Abstract
Archaeologists are often considered frontrunners in employing spatial approaches within the social sciences and humanities, including geospatial technologies such as geographic information systems (GIS) that are now routinely used in archaeology. Since the late 1980s, GIS has mainly been used to support data collection and management as well as spatial analysis and modeling. While fruitful, these efforts have arguably neglected the potential contribution of advanced visualization methods to the generation of broader archaeological knowledge. This paper reviews the use of GIS in archaeology from a geographic visualization (geovisual) perspective and examines how these methods can broaden the scope of archaeological research in an era of more user-friendly cyber-infrastructures. Like most computational databases, GIS do not easily support temporal data. This limitation is particularly problematic in archaeology because processes and events are best understood in space and time. To deal with such shortcomings in existing tools, archaeologists often end up having to reduce the diversity and complexity of archaeological phenomena. Recent developments in geographic visualization begin to address some of these issues and are pertinent in the globalized world as archaeologists amass vast new bodies of georeferenced information and work towards integrating them with traditional archaeological data. Greater effort in developing geovisualization and geovisual analytics appropriate for archaeological data can create opportunities to visualize, navigate, and assess different sources of information within the larger archaeological community, thus enhancing possibilities for collaborative research and new forms of critical inquiry.
This is a preview of subscription content, access via your institution.







Notes
The cited URL, http://indianamas.disi.unige.it, does not yet have the full visualization interface for experimentation, although individual demonstrations are available (June 2016).
Reference
Aigner, W., Miksch, S., Muller, W., Schumann, H., & Tominski, C. (2008). Visual methods for analyzing time-oriented data. IEEE Transactions on Visualization and Computer Graphics, 14(1), 47–60.
Alberti, B., Jones, A., & Pollard, J. (2013). Archaeology after interpretation: returning materials to archaeological theory. Walnut Creek: Left Coast Press.
Aldenderfer, M. S. (2010). Seeing and knowing: on the convergence of archaeological simulation and visualization. In A. Costopoulos & M. W. Lake (Eds.), Simulating change: archaeology into the twenty-first century (pp. 53–68). Salt Lake City: University of Utah Press.
Aldenderfer, M. S., & Maschner, H. D. G. (1996). Anthropology, space, and geographic information systems. New York: Oxford University Press.
Allen, K. M. S., Green, S. W., & Zubrow, E. B. W. (1990). Interpreting space: GIS and archaeology. New York: Taylor & Francis.
Allison, P. (2008). Dealing with legacy data—an introduction. Internet Archaeology, 24. doi:10.11141/ia.24.8.
Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabriaknt, S. I., Jern, M., Kraak, M.-J., Schumann, H., & Tominski, C. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577–1600.
Andrienko, G., Andrienko, N., Jankowski, P., Kraak, M.-J., Keim, D., MacEachren, A. M., & Wrobel, S. (2007). Geovisual analytics for spatial decision support. Setting the research agenda. International Journal of Geographical Information Science, 21(8), 839–857.
Andrienko, G., Andrienko, N., Keim, D., MacEachren, A. M., & Wrobel, S. (2011). Editorial. Journal of Visual Languages and Computing, 22, 251–256.
Atici, L., Kansa, S. W., Lev-Tov, J., & Kansa, E. C. (2013). Other People’s data: a demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 19, 1–19.
ArcGIS® [Computer software] (2016). Retrieved from http://www.esri.com/software/arcgis/arcgis-for-desktop.
Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology, 26(2), 198–223.
Bárdossy, G., & Fodor, J. (2001). Traditional and new ways to handle uncertainty in geology. Natural Resources Research, 10(3), 179–187.
Barton, M. (2013). Stories of the past or science of the future? Archaeology and computational social science. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 151–178). Walnut Creek, CA: Left Coast Press.
Beale, N. (2012). How community archaeology can make use of open data to achieve further its objectives. World Archaeology, 44(4), 612–633.
Bevan, A. (2012). Spatial methods for Analysing large-scale artefact inventories. Antiquity, 86, 492–506.
Bevan, A., & Conolly, J. (2004). GIS, archaeological survey, and landscape archaeology on the island of Kythera, Greece. Journal of Field Archaeology, 29(1–2), 123–138.
Bevan, A., & Lake, M. W. (2013a). Computational approaches to archaeological spaces. Walnut Creek, CA: Left Coast Press.
