Scholar
  81. Prinsloo, L. C., Wadley, L., & Lombard, M. (2014). Infrared reflectance spectroscopy as analytical technique for the study of residues on stone tools: Potential and challenges. Journal of Archaeological Science, 41, 732–739.CrossRefGoogle Scholar
  82. Rifkin, R. F., Prinsloo, L. C., Dayet, L., Haaland, M. M., Henshilwood, C. S., Lozano Diz, E., Moyo, S., Vogelsang, R., & Kambombo, F. (2016). Characterising pigments on 30 000-year-old portable art from Apollo 11 Cave, Karas region, Southern Namibia. Journal of Archaeological Science: Reports, 5, 336–347.CrossRefGoogle Scholar
  83. Rodríguez, J., Burjachs, F., Cuenca-Bescós, G., García, N., Made, J. V. D., PérezGonzález, A., Blain, H., Expósito, I., López-García, J. M., García Antón, M., Allué, E., Cáceres, I., Huguet, R., Mosquera, M., Ollé, A., Rosell, J., Parés, J. M., Rodríguez, X. P., Díez, J. C., Rofes, J., Sala, R., Saladié, P., Vallverdú, J., Bennàsar, L., Blasco, R., Bermúdez de Castro, J. M., & Carbonell, E. (2011). One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain). Quaternary Science Reviews, 30, 1396–1412.CrossRefGoogle Scholar
  84. Rodríguez-Hidalgo, A., Saladié, P., Ollé, A., & Carbonell, E. (2015). Hominin subsistence and site function of TD10.1 bone bed level at Gran Dolina site (Atapuerca) during the late Acheulean. Journal of Quaternary Science, 30, 679–701.CrossRefGoogle Scholar
  85. Rots, V. (2010). Prehension and hafting traces on Flint tools. A methodology. Leuven: Leuven University Press.Google Scholar
  86. Rots, V., & Williamson, B. S. (2004). Microwear and residues analyses in perspective: The contribution of ethnoarchaeological evidence. Journal of Archaeological Science, 31, 1287–1299.CrossRefGoogle Scholar
  87. Rots, V., Hardy, B. L., Serangeli, J., & Conard, N. J. (2015). Residue and microwear analyses of the stone artifacts from Shöningen. Journal of Human Evolution, 89, 298–308.CrossRefGoogle Scholar
  88. Rots, V., Hayes, E., Cnuts, D., Lepers, C., & Fullagar, R. (2016). Making sense of residues on flaked stone artefacts: Learning from blind tests. PloS One, 11(3), e0150437. doi: 10.1371/journal.pone.0150437.CrossRefGoogle Scholar
  89. Rowell, R. M. (2005). Handbook of wood chemistry and wood composites. FL: CRC Press, Taylor and Francis Group.Google Scholar
  90. Seeman, M. F., Nilson, N. E., Summers, G. L., Morris, L. L., Barans, P. J., Dowd, E., & Newman, E. (2008). Evaluating protein residues on Gainey phase Paleoindian stone tools. Journal of Archaeological Science, 35, 2742–2750.CrossRefGoogle Scholar
  91. Semenov, S. A. (1964). Prehistoric technology. London: Cory, Adams and Mackay.Google Scholar
  92. Shafer, H. J., & Holloway, R. G. (1979). Organic residue analysis in determining stone tool function. In B. Hayden (Ed.), Lithic use-wear analysis (pp. 385–399). New York: Academic Press.Google Scholar
  93. Smith, G. D., & Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science, 31, 1137–1160.CrossRefGoogle Scholar
  94. Sobolik, K. D. (1996). Lithic organic residue analysis: An example from the southwestern archaic. Journal of Field Archaeology, 23(4), 461–469.Google Scholar
  95. Solodenko, N., Zupancich, A., Nunziante Cesaro, S., Marder, O., Lemorini, C., & Barkai, R. (2015). Fat residue and use-wear found on Acheulian biface and scraper associated with butchered elephant remains at the site of Revadim, Israel. PloS One, 10(3), e0118572. doi: 10.1371/journal.pone.0118572.CrossRefGoogle Scholar
  96. Stephenson, B. (2015). A modified Picro-Sirius red (PSR) staining procedure with polarization microscopy for identifying collagen in archaeological residues. Journal of Archaeological Science, 61, 235–243.CrossRefGoogle Scholar
  97. Wadley, L., & Lombard, M. (2007). Small things in perspective: The contribution of our blind tests to micro-residue studies on archaeological stone tools. Journal of Archaeological Science, 34, 1001–1010.CrossRefGoogle Scholar
  98. Wadley, L., Lombard, M., & Williamson, B. (2004). The first residue analysis blind tests: Results and lessons learnt. Journal of Archaeological Science, 31(11), 1491–1501.CrossRefGoogle Scholar
  99. Wiederhold, J. E. (2004). Toward the standardization of use-wear studies: Constructing an analogue to prehistoric hide work. Graduate thesis submitted to the Texas A&M University.Google Scholar
  100. Xhauflair, H., (2014). Plant Use in the Subsistence Strategies of Prehistoric Huntergatherers in Palawan Island Assessed from the Lithic Industry. Building up a Reference Collection. PhD thesis submitted to the Muséum National d’Histoire Naturelle, France.Google Scholar
  101. Xhauflair, H., Pawlik, A., Forestier, H., Saos, T., Dizon, E., & Gailalrd, C. (2017). Use-related or contamination? Residue and use-wear mapping on stone tools used for experimental processing of plants from Southeast Asia. Quaternary International, 427B, 80–93.Google Scholar
  102. Yohe II, R. M., & Bamforth, D. B. (2013). Late Pleistocene protein residues from the Mahaffy cache, Colorado. Journal of Archaeological Science, 40, 2337–2343.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.IPHES, Institut Català de Paleoecologia Humana i Evolució SocialTarragonaSpain
  2. 2.Àrea de PrehistòriaUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Histoire Naturelle de l’Homme Préhistorique (HNHP, UMR 7194)Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Université Perpignan Via DominicaParisFrance

Personalised recommendations