Journal of Archaeological Method and Theory

, Volume 25, Issue 1, pp 254–288 | Cite as

Core Use-Life Distributions in Lithic Assemblages as a Means for Reconstructing Behavioral Patterns

  • Matthew J. DouglassEmail author
  • Sam C. Lin
  • David R. Braun
  • Thomas W. Plummer


Artifacts with varying use-lives have different discard rates and hence are represented unequally among archaeological assemblages. As such, the ability to gauge the use-lives of artifacts is important for understanding the formation of archaeological assemblage variability. In lithic artifacts, use-life can be expressed as the extraction of utility, or work potential, from existing stone volume. Using experimental data and generalized linear modeling, this study develops models of artifact use-life on cores in the form of reduction intensity. We then apply these models to two archaeological case studies to (a) reconstruct the reduction intensities of archaeological cores and (b) investigate the survivorship curves of these archaeological cores across the reduction continuum using the Weibull function. Results indicate variation in core reduction and maintenance with respect to raw material properties and place use history and implicate evolutionary differences between Early Stone Age hominins and Holocene modern humans.


Stone artifacts Reduction Use-life Survivorship Curation 



The impetus for this collaboration is owed to meetings in Leipzig, Honolulu, Philadelphia, Washington DC, and Nairobi. Travel support was provided by Max Planck Institute for Evolutionary Anthropology, the Kolb Foundation of Penn Museum, the Maude Hammond Fling Faculty Research Fellowship and the Graduate Research Council Grant in Aid of the University of Nebraska-Lincoln, and the George Washington University. Roger Mundry and Tim Weaver provided invaluable statistical guidance and assistance. The R functions for model dispersion parameter and R 2-like effect are courtesy of Roger Mundry. This work was supported by grants from the National Science Foundation to TP (BCS-1327047) and DRB (BCS-0241396,1219455) [.]

Supplementary material

10816_2017_9334_MOESM1_ESM.7z (20 kb)
ESM 1 (7Z 19 kb)


  1. Ammerman, A., & Feldman, M. (1974). On the ‘making’ of an assemblage of stone tools. American Antiquity, 39, 610–616.CrossRefGoogle Scholar
  2. Andrefsky, W. (1994). Raw-material availability and the organization of technology. American Antiquity, 59, 21–34.CrossRefGoogle Scholar
  3. Andrefsky, W. (2006). Experimental and archaeological verification of an index of retouch for hafted bifaces. American Antiquity, 71, 743–757.CrossRefGoogle Scholar
  4. Bamforth, D. B., & Becker, M. S. (2000). Core/biface ratios, mobility, refitting, and artifact use-lives: a Paleoindian example. The Plains Anthropologist, 45, 273–290.CrossRefGoogle Scholar
  5. Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68, 255–278.CrossRefGoogle Scholar
  6. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.CrossRefGoogle Scholar
  7. Bradbury, A.P., and P.J. Carr. (1999) Examining stage and continuum models of flake debris analysis: an experimental approach. Journal of Archaeological Science, 26(1,) 105-116.Google Scholar
  8. Bradbury, A. P., & Franklin, J. D. (2000). Raw material variability, package size, and mass analysis. Lithic Technology, 25, 42–58.CrossRefGoogle Scholar
  9. Braun, D. R. (2005). Examining flake production strategies: examples from the Middle Paleolithic of Southwest Asia. Lithic Technology, 30, 107–125.CrossRefGoogle Scholar
  10. Braun, D.R., (2006). The ecology of Oldowan technology: perspectives from Koobi Fora and Kanjera South. Unpublished Ph.D. dissertation, Department of Anthropology, Rutgers University, New Brunswick.Google Scholar
  11. Braun, D. R., Harris, J. W. K., & Maina, D. N. (2009c). Oldowan raw material procurement and use: evidence from the Koobi Fora Formation. Archaeometry, 51(2009), 26–42.CrossRefGoogle Scholar
  12. Braun, D. R., Tactikos, J. C., Ferraro, J. V., & Harris, J. W. K. (2005). Flake recovery rates and inferences of Oldowan hominin behavior: a response to Kimura 1999, 2002. Journal of Human Evolution, 48, 525–531.CrossRefGoogle Scholar
  13. Braun, D. R., Tactikos, J. C., Ferraro, J. V., & Harris, J. W. K. (2006). Archaeological inference and Oldowan behavior. Journal of Human Evolution, 51, 106–108.CrossRefGoogle Scholar
  14. Braun, D. R., Rogers, M. J., Harris, J. W. K., & Walker, S. J. (2008a). Landscape-scale variation in hominin tool use: evidence from the developed Oldowan. Journal of Human Evolution, 55, 1053–1063.CrossRefGoogle Scholar
  15. Braun, D. R., Tactikos, J. C., Ferraro, J. V., Arnow, S. L., & Harris, J. W. K. (2008b). Oldowan reduction sequences: methodological considerations. Journal of Archaeological Science, 35, 2153–2163.CrossRefGoogle Scholar
  16. Braun, D. R., Plummer, T., Ditchfield, P., Ferraro, J. V., Maina, D., Bishop, L. C., & Potts, R. (2008c). Oldowan behavior and raw material transport: perspectives from the Kanjera Formation. Journal of Archaeological Science, 35(8), 2329–2345.CrossRefGoogle Scholar
  17. Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P., & Bishop, L. C. (2009a). Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. Journal of Archaeological Science, 36, 1605–1614.CrossRefGoogle Scholar
  18. Braun, D. R., Plummer, T. W., Ditchfield, P. W., Bishop, L. C., & Ferraro, J. V. (2009b). Oldowan technology and raw material variability at Kanjera South. In E. Hovers & D. R. Braun (Eds.), Interdisciplinary approaches to the Oldowan (pp. 99–110). New York: Springer.CrossRefGoogle Scholar
  19. Clark, G. (1977) World prehistory: in new perspective. Cambridge University Press.Google Scholar
  20. Clarkson, C. (2002a). Holocene scraper reduction, technological organization and landuse at Ingaladdi Rockshelter, Northern Australia. Archaeology in Oceania, 37, 79–86.CrossRefGoogle Scholar
  21. Clarkson, C. (2002b). An index of invasiveness for the measurement of unifacial and bifacial retouch: a theoretical, experimental and archaeological verification. Journal of Archaeological Science, 29, 65–75.CrossRefGoogle Scholar
  22. Clarkson, C. (2007). Lithics in the land of the lightening brothers: the archaeology of Wardaman Country, Northern Territory. Canberra: ANU E Press.Google Scholar
  23. Clarkson, C. (2013). Measuring core reduction using 3D flake scar density: a test case of changing core reduction at Klasies River Mouth, South Africa. Journal of Archaeological Science, 40, 4348–4357.CrossRefGoogle Scholar
  24. Clarkson, C., & Hiscock, P. (2011). Estimating original flake mass from 3D scans of platform area. Journal of Archaeological Science, 38, 1062–1068.CrossRefGoogle Scholar
  25. Clarkson, C., Shipton, C., Weisler, M. (2014). Determining the reduction sequence of Hawaiian quadrangular adzes using 3D approaches: a case study from Moloka'i. Journal of Archaeological Science 49, 361–371.Google Scholar
  26. Clarkson, C., Haslam, M., & Harris, C. (2015). When to retouch, haft, or discard? Modeling optimal use/maintenance schedules in lithic tool use. In N. Goodale & W. Andrefsky Jr. (Eds.), Lithic technological systems and evolutionary theory (pp. 117–138). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Close, A. E. (2000). Reconstructing movement in prehistory. Journal of Archaeological Method and Theory, 7, 49–77.CrossRefGoogle Scholar
  28. Core Team, R. (2015). R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  29. Davies, B., Holdaway, S. J., & Fanning, P. C. (2016). Modelling the palimpsest: an exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. The Holocene, 26, 450–463.CrossRefGoogle Scholar
  30. Delagnes, A., & Roche, H. (2005). Late Pliocene hominid knapping skills: the case of Lokalalei 2C, West Turkana, Kenya. Journal of Human Evolution, 48(5), 435–472.CrossRefGoogle Scholar
  31. Dibble, H. L. (1987). The interpretation of Middle Paleolithic scraper morphology. American Antiquity, 52, 109–117.CrossRefGoogle Scholar
  32. Dibble, H. L. (1991). Local raw material exploitation and its effects on assemblage variability. In A. Montet-White & S. Holen (Eds.), Raw material economies among prehistoric hunter-gatherers (pp. 33–47). Lawrence: University of Kansas Publications in Anthropology 19.Google Scholar
  33. Dibble, H. L. (1995a). Middle Paleolithic scraper reduction: background, clarification, and review of the evidence to date. Journal of Archaeological Method and Theory, 2, 299–368.CrossRefGoogle Scholar
  34. Dibble, H. L. (1995b). Raw material availability, intensity of utilization, and Middle Paleolithic assemblage variability. In H. L. Dibble & M. Lenoir (Eds.), The Middle Paleolithic Site of Combe-Capelle Bas (France) (pp. 289–315). Philadelphia: The University Museum, University of Pennsylvania.Google Scholar
  35. Dibble, H. L. (1997). Platform variability and flake morphology: a comparison of experimental and archaeological data and implications for interpreting prehistoric lithic technological strategies. Lithic Technology, 22, 150–170.CrossRefGoogle Scholar
  36. Dibble, H. L., & Bernard, M. C. (1981). A comparative study of basic edge angle measurement techniques. American Antiquity, 45, 857–865.CrossRefGoogle Scholar
  37. Dibble, H. L., & Pelcin, A. W. (1995). The effect of hammer mass and velocity on flake mass. Journal of Archaeological Science, 22, 429–439.CrossRefGoogle Scholar
  38. Dibble, H. L., & Whittaker, J. C. (1981). New experimental evidence on the relation between percussion flaking and flake variation. Journal of Archaeological Science, 8(3), 283–296.CrossRefGoogle Scholar
  39. Dibble, H. L., Holdaway, S. J., Lin, S. C., Braun, D. R., Douglass, M. J., Iovita, R., McPherron, S. P., Olszewski, D. I., & Sandgathe, D. (2016). Major fallacies surrounding stone artifacts and assemblages. Journal of Archaeological Method and Theory, 1–39.Google Scholar
  40. Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10, 1895–1923.CrossRefGoogle Scholar
  41. Dogandžić, T., Braun, D. R., & McPherron, S. P. (2015). Edge length and surface area of a blank: experimental assessment of measures, size predictions and utility. PloS One, 10, e0133984. doi: 10.1371/journal.pone.0133984.CrossRefGoogle Scholar
  42. Douglass, M.J. (2010). The archaeological potential of informal lithic technologies: a case study of assemblage variability in western New South Wales, Australia. Unpublished Ph.D. dissertation, Department of Anthropology, University of Auckland, Auckland.Google Scholar
  43. Douglass, M. J., and S. J. Holdaway. (2011) Quantifying stone raw material size distributions: investigating cortex proportions in lithic assemblages from western New South Wales. Changing Perspectives in Australian Archaeology, Part IV. Technical Reports of the Australian Museum, Online 23.Google Scholar
  44. Douglass, M. J., Holdaway, S. J., Fanning, P. C., & Shiner, J. I. (2008). An assessment and archaeological application of cortex measurement in lithic assemblages. American Antiquity, 73, 513–526.CrossRefGoogle Scholar
  45. Douglass, M. J., Holdaway, S. J., Shiner, J., & Fanning, P. C. (2016). Quartz and silcrete raw material use and selection in late Holocene assemblages from semi-arid Australia. Quaternary International. doi: 10.1016/j.quaint.2015.08.041.Google Scholar
  46. Elston, R. (1990). A cost-benefit model of lithic assemblage variability. In R. G. Elston & E. E. Bundy (Eds.), The archaeology of James Creek Shelter (pp. 153–164). Salt Lake City: University of Utah Anthropology Papers 115.Google Scholar
  47. Eren, M. I., & Lycett, S. J. (2016). A statistical examination of flake edge angles produced during experimental lineal Levallois reductions and consideration of their functional implications. Journal of Archaeological Method and Theory, 23, 379–398.CrossRefGoogle Scholar
  48. Eren, M. I., & Sampson, C. G. (2009). Kuhn’s Geometric Index of Unifacial Stone Tool Reduction (GIUR): does it measure missing flake mass? Journal of Archaeological Science, 36, 1243–1247.CrossRefGoogle Scholar
  49. Eren, M. I., Dominguez-Rodrigo, M., Kuhn, S. L., Adler, D. S., Le, I., & Bar-Yosef, O. (2005). Defining and measuring reduction in unifacial stone tools. Journal of Archaeological Science, 32, 1190–1201.CrossRefGoogle Scholar
  50. Faraway, J. J. (2006). Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Boca Raton: Chapman & Hall.Google Scholar
  51. Ferraro, J. V., Plummer, T. W., Pobiner, B. L., Oliver, J. S., Bishop, L. C., Braun, D. R., Ditchfield, P. W., Seaman III, J. W., Binetti, K. M., & Seaman Jr., J. W. (2013). Earliest archaeological evidence of persistent hominin carnivory. PloS One, 8, e62174.CrossRefGoogle Scholar
  52. Foley, R., & Lahr, M. M. (2003). On stony ground: lithic technology, human evolution, and the emergence of culture. Evolutionary Anthropology: Issues, News, and Reviews, 12(3), 109–122.CrossRefGoogle Scholar
  53. Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Thousand Oaks: Sage.Google Scholar
  54. Gao, X. (2013). Paleolithic cultures in China: uniqueness and divergence. Current Anthropology, 54, S358–S370.CrossRefGoogle Scholar
  55. Groucutt, H. S., Shipton, C., Alsharekh, A., Jennings, R., Scerri, E. M. L., & Petraglia, M. D. (2015). Late Pleistocene lakeshore settlement in northern Arabia: Middle Palaeolithic technology from Jebel Katefeh, Jubbah. Quaternary International, 382, 215–236.CrossRefGoogle Scholar
  56. Hiscock, P. (2006). Blunt and to the point: changing technological strategies in Holocene Australia. In I. Lilley (Ed.), Archaeology of Oceania: Australia and the Pacific Islands (pp. 69–95). Malden: Blackwell Publishing.Google Scholar
  57. Hiscock, P., & Clarkson, C. (2005). Experimental evaluation of Kuhn’s geometric index of reduction and the flat-flake problem. Journal of Archaeological Science, 32, 1015–1022.CrossRefGoogle Scholar
  58. Hiscock, P., & Clarkson, C. (2009). The reality of reduction experiments and the GIUR: reply to Eren and Sampson. Journal of Archaeological Science, 36, 1576–1581.CrossRefGoogle Scholar
  59. Hiscock, P., & Tabrett, A. (2010). Generalization, inference and the quantification of lithic reduction. World Archaeology, 42, 545–561.CrossRefGoogle Scholar
  60. Hiscock, P., Turq, A., Faivre, J.-P., & Bourguignon, L. (2009). Quina procurement and tool production. In B. Blades & B. Adams (Eds.), Lithic materials and Paleolithic societies (pp. 232–246). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  61. Holdaway, S. (1991). Resharpening reduction and lithic assemblage variability across the Middle to Upper Paleolithic transition. Unpublished Ph.D. dissertation, Department of Anthropology, University of Pennsylvania, Philadelphia.Google Scholar
  62. Holdaway, S., & Douglass, M. (2012). A twenty-first century archaeology of stone artifacts. Journal of Archaeological Method and Theory, 19, 101–131.CrossRefGoogle Scholar
  63. Holdaway, S., & Douglass, M. (2015). Use beyond manufacture: non-flint stone artifacts from Fowlers Gap, Australia. Lithic Technology, 40, 94–111.CrossRefGoogle Scholar
  64. Holdaway, S., and P. Fanning. (2014). Geoarchaeology of aboriginal landscapes in semi-arid Australia. CSIRO Publishing.Google Scholar
  65. Holdaway, S., Shiner, J., Fanning, P., & Douglass, M. (2008). Assemblage formation as a result of raw material acquisition in western New South Wales, Australia. Lithic Technology, 33, 73–85.CrossRefGoogle Scholar
  66. Holdaway, S. J., Fanning, P. C., Rhodes, E. J., Marx, S. K., Floyd, B., & Douglass, M. J. (2010). Human response to Palaeoenvironmental change and the question of temporal scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1), 192–200.CrossRefGoogle Scholar
  67. Holdaway, S. J., Douglass, M. J., & Fanning, P. C. (2012). Landscape scale and human mobility: geoarchaeological evidence from Rutherfords Creek, New South Wales, Australia. In S. J. Kluiving & E. G. B. Guttmann (Eds.), LAC 2010, Landscape & Heritage Proceedings. Amsterdam: University of Amsterdam Press.Google Scholar
  68. Holdaway, S. J., M. J. Douglass, and P. C. Fanning. (2013) A new ecological framework for understanding human–environment interactions in arid Australia. Archaeology in environment and technology: intersections and transformations: 51–68.Google Scholar
  69. Holdaway, S. J., Douglass, M. J., & Phillipps, R. (2014). Flake selection, assemblage variability and technological organization. In M. Shott (Ed.), Works in stone contemporary perspectives on lithic analysis (pp. 46–62). Salt Lake City 2014: University of Utah Press.Google Scholar
  70. Holdaway, S. J., King, G. C., Douglass, M. J., & Fanning, P. C. (2015). Human-environment interactions at regional scales: the complex topography hypothesis applied to surface archaeological records in Australia and North America. Archaeology in Oceania, 50, 58–69.CrossRefGoogle Scholar
  71. Horowitz, R. A., & McCall, G. S. (2013). Evaluating indices of curation for Archaic North American bifacial projectile points. Journal of Field Archaeology, 38, 347–361.CrossRefGoogle Scholar
  72. Ingbar, E. E., Larson, M. L., & Bradley, B. A. (1989). A non-typological approach to debitage analysis. In D. S. Amick & R. P. Mauldin (Eds.), Experiments in lithic technology (pp. 117–136). Oxford: BAR 528.Google Scholar
  73. Inizan, M. L., Reduron-Ballinger, M., Roche, H., & Tixier, J. (1999). Technology and terminology of knapped stone. Nanterre: CREP.Google Scholar
  74. Jelinek, A. (1976). Form, function, and style in lithic analysis. In C. E. Cleland (Ed.), Cultural change and continuity: essays in honor of James Bennett Griffin (pp. 19–33). New York: Academic Press.Google Scholar
  75. Key, A. J. M., & Lycett, S. J. (2011). Technology based evolution? A biometric test of the effects of handsize versus tool form on efficiency in an experimental cutting task. Journal of Archaeological Science, 38, 1663–1670.CrossRefGoogle Scholar
  76. Key, A. J. M., & Lycett, S. J. (2014). Are bigger flakes always better? An experimental assessment of flake size variation on cutting efficiency and loading. Journal of Archaeological Science, 41, 140–146.CrossRefGoogle Scholar
  77. Key, A. J. M., & Lycett, S. J. (2015). Edge angle as a variably influential factor in flake cutting efficiency: an experimental investigation of its relationship with tool size and loading. Archaeometry, 57, 911–927.CrossRefGoogle Scholar
  78. Kimura, Y. (1999). Tool-using strategies by early hominids at Bed II, Olduvai Gorge, Tanzania. Journal of Human Evolution, 37(6), 807–831.CrossRefGoogle Scholar
  79. Kimura, Y. (2002). Examining time trends in the Oldowan technology at Beds I and II, Olduvai Gorge. Journal of Human Evolution, 43(3), 291–321.CrossRefGoogle Scholar
  80. Kuhn, S. L. (1990). A geometric index of reduction for unifacial stone tools. Journal of Archaeological Science, 17, 583–593.CrossRefGoogle Scholar
  81. Kuhn, S. L. (1991). “Unpacking” reduction: lithic raw material economy in the Mousterian of west-central Italy. Journal of Anthropological Archaeology, 10, 76–106.CrossRefGoogle Scholar
  82. Le Bas, M. J. (1977). Carbonatite-nephelinite volcanism: an African case history. Cambridge: Cambridge University Press.Google Scholar
  83. Lemorini, C., Plummer, T. W., Braun, D., Crittenden, A., Marlowe, F., Bishop, L. C., Ditchfield, P., Hertel, F., Oliver, J., Schoeninger, M., & Potts, R. (2014). Old stones song: functional interpretation of the Oldowan quartz and quartzite assemblage from Kanjera South (Kenya). Journal of Human Evolution, 72, 10–25.CrossRefGoogle Scholar
  84. Li, H., Kuman, K., & Li, C. (2015). Quantifying the reduction intensity of handaxes with 3D technology: a pilot study on handaxes in the Danjiankou Reservoir region, central China. PloS One, 10, e0135613.CrossRefGoogle Scholar
  85. Lin, S. C., Rezek, Z., Braun, D., Dibble, H. L. (2013). On the utility and economization of unretouched lakes: the effects of exterior platform angle and platform depth. American Antiquity 78, 724–745Google Scholar
  86. Lin, S. C., McPherron, S. P., & Dibble, H. L. (2015). Establishing statistical confidence in Cortex Ratios within and among lithic assemblages: a case study of the Middle Paleolithic of southwestern France. Journal of Archaeological Science, 59, 89–109.CrossRefGoogle Scholar
  87. Lin, S. C., Pop, C., Dibble, H. L., Archer, W., Desta, D., Weiß, M., & McPherron, S. P. (2016). A core reduction experiment finds no effect of original stone size and reduction intensity on flake debris size distribution. American Antiquity, 81(3), 562–575.CrossRefGoogle Scholar
  88. Lycett, S. J., Eren, M. I. (2013). Levallois economics: an examination of ‘waste’ production in experimentally produced Levallois reduction sequences. Journal of Archaeological Science 40, 2384–2392.Google Scholar
  89. Machin, A. J., Hosfield, R. T., & Mithen, S. J. (2007). Why are some handaxes symmetrical? Testing the influence of handaxe morphology on butchery effectiveness. Journal of Archaeological Science, 34, 883–893.CrossRefGoogle Scholar
  90. Magne, M. (1989). Lithic reduction stages and assemblage formation processes. Experiments in lithic technology, 14, 15–31.Google Scholar
  91. Magne, M., & Pokotylo, D. (1981). A pilot study in bifacial lithic reduction sequences. Lithic Technology, 6, 34–47.CrossRefGoogle Scholar
  92. Marwick, B. (2016). Computational reproducibility in archaeological research: basic principles and a case study of their implementation. Journal of Archaeological Method and Theory, 1–27.Google Scholar
  93. Morrow, J. E. (1997). End scraper morphology and use-life: an approach for studying Paleoindian lithic technology and mobility. Lithic Technology, 22, 70–85.CrossRefGoogle Scholar
  94. Muller, A., & Clarkson, C. (2014). Estimating original flake mass on blades using 3D platform area: problems and prospects. Journal of Archaeological Science, 52, 31–38.CrossRefGoogle Scholar
  95. Muller, A., & Clarkson, C. (2016). Identifying major transitions in the evolution of lithic cutting edge production rates. PloS One, 11, e0167244.CrossRefGoogle Scholar
  96. Nieuwenhuis, C. J. (1998). Unattractive but effective: unretouched pointed flakes as projectile points? A closer look at the Abriense and Tequendamiense Artifacts. In M. G. Plew (Ed.), Explorations in American archaeology: essays in honor of Wesley R. Hurt (pp. 133–163). Lanham: University Press of America.Google Scholar
  97. Parker, D. (2011). The complexity of lithic simplicity: computer simulation of lithic assemblage formation in western New South Wales, Australia. Unpublished Thesis, University of Auckland.Google Scholar
  98. Pelcin, A.W., (1996). Controlled experiments in the production of flake attributes. Unpublished Ph.D., dissertation, Department of Anthropology, University of Pennsylvania, Philadelphia.Google Scholar
  99. Pelcin, A. W. (1997). The effect of core surface morphology on flake attributes: evidence from a controlled experiment. Journal of Archaeological Science, 24, 749–756.CrossRefGoogle Scholar
  100. Pelcin, A. W. (1998). The formation of flakes: the role of platform thickness and exterior platform angle in the production of flake initiations and terminations. Journal of Archaeological Science, 24, 1107–1113.CrossRefGoogle Scholar
  101. Plummer, T. (2004). Flaked stones and old bones: biological and cultural evolution at the dawn of technology. American Journal of Physical Anthropology, 125, 118–164.CrossRefGoogle Scholar
  102. Plummer, T. W., Bishop, L., Ditchfield, P., & Hicks, J. (1999). Research on late Pliocene Oldowan sites at Kanjera South, Kenya. Journal of Human Evolution, 36, 151–170.CrossRefGoogle Scholar
  103. Plummer, T. W., Ditchfield, P. W., Bishop, L. C., Kingston, J. D., Ferraro, J. V., Braun, D. R., Hertel, F., & Potts, R. (2009). Oldest evidence of toolmaking hominins in a grassland-dominated ecosystem. PloS One, 4, e7199.CrossRefGoogle Scholar
  104. Potts, R. (1991). Why the Oldowan? Plio-Pleistocene toolmaking and the transport of resources. Journal of Anthropological Research, 153–176.Google Scholar
  105. Prasciunas, M. M. (2007). Bifacial cores and flake production efficiency: an experimental test of technological assumptions. American Antiquity, 72, 334–348.CrossRefGoogle Scholar
  106. Riel-Salvatore, J., & Barton, C. M. (2004). Late Pleistocene technology, economic behavior, and land-use dynamics in southern Italy. American Antiquity, 69, 257–274.CrossRefGoogle Scholar
  107. Rolland, N., & Dibble, H. L. (1990). A new synthesis of Middle Paleolithic variability. American Antiquity, 55, 480–499.CrossRefGoogle Scholar
  108. Schiffer, M B. (1987) Formation processes of the archaeological record. University of Utah Press, 1987.Google Scholar
  109. Schoville, B. J. (2010). Frequency and distribution of edge damage on Middle Stone Age lithic points, Pinnacle Point 13B, South Africa. Journal of Human Evolution, 59, 378–391.CrossRefGoogle Scholar
  110. Shiner, J., Holdaway, S., Allen, H., & Fanning, P. (2007). Burkes cave and flaked stone assemblage variability in western New South Wales, Australia. Australian Archaeology, 64, 35–45.CrossRefGoogle Scholar
  111. Shipton, C. (2011). Taphonomy and behaviour at the Acheulean site of Kariandusi, Kenya. African Archaeological Review, 28, 141–155.CrossRefGoogle Scholar
  112. Shipton, C., & Clarkson, C. (2015a). Flake scar density and handaxe reduction intensity. Journal of Archaeological Science: Reports, 2, 169–175.CrossRefGoogle Scholar
  113. Shipton, C., & Clarkson, C. (2015b). Handaxe reduction and its influence on shape: an experimental test and archaeological case study. Journal of Archaeological Science: Reports, 3, 408–419.CrossRefGoogle Scholar
  114. Shott, M. J. (1989). On tool-class use lives and the formation of archaeological assemblages. American Antiquity, 54, 9–30.CrossRefGoogle Scholar
  115. Shott, M. J. (1994). Size and form in the analysis of flake debris: review and recent approaches. Journal of Archaeological Method and Theory, 1, 69–110.CrossRefGoogle Scholar
  116. Shott, M. J. (1995). How much is a scraper? Curation, use rates and the formation of scraper assemblages. Lithic Technology, 20, 53–72.Google Scholar
  117. Shott, M. J. (1996). An exegesis of the curation concept. Journal of Anthropological Research, 52, 259–280.CrossRefGoogle Scholar
  118. Shott, M. J. (2002). Weibull estimation on use life distribution in experimental spear-point data. Lithic Technology, 27, 93–109.CrossRefGoogle Scholar
  119. Shott, M. J. (2007). The role of reduction analysis in lithic studies. Lithic Technology, 32, 131–141.CrossRefGoogle Scholar
  120. Shott, M. J. (2010). Stone-tool demography: reduction distributions in North American Paleoindian tools. In S. Lycett & P. Chauhan (Eds.), New perspectives on old stones: analytical approaches to Paleolithic technologies (pp. 275–293). New York: Springer.CrossRefGoogle Scholar
  121. Shott, M. J., & Ballenger, J. A. M. (2007). Biface reduction and the measurement of Dalton curation: a southeastern United States case study. American Antiquity, 72, 153–175.CrossRefGoogle Scholar
  122. Shott, M. J., & Seeman, M. F. (2015). Curation and recycling: estimating Paleoindian endscraper curation rates at Nobles Pond, Ohio, USA. Quaternary International, 361, 319–331.CrossRefGoogle Scholar
  123. Shott, M. J., & Sillitoe, P. (2004). Modeling use-life distributions in archaeology using New Guinea Wola ethnographic data. American Antiquity, 69, 339–355.CrossRefGoogle Scholar
  124. Shott, M. J., & Sillitoe, P. (2005). Use life and curation in New Guinea experimental used flakes. Journal of Archaeological Science, 32, 653–663.CrossRefGoogle Scholar
  125. Shott, M. J., & Weedman, K. J. (2007). Measuring reduction in stone tools: an ethnoarchaeological study of Gamo hidescrapers from Ethiopia. Journal of Archaeological Science, 34, 1016–1035.CrossRefGoogle Scholar
  126. Shott, M. J., Bradbury, A. P., Carr, P. J., & Odell, G. H. (2000). Flake size from platform attributes: predictive and empirical approaches. Journal of Archaeological Science, 27, 877–894.CrossRefGoogle Scholar
  127. Surovell, T. A. (2012). Toward a behavioral ecology of lithic technology: cases from Paleoindian archaeology. Tucson: University of Arizona Press.Google Scholar
  128. Therneau, T. (2015). A package for survival analysis in S, version 2.38.
  129. Thoen, E. (2013). Creating good looking survival curves—the ‘ggsurv’ function. R-statistics blog. Accessed 16 February 2016.
  130. Turq, A., Roebroeks, W., Bourguignon, L., & Faivre, J.-P. (2013). The fragmented character of Middle Palaeolithic stone tool technology. Journal of Human Evolution, 65, 641–655.CrossRefGoogle Scholar
  131. van Vuuren, M., de Jong, M. T. D., & Seydel, E. R. (2007). Direct and indirect effects of supervisor communication on organizational commitment. Corporate Communications: An International Journal, 12, 116–128.CrossRefGoogle Scholar
  132. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). New York: Springer.CrossRefGoogle Scholar
  133. White, J. P. (1977). Crude, colourless and unenterprising? Prehistorians and their views on the stone age of Sunda and Sahul. In J. Allen, J. Golson, & R. Jones (Eds.), Sunda and Sahul: prehistoric studies in Southeast Asia, Melanesia and Australia (pp. 13–30). London: Academic.Google Scholar
  134. Wichham, H. (2009). ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
  135. Williams, J. P., & Andrefsky, W. (2011). Debitage variability among multiple flint knappers. Journal of Archaeological Science, 38, 865–872.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Matthew J. Douglass
    • 1
    Email author
  • Sam C. Lin
    • 2
    • 3
  • David R. Braun
    • 2
    • 4
    • 5
  • Thomas W. Plummer
    • 6
  1. 1.College of Agricultural Sciences and Natural ResourcesUniversity of Nebraska-LincolnLincolnUSA
  2. 2.Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
  3. 3.School of Earth and Environmental SciencesUniversity of WollongongWollongongAustralia
  4. 4.Center for the Advanced Study of Human PaleobiologyGeorge Washington UniversityWashingtonUSA
  5. 5.Department of AnthropologyGeorge Washington UniversityWashingtonUSA
  6. 6.Department of Anthropology, Queens CollegeCity University of New York and NYCEPFlushingUSA

Personalised recommendations