Bevan, A., & Lake, M. W. (2013b). Introduction: archaeological inferences and computational spaces. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 17–26). Walnut Creek, CA: Left Coast Press.
Bevan, A., Crema, E., Li, X., Palmisano, A., et al. (2013). Intensities, interactions, and uncertainties: some new approaches to archaeological distributions. In A. Bevan & M. W. Lake (Eds.), Computational approaches to archaeological spaces (pp. 27–52). Walnut Creek, CA: Left Coast Press.
Bevan, A., Pett, D., Bonacchi, C., Keinan-Schoonbaert, A., Gonzalez, D. L., Sparks, R., Wexler, J., & Wilkin, N. (2014). Citizen archaeologists. Online collaborative research about the human past. Human Computation, 1(2), 185–199. doi:10.15346/hc.v1i2.9.
Bimber, O., & Chang, C. K. (2011). Computational archaeology: reviving the past with present-day tools. IEEE Computer, 44(7), 30–31.
Bodenhamer, D. J., Corrigan, J., & Harris, T. M. (2010). The spatial humanities: GIS and the future of humanities scholarship. Bloomington: Indiana University Press.
Branting, S. (2012). Seven solutions for seven problems with least cost pathways. In D. White & S. Surface-Evans (Eds.), Least cost analysis of social landscapes: archaeological case studies (pp. 209–224). Salt Lake City: University of Utah Press.
Cartwright, W. (1997). New media and their application to the production of map products. Computers & Geosciences, 23(4), 447–456.
Chapman, H. (2006). Landscape archaeology and GIS. Letchworth Garden City, UK: Tempus Press.
Clark, C. D., Garrod, S. M., & Parker Pearson, M. (1998). Landscape archaeology and remote sensing in southern Madagascar. International Journal of Remote Sensing, 19(8), 1461–1477.
Conolly, J., & Lake, M. W. (2006). Geographical information Systems in Archaeology. New York: Cambridge University Press.
Constantinidis, D. (2007). TIME to look for a temporal GIS. In A. Figueiredo & G. Leite Velho (Eds.), The world is in your eyes CAA2005 computer applications and quantitative methods in archaeology. Proceedings of the 33rd conference, Tomar, March 2005 (pp. 407–411). Tomar: CAA Portugal.
Cooper, A., & Green, C. (2016). Embracing the complexities of ‘big data’ in archaeology: the case of the English landscape and identities project. Journal of Archaeological Method and Theory, 22(1). doi:10.1007/s10816-015-9240-4.
Costa, S., Beck, A., Bevan, A. H., & Ogden, J. (2013). Defining and advocating open data in archaeology. In G. Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska, & D. Wheatley (Eds.), Archaeology in the digital era. Papers from the 40th annual conference of computer applications and quantitative methods in archaeology Southampton 26–29 March 2012 (pp. 449–456). Amsterdam: University Press.
Costopoulos, A., & Lake, M. W. (2010). Simulating change: archaeology into the twenty-first century. Salt Lake City: University of Utah Press.
Cox, R. J., & Wallace, D. A. (2002). Archives and the public good: accountability and records in modern society. Westport, Conn: Quorum Book.
Crema, E. (2012). Modelling temporal uncertainty in archaeological analysis. Journal of Archaeological Method and Theory, 19, 440–461.
Crema, E. (2013). Cycles of change in Jomon settlement: a case study from eastern Tokyo Bay. Antiquity, 87, 1169–1181.
Crema, E., Bevan, A., & Lake, M. W. (2010). A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record. Journal of Archaeological Science, 37, 1118–1130.
De Roo, B., Ooms, K., Bourgeois, J., & De Maeyer, P. (2013). Bridging archaeology and GIS: influencing factors for a 4D archaeological GIS. In M. Ioannides, N. Magnenat-Thalmann, E. Fink, A. Yen, & E. Quak (Eds.), EuroMed 2014: digital heritage: progress in cultural heritage documentation, preservation and protection, Limassol, Cyprus, 3–8 November 2014 (pp. 186–195). Hockley, UK: Multi-Science Publishing Co. Ltd.
de Runz, C., & Desjardin, E. (2010). Imperfect spatiotemporal information analysis in a GIS: application to archaeological information completion hypothesis. In R. Jeansoulin, O. Papini, H. Prade, & S. Schockaert (Eds.), Methods for handling imperfect spatial information (pp. 341–356). Berlin: Springer.
de Runz, C., Desjardin, E., Piantoni, F., Herbin, M. (2007). Using fuzzy logic to manage uncertain multi-modal data in an archaeological GIS. Poster for International Symposium on Spatial Data Quality—ISSDQ 2007.
Deufemia, V., Paolino, L., Tortora, G., Traverso, A., Mascardi, V., Ancona, M., Martelli, M., Bianchi, N., & De Lumley, H. (2012). Investigative analysis across documents and drawings: visual analytics for archaeologists. In G. Tortora, S. Levialdi, & M. Tucci (Eds.), Proceedings of the international working conference on advanced visual interfaces (AVI '12) (pp. 539–546). New York: ACM. doi:10.1145/2254556.2254658.
Devillers, R., & Jeansoulin, R. (Eds.) (2006). Fundamentals of spatial data quality. Newport Beach, CA: ISTE.
Digital Index of North American Archaeology. (2016). http://ux.opencontext.org/archaeology-site-data/, Accessed April 25, 2016.
Djindjian, F. (2008). Webmapping in the historical and archaeological sciences: an introduction. Archeologia e Calcolatori, 19, 9–16.
Dodge, M., McDerby, M., & Turner, M. (2008). The power of geographical visualizations. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: concepts, tools and applications (pp. 1–10). Hoboken, NJ: Wiley.
Doerr, M., Schaller, K., Theodoridou, M. (2010). Integration of complementary archaeological sources. In F. Nicolucci and S. Hermon (Eds.) Beyond the artifact. Digital interpretation of the past. Proceedings of CAA2004, Prato 13–17 April 2004 (pp. 64–69). Budapest: Archaeolingua.
Doyle, J. A., Garrison, T. G., & Houston, S. D. (2012). Watchful realms: integrating GIS analysis and political history in the southern Maya lowlands. Antiquity, 86(333), 792–807.
Dykes, J., MacEachren, A. M., & Kraak, M.-J. (2005). Exploring geovisualization. Amsterdam: Elsevier.
Ebert, D. (2004). Applications of archaeological GIS. Canadian Journal of Archaeology, 28, 319–341.
Evans, T. N. L. (2015). A reassessment of archaeological Grey literature: semantics and paradoxes. Internet Archaeology, 40. doi:10.11141/ia.40.6.
Evans, T. L., & Daly, P. T. (Eds.) (2006). Digital archaeology: bridging method and theory. New York: Routledge.
Fairbairn, D., Andrienko, G., Andrienko, N., Buziek, G., & Dykes, J. (2001). Representation and its relationship with cartographic visualization. Cartography and Geographic Information Science, 28(1), 13–28.
Gaffney, V., & van Leusen, M. (1995). Postscript-GIS, environmental determinism and archaeology: a parallel text. In G. R. Lock & Z. Stančič (Eds.), Archaeology and geographical information systems: a European perspective (pp. 367–382). Bristol, PA: Taylor & Francis.
Graham, S., & Weingart, S. (2015). The equifinality of archaeological networks: an agent-based exploratory lab approach. Journal of Archaeological Method and Theory 22(1):248–274.
Green, C. (2011). It’s about time: temporality and intra-site GIS. In E. Jerem, F. Redő, & V. Szeverényi (Eds.), On the road to reconstructing the past. Computer applications and quantitative methods in archaeology (CAA). Proceedings of the 36th international conference. Budapest, April 2–6, 2008 (pp. 206–211). Budapest: Archaeolingua.
Gupta, N. (2013). What do spatial approaches to the history of archaeology tell us? Insights from post-colonial India. Complutum (Special Issue on History of Archaeology), 24(2), 189–201.
Hägerstrand, T. (1970). What about people in regional science? Papers/regional science association. Regional Science Association Meeting, 24, 7–21.
Harley, J. B. (1988). Maps, knowledge and power. In D. Cosgrove & S. Daniels (Eds.), The iconography of landscape (pp. 277–312). New York: University of Cambridge Press.
Harrower, M., & Fabrikant, S. (2008). The role of map animation for geographic visualization. In M. Dodge, M. McDerby, & M. Turner (Eds.), Geographic visualization: concepts, tools and applications (pp. 49–65). New York: John Wiley & Sons, Ltd..
Harrower, M., & Sheeshy, B. (2005). Designing better map interfaces: a framework for panning and zooming. Transactions in GIS, 9(2), 1–16.
Herzog, I. (2013). Least-cost networks. In G. Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska, & D. Wheatley (Eds.), CAA 2012, Archaeology in the Digital Era. Series: Computer Applications and Quantitative Methods in Archaeology (pp. 240–251). Amsterdam: Amsterdam University Press.
Herzog, I. (2014). Least-cost paths—some methodological issues. Internet Archaeology, 36. doi:10.11141/ia.36.5.
Holdaway, S., & Wandsnider, L. (2008). Time in archaeology : time perspectivism revisited. Salt Lake City: University of Utah Press.
Huggett, J. (2013). Disciplinary issues: challenging the research and practice of computer applications in archaeology. In G. Earl, T. Sly, A. Chrysanthi, P. Murrieta-Flores, C. Papadopoulos, I. Romanowska, & D. Wheatley (Eds.), Archaeology in the digital era. Series: computer applications and quantitative methods in archaeology (pp. 13–24). Amsterdam: Amsterdam University Press.
Huggett, J. (2015). Challenging digital archaeology. Open Archaeology, 1(1), 79–85.
Huisman, O., Santiago, I. F., Kraak, M.-J., & Retsios, B. (2009). Developing a geovisual analytics environment for investigating archaeological events: extending the space-time cube. Cartography and Geographic Information Science, 36(3), 225–236.
Johnson, I. (1999). Mapping the fourth dimension: the TimeMap project. In L. Dingwall, S. Lucie, V. Exon, S. Gaffney, M. Laflin, & V. Leusen (Eds.), Archaeology in the age of the internet. CAA97. Computer applications and quantitative methods in archaeology. Proceedings of the 25th anniversary conference, University of Birmingham, April 1997 (pp. section 2). BAR International Series 750. Oxford: Archaeopress.
Johnson, I. (2002). Contextualising archaeological information through interactive maps. Internet Archaeology, 12. doi:10.11141/ia.12.9.
Johnson, I. (2004). Aoristic analysis: seeds of a new approach to mapping archaeological distributions through time. In M. de S. Wien, R. K. Erbe, & S. Wien (Eds.), [enter the past] the E-way into the four dimensions of cultural heritage. CAA2003. Computer applications and quantitative methods in archaeology, proceedings of the 31st conference, Vienna, Austria, April 2003. BAR international series 1227 (pp. 448–452). Oxford: British Archaeological Reports.
Johnson, I. (2008). Mapping the fourth dimension: a ten year retrospective. Archeologia e Calcolatori, 19, 31–43.
Jones, E. E. (2006). Using viewshed analysis to explore settlement choice: a case study of the Onondaga Iroquois. American Antiquity, 71(3), 523–538.
Jones, E. E. (2010). An analysis of factors influencing sixteenth and seventeenth century Haudenosaunee (Iroquois) settlement locations. Journal of Anthropological Archaeology, 29, 1–14.
Journal of Open Archaeology Data (2016). About the Journal. .http://openarchaeologydata.metajnl.com/about/, Accessed 25 April 2016
Kansa, E. C. (2005). A community approach to data integration: authorship and building meaningful links across diverse archaeological data sets. Geosphere, 1(2), 97–109.
Kansa, E. C. (2011). Introduction: new directions for the digital past. In E. C. Kansa, S. W. Kansa, & E. Watrall (Eds.), Archaeology 2.0: new approaches to communication and collaboration (pp. 1–25). Los Angeles, CA: Cotsen Institute of Archaeology Press.
Kansa, E. C. (2012). Openness and Archaeology’s information ecosystem. World Archaeology, 44(4), 498–520.
Kansa, E. C., & Kansa, S. W. (2014). Data publishing and Archaeology's information ecosystem. Near Eastern Archaeology (NEA), 77(3), 223–227.
Kansa, E. C., Kansa, S. W., & Watrall, E. (Eds.) (2011). Archaeology 2.0: new approaches to communication and collaboration. Los Angeles, CA: Cotsen Institute of Archaeology Press.
Katsianis, M., Tsipidis, S., Kotsakis, K., & Kousoulakou, A. (2008). A 3D digital workflow for archaeological intra-site research using GIS. Journal of Archaeological Science, 35, 655–667.
Keim, D. A., Andrienko, G., Fekete, J.-D., Görg, C., & Kohlhammer, J. (2008). Visual analytics: definition, process, and challenges. Konstanz: Bibliothek der Universität Konstanz.
Keinan, A. (2014). MicroPasts: an experiment in crowdsourcing and crowdfunding archaeology. British Archaeology, 139, 50–55.
Kinkeldey, C., MacEachren, A. M., & Schiewe, J. (2014). How to assess visual communication of uncertainty? A systematic review of geospatial uncertainty visualisation user studies. The Cartographic Journal, 51(4), 372–386. doi:10.1179/1743277414Y.0000000099.
Kintigh, K. (2006). The promise and challenge of archaeological data integration. American Antiquity, 71(3), 567–578.
Kintigh, K. (2013). Sustaining Database Semantics. In F. Contreras, M. Farjas, & F. J. Melero (Eds.), Proceedings of the 38th annual conference on computer applications and quantitative methods in archaeology, Granada, Spain, April 2010 (pp. 585–590). BAR international series 2494. Oxford: Archaeopress.
Kintigh, K. (2015). ). Extracting information from archaeological texts. Open Archaeology, 1(1) ISSN (Online), 2300–6560. doi:10.1515/opar-2015-0004.
Kintigh, K., Altschul, J. H., Kinzig, A. P., Limp, W. F., Michener, W. K., Sabloff, J. A., Hackett, E. J., Kohler, T. A., Ludäscher, B., & Lynch, C. A. (2015). Cultural dynamics, deep time, and data: planning cyberinfrastructure investments for archaeology. Advances in Archaeological Practice, 3(1), 1–15.
Knowles, A. K. (2008). GIS and history. In A. K. Knowles & A. Hiller (Eds.), Placing history: how maps, spatial data, and GIS are changing historical scholarship (pp. 1–25). Redlands, CA: ESRI Press.
Kolar, J., Macek, M., Tkáč, P., & Szabó, P. (2015). Spatio-temporal modelling as a way to reconstruct patterns of past human activities. Archaeometry. doi:10.1111/arcm.12182.
Kosiba, S. (2011). The politics of locality: pre-Inka social landscapes of the Cusco region. In P. Johansen & A. Bauer (Eds.), The archaeology of politics: the materiality of political practice and action in the past (pp. 114–150). Cambridge: Cambridge Scholars Publishing.
Kosiba, S., & Bauer, A. M. (2013). Mapping the political landscape: toward a GIS analysis of environmental and social difference. Journal of Archaeological Method and Theory, 20(1), 61–101.
Koussoulakou, A., & Stylianidis, E. (1999). The use of GIS for the visual exploration of archaeological spatio-temporal data. Cartography and Geographic Information Science, 26(2), 152–160.
Kraak, M.-J. (2005). Timelines, temporal resolution, temporal zoom and time geography. In In ICC proceedings of the 22nd International Cartographic Conference: mapping approaches into a changing world, 9–16 July 2005, a Courna. Spain: International Cartographic Association (ICA) ISBN: 0-958-46093-0.
Kraak, M-J. & Koussoulakou, A. (2005). A visualization environment for the space-time-cube. In P. F. Fisher (Ed.), Developments in spatial data handling: 11th International Symposium on Spatial Data Handling (pp. 189–200). New York: Springer
Kratochvílová, A. (2012). Visualization of spatio-temporal data in GRASS GIS. Department of Mapping and Cartography, Faculty of Civil Engineering Branch Geoinformatics, Czech Technical University in Prague. Unpublished Master’s Thesis.
Langran, G. (1992). Time in geographic information systems. London: Taylor and Francis.
Lee, C., Devillers, R., & Hoeberb, O. (2014). Navigating spatio-temporal data with temporal zoom and pan in a multi-touch environment. International Journal of Geographical Information Science. doi:10.1080/13658816.2013.861072.
Llobera, M. (2003). Extending GIS-based visual analysis: the concept of Visualscapes. International Journal of Geographical Information Science, 17(1), 25–48.
Llobera, M. (2007). Reconstructing visual landscapes. World Archaeology, 39(1), 51–69. doi:10.1080/00438240601136496.
Llobera, M. (2011). Archaeological visualization: towards an archaeological information science (AISc). Journal of Archaeological Method and Theory, 18, 193–223.
Lloyd, D., & Dykes, J. (2011). Human-centered approaches in geovisualization design: investigating multiple methods through a long-term case study. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2498–2507.
Lock, G. R. (2000). Beyond the map: archaeology and spatial technologies. Washington, DC: IOS Press.
Lock, G.R & Harris, T. (1997). Analysing change through time within a cultural landscape: conceptual and functional limitations of a GIS approach. In Urban Origins in Eastern Africa. World Archaeological Congress, One World Series http://www.arkeologi.uu.se/digitalAssets/36/36108_1lockall.pdf.
Lock, G. R., & Stančič, Z. (Eds.) (1995). Archaeology and geographical information systems: a European perspective. Bristol, PA: Taylor & Francis.
Lucas, G. (2005). The archaeology of time. New York: Routledge.
Lucas, G. (2012). Understanding the archaeological record. New York: Cambridge University Press.
MacEachren, A. (1995). How maps work: representation, visualization and design. New York: Guilford Press.
MacEachren, A., & Ganter, J. H. (1990). A pattern identification approach to cartographic visualization. Cartographica, 27(2), 64–81.
MacEachren, A., & Kraak, M.-J. (1997). Exploratory cartographic visualization: advancing the agenda. Computers & Geosciences, 23(4), 335–343. doi:10.1016/S0098-3004(97)00018-6.
Maguire, D. J. (1991). An overview and definition of GIS. In D. J. Maguire, M. F. Goodchild, & D. W. Rhind (Eds.), Geographical information systems: principles and applications (pp. 9–20). New York: Wiley.
Maschner, H. D. G. (1996). Theory, technology, and the future of geographic information systems in archaeology. In H. D.G. Maschner (Ed.). New methods, old problems: geographic information systems in modern archaeological research (pp. 301–308). Occasional Paper, no. 23. Carbondale: Center for Archaeological Investigations, Southern Illinois University at Carbondale.
McCool, J.-P. P. (2014). PRAGIS: a test case for a web-based archaeological GIS. Journal of Archaeological Science, 41, 133–139.
McCoy, M. D., & Ladefoged, T. N. (2009). New developments in the use of spatial Technology in Archaeology. Journal of Archaeological Research, 17, 263–295.
Mehrer, M., & Wescott, K. (2006). GIS and archaeological site location modeling. Boca Raton, FL: Taylor & Francis.
Miller, P., & Richards, J. (1995). The good, the bad, and the downright misleading: archaeological adoption of computer visualisation. In J. Huggett & N. Ryan (eds.). CAA94. Computer applications and quantitative methods in archaeology 1994 (BAR international series 600) (pp. 19–22). Oxford: Tempus Reparatum.
Mlekuz, D. (2010). Exploring the topography of movement. In S. Polla & P. Verhagen (Eds.), Computational approaches to the study of movement in archaeology. Theory, practice and interpretation of factors and effects of long term landscape formation and transformation (pp. 5–22). Boston: De Gruyter.
Molyneaux, B. (Ed.) (1997). The cultural life of images: visual representation in archaeology. New York: Routledge.
Murray, T. (1999). Time and archaeology. London: Routledge.
O’Sullivan, D. (2005). Geographical information science: time changes everything. Progress in Human Geography, 29, 749–756.
Ogao, P., & Kraak, M.-J. (2002). Defining visualization operations for temporal cartographic animation design. International Journal of Applied Earth Observation and Geoinformation: JAG, 4(1), 23–31.
ORBIS: The Stanford Geospatial Network Model of the Roman World (2015). Stanford University Libraries. http://orbis.stanford.edu/ Accessed June 2016.
Pérez-Martína, E., Herrero-Tejedora, T. R., Gómez-Elviraa, M. A., Rojas-Solab, J. I., Conejo-Martina, M. A., et al. (2011). Graphic study and geovisualization of the old windmills of La Mancha (Spain). Applied Geography. doi:10.1016/j.apgeog.2011.01.006.
PeriodO. (2016). Gazetteer of period definitions for linking and visualizing data. http://perio.do/Accessed June 2016.
Perry, S. (2013). Archaeological visualization and the manifestation of the discipline: model-making at the Institute of Archaeology, London. In B. Alberti, A. M. Jones, & J. Pollard (Eds.), Archaeology after interpretation: returning materials to archaeological theory (pp. 281–303). Walnut Creek: Left Coast Press.
Peterson, M. P. (1995). Interactive and animated cartography. Englewood Cliffs, N.J: Prentice Hall.
Peuquet, D. J., & Duan, N. (1995). An event-based spatio-temporal data model (ESTDM) for temporal analysis of geographic data. International Journal of Geographical Information Systems, 9, 2–24.
Plewe, B. (2002). The nature of uncertainty in historical geographic information. Transactions in GIS, 6(4), 431–456.
Polla, S., & Verhagen, P. (Eds.) (2014). Computational approaches to the study of movement in archaeology: theory, practice and interpretation of factors and effects of long term landscape formation and transformation. Boston: De Gruyter.
Prinz, T., Walter, S., Wieghardt, A., Karberg, T., & Schreiber, T. (2014). GeoArchaeology Web 2.0: geospatial information services facilitate new concepts of Web-based data visualization strategies in archaeology—two case studies from surveys in Sudan (Wadi) and Turkey (Doliche). Archaeological Discovery, 2, 91–106. doi:10.4236/ad.2014.24011.
QGIS [Computer software] (2016). Retrieved from http://www.qgis.org/en/site/.
Rabinowitz, A. (2014). It’s about time: historical periodization and Linked Ancient World Data. ISAW Papers 7 (22). Accessed June 2016. http://dlib.nyu.edu/awdl/isaw/isaw-papers/7/rabinowitz/
Retchless, D. P. (2014). Sea level rise maps: how individual differences complicate the cartographic communication of an uncertain climate change hazard. Cartographic Perspectives, 77, 17–32.
Richards, J., Jeffrey, S., Waller, S., Ciravegna, F., Chapman, S., & Zhang, Z. (2012). The archaeology data service and the Archaeotools project: faceted classification and natural language processing. In E. C. Kansa, S. W. Kansa, & E. Watrall (Eds.), Archaeology 2.0: new approaches to communication and collaboration (pp. 31–56). Los Angeles, CA: Cotsen Institute of Archaeology Press.
Robertson, E., Seibert, J., Fernandez, D., & Zender, M. (Eds.) (2006). Space and spatial analysis in archaeology. Calgary: University of Calgary Press.
Roth, R., & Harrower, M. (2009). Addressing map interface usability: learning from the lakeshore nature preserve interactive map. Cartographic Perspectives, 60, 46–66.
Salisbury, R., & Keeler, D. (Eds.) (2007). Space—archaeology’s final frontier? An intercontinental approach. Newcastle, UK: Cambridge Scholars Publishing.
Scheidel, W. (2015). ORBIS: the Stanford geospatial network model of the Roman World. Princeton/Stanford Working Papers in Classics. http://orbis.stanford.edu/assets/Scheidel_64.pdf. Accessed June 2016.
Scianna, A., & Villa, B. (2011). GIS applications in archaeology. Archeologia e Calcolatori, 22, 337–363.
Smiles, S., & Moser, S. (2005). Envisioning the past: archaeology and the image. Malden, MA: Blackwell.
Snow, D. R., Gahegan, M., Giles, C. L., Hirth, K. G., Milner, G. R., Mitra, P., Wang, J. Z., et al. (2006). Cybertools and archaeology. Science, 311(5763), 958–959.
STEMgis [Computer software] (2016). Retrieved from http://www.discoverysoftware.co.uk/STEMgis.htm.
Stine, R. (2000). Finding the forge: geographic visualization in archaeology. Historical Archaeology, 34(4), 61–73.
Surface-Evans, S. (2012). Cost catchments: a least cost application for modeling hunter-gatherer land use. In D. White & S. Surface-Evans (Eds.), Least cost analysis of social landscapes: archaeological case studies (pp. 128–153). Salt Lake City: University of Utah Press.
Thomson, J., Hetzler, E., MacEachren, A. M., Gahegan, M., & Pavel, M. (2005). A typology for visualizing uncertainty. In Proceedings of SPIE, 5669, 146–157. doi:10.1117/12.587254.
TimeMap® Project. (2015). Overview of TimeMap: time-based interactive mapping. [http://sydney.edu.au/arts/timemap/] Maintained by Digital Innovation Group, University of Sydney. Accessed June 2016.
Tsipidis, S., Koussoulakou, A., & Kotsakis, K. (2012). Geovisualization and archaeology: supporting excavation site research. In A. Raus (Ed.), Advances in cartography and GIScience, volume 2, selection from ICC 2011, Paris (pp. 85–107). New York: Springer.
User-friendly Desktop Internet GIS (uDig) [Computer software] (2016). Retrieved from http://udig.refractions.net/
von Groote-Bidlingmaier, C., Hilbert, K., Schwer, J., Timpf, S. (2015). Interactive WebGIS for archaeological settlement pattern analysis—a requirement analysis. 27th International Cartographic Conference (ICC). Aug. 2015, Rio de Janeiro. http://icaci.org/files/documents/ICC_proceedings/ICC2015/papers/33/fullpaper/T33-1009_1428677938.pdf Accessed June 2016.
Waters, D. J. (2007). Doing much more than we have so far attempted. Educause Review, 42(5), 8–9.
Waters, M. R., & Kuehn, D. D. (1996). The Geoarchaeology of place: the effect of geological processes on the preservation and interpretation of the archaeological record. American Antiquity, 61(3), 483–497. doi:10.2307/281836.
Watrall, E. (2012). IAKS: a web 2.0 archaeological knowledge management system. In E. C. Kansa, S. W. Kansa, & E. Watrall (Eds.), Archaeology 2.0: new approaches to communication and collaboration (pp. 171–184). Los Angeles, CA: Cotsen Institute of Archaeology Press.
Watters, M. S. (2006). Geovisualization: an example from the Catholme ceremonial complex. Archaeological Prospection, 13, 282–290.
Wells, J., Kansa, E. C., Kansa, S. W., Yerka, S., Anderson, D., Bissett, T., Myers, K., & DeMuth, R. (2014). Web-based discovery and integration of archaeological historic properties inventory data: the digital index of north American archaeology (DINAA). Literary and Linguistic Computing, 29(3), 349–360. doi:10.1093/llc/fqu028.
Wells, J., Parr, C., & Yerka, S. (2015). Archaeological experiences with free and open source geographic information systems and geospatial freeware: implementation and usage examples in the compliance, education, and research sectors. In A. T. Wilson & B. Edwards (Eds.), Open source archaeology: ethics and practice (pp. 130–146). Warsaw: De Gruyter Open. doi:10.1515/9783110440171-010.
Wheatley, D., & Gillings, M. (Eds.) (2002). Spatial technology and archaeology: the archaeological applications of GIS. Boca Raton: CRC Press.
Wobst, H. M. (1978). Archaeo-ethnology of hunter-gatherers or the tyranny of the ethnographic record in archaeology. American Antiquity, 43(2), 303–309.
Xia, L., & Kraak, M.-J. (2008). The time wave: a new method of visual exploration of geo-data in time–space. The Cartographic Journal, 45(3), 193–200.
Yubero-Gómez, M., Rubio-Campillo, X., & López-Cachero, J. (2015). The study of spatiotemporal patterns integrating temporal uncertainty in late prehistoric settlements in northeastern Spain. Archaeological and Anthropological Sciences. doi:10.1007/s12520-015-0231-x.
Zoghlami, A., de Runz, C., Akdag, H., & Pargny, D. (2012). Through a fuzzy spatiotemporal information system for handling excavation data. In J. Gensel, D. Josselin, & D. Vandenbroucke (Eds.), Bridging the geographic information sciences: international AGILE’2012 conference, Avignon (France), April, 24–27, 2012 (pp. 179–196). New York: Springer.
Zuk, T., & Carpendale, S. (2007). Visualization of uncertainty and reasoning. In A. Butz (Ed.), Smart graphics: 8th international symposium, SG 2007, Kyoto, Japan, June 25–27, 2007 (pp. 164–177). doi:10.1007/978-3-540-73214-3_15.
Acknowledgments
This manuscript was prepared during Gupta’s Postdoctoral Fellowship from the Social Science and Humanities Research Council (SSHRC), Canada. Gupta thanks Dr. Harry Lerner (Laval University) for discussion on archaeological practices, and Drs Shawn Graham (Carleton University), Scott Hamilton (Lakehead University), and Ronald Doel (Florida State University) for comments on early drafts. We thank the journal editor and two anonymous reviewers for constructive comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This manuscript was prepared during Gupta’s Postdoctoral Fellowship from the Social Science and Humanities Research Council (SSHRC), Canada, award number 756-2014-0372.
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Gupta, N., Devillers, R. Geographic Visualization in Archaeology. J Archaeol Method Theory 24, 852–885 (2017). https://doi.org/10.1007/s10816-016-9298-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10816-016-9298-7
Keywords
- Geovisualization
- GIS
- Maps
- Interpretation
- Computational and digital archaeology
- Cyber-infrastructures