Journal of Archaeological Method and Theory

, Volume 24, Issue 2, pp 514–541 | Cite as

Influence of Handaxe Size and Shape on Cutting Efficiency: A Large-Scale Experiment and Morphometric Analysis

Article

Abstract

Handaxes represent one of the most temporally enduring and geographically widespread of Palaeolithic artifacts and thus comprised a key technological strategy of many hominin populations. Archaeologically observable variation in the size (i.e., mass) and shape properties of handaxes has been frequently noted. It is logical to ask whether some of this variability may have had functional implications. Here, we report the results of a large-scale (n = 500 handaxes) experiment designed to examine the influence of variation in handaxe size and shape on cutting efficiency rates during a laboratory task. We used a comprehensive dataset of morphometric (size-adjusted) shape variables and statistical methods (including multivariate methods) to address this issue. Our first set of analyses focused on handaxe mass/size variability. This analysis demonstrated that, at a broad-scale level of variation, handaxe mass may have been free to vary independently of functional (cutting) efficiency. Our analysis also, however, identified that there will be a task-specific threshold in terms of functional effectiveness at the lower end of handaxe mass variation. This implies that hominins may have targeted design forms to meet minimal (task-specific) thresholds and may also have managed handaxe reduction and discard in respect to such factors. Our second set of analyses focused on handaxe shape variability. This analysis also indicated that considerable variation in handaxe shape may occur independently of any strong effect on cutting efficiency. We discuss how these results have several implications for considerations of handaxe variation in the archaeological record. At a general level, our results demonstrate that variability within and between handaxe assemblages in terms of their size and shape properties will not necessarily have had immediate or strong impact on their effectiveness when used for cutting, and that such variability may have been related to factors other than functional issues.

Keywords

Functionality Efficiency Handaxes Cutting Acheulean Performance characteristics 

Notes

Acknowledgments

We are grateful to Noreen von Cramon-Taubadel and five anonymous reviewers at JAMT for helpful comments on an earlier version of this paper. Furthermore, we thank the participants for committing a substantial amount of time to this project. AJKM’s work on this project was supported by a University of Kent 50th Anniversary Research Scholarship. SJL’s work is supported by the Research Foundation for the State University of New York.

Supplementary material

10816_2016_9276_MOESM1_ESM.doc (34 kb)
ESM 1 (DOC 34 kb)

References

  1. Bello, S. M., Parfitt, S. A., & Stringer, C. (2009). Quantitative micromorphological analyses of cut marks produced by ancient and modern handaxes. Journal of Archaeological Science, 36, 1869–1880.CrossRefGoogle Scholar
  2. Beyene, Y., Katoh, S., WoldeGabriel, G., Hart, W. K., Uto, K., Sudo, M., Kondo, M., Hyodo, M., Renne, P. R., Suwa, G., & Asfaw, B. (2013). The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proceedings of the National Academy of Sciences of the United States of America, 110, 1584–1591.CrossRefGoogle Scholar
  3. Bleed, P. (2001). Artifice constrained: what determines technological choice? In M. B. Schiffer (Ed.), Anthropological perspectives on technology (pp. 151–162). Albuquerque: University of New Mexico Press.Google Scholar
  4. Bleed, P., & Bleed, A. (1987). Energetic efficiency and hand tool design a performance comparison of push and pull stroke saws. Journal of Anthropological Archaeology, 6, 189–197.CrossRefGoogle Scholar
  5. Chauhan, P. R. (2009). The Lower Palaeolithic of the Indian subcontinent. Evolutionary Anthropology, 18, 62–78.CrossRefGoogle Scholar
  6. Chauhan, P. R. (2010). Metrical variability between South Asian handaxe assemblages: preliminary observations. In S. J. Lycett & P. R. Chauhan (Eds.), New perspectives on old stones (pp. 119–166). New York: Springer.CrossRefGoogle Scholar
  7. Clark, J. D. (1994). The Acheulian industrial complex in Africa and elsewhere. In R. S. Corruccini & R. L. Ciochon (Eds.), Integrative paths to the past (pp. 451–469). Englewood Cliffs: Prentice Hall.Google Scholar
  8. Clark, J. D. (2001). Variability in primary and secondary technologies of the Later Acheulian in Africa. In S. Milliken & J. Cook (Eds.), A very remote period indeed: papers on the Palaeolithic presented to Derek Roe (pp. 1–18). Oxford: Oxbow Books.Google Scholar
  9. Costa, A. G. (2010). A geometric morphometric assessment of plan shape in bone and stone Acheulean bifaces from the Middle Pleistocene site of Castel di Guido, Latium, Italy. In S. J. Lycett & P. R. Chauhan (Eds.), New perspectives on old stones: analytical approaches to Paleolithic technologies (pp. 23–41). New York: Springer.CrossRefGoogle Scholar
  10. Crompton, R., & Gowlett, J. A. J. (1993). Allometry and multidimensional form in Acheulean bifaces from Kilombe, Kenya. Journal of Human Evolution, 25, 175–199.CrossRefGoogle Scholar
  11. de la Torre, I. (2011). The Early Stone Age lithic assemblages of Gadeb (Ethiopia) and the Developed Oldowan/early Acheulean in east Africa. Journal of Human Evolution, 60, 768–812.CrossRefGoogle Scholar
  12. Diez-Martín, F., Yustos, P. S., de la Rúa, D. G., González, J. Á. G., de Luque, L., & Barba, R. (2014). Early Acheulean technology at Es2-Lepolosi (ancient MHS-Bayasi) in Peninj (Lake Natron, Tanzania). Quaternary International, 322, 209–236.CrossRefGoogle Scholar
  13. Diez-Martín, F., Yustos, P.S., Uribelarrea, D., Baquedano, E., Mark, D.F., Mabulla, A., Fraile, C., Duque, J., Díaz, I., Pérez-González, A., & Yravedra, J. (2015). The origin of the Acheulean: the 1.7 million-year-old site of FLK West, Olduvai Gorge (Tanzania). Scientific Reports, 5. doi: 10.1038/srep17839.
  14. Domínguez-Rodrigo, M., Serralllonga, J., Juan-Tresserras, J., Alcala, L., & Luque, L. (2001). Woodworking activities by early humans: a plant residue analysis on Acheulian stone tools from Peninj (Tanzania). Journal of Human Evolution, 40, 289–299.CrossRefGoogle Scholar
  15. Domínguez-Rodrigo, M., Pickering, T.R., Almécija, S., Heaton, J.L., Baquedano, E., Mabulla, A., & Uribelarrea, D. (2015). Earliest modern human-like hand bone from a new >1.84-million-year-old site at Olduvai in Tanzania. Nature Communications, 6. doi: 10.1038/ncomms8987.
  16. Emory, K. (2010). A Re-examination of Variability in Handaxe Form in the British Palaeolithic. Unpublished PhD thesis, University College London.Google Scholar
  17. Eren, M. I., Roos, C. I., Story, B., von Cramon-Taubadel, N., & Lycett, S. J. (2014). The role of raw material differences in stone tool shape variation: an experimental assessment. Journal of Archaeological Science, 49, 472–487.CrossRefGoogle Scholar
  18. Falsetti, A. B., Jungers, W. L., & Cole, T. M., III. (1993). Morphometrics of the callitrichid forelimb: a case study in size and shape. International Journal of Primatology, 14, 551–572.CrossRefGoogle Scholar
  19. Galán, A. B., & Domínguez-Rodrigo, M. (2014). Testing the efficiency of simple flakes, retouched flakes and small handaxes during butchery. Archaeometry, 56, 1054–1074.CrossRefGoogle Scholar
  20. Gilead, D. (1970). Handaxe industries in Israel and the Near East. World Archaeology, 2, 1–11.CrossRefGoogle Scholar
  21. Goren-Inbar, N. (1996). An Acheulian bifaces assemblage from Gesher Benot Ya’aqov, Israel: indication of African affinities. Journal of Field Archaeology, 23, 15–30.Google Scholar
  22. Gowlett, J. A. J. (1996). A matter of form: instruction sets and the shaping of early technology. Lithics, 16, 2–16.Google Scholar
  23. Gowlett, J. A. J. (2006). The elements of design form in Acheulian bifaces: modes, modalities, rules and language. In N. Goren-Inbar & G. Sharon (Eds.), Axe Age: Acheulian tool-making from quarry to discard (pp. 203–221). London: Equinox.Google Scholar
  24. Gowlett, J. A. J. (2011a). The empire of the Acheulean strikes back. In J. Sept & D. Pilbeam (Eds.), Casting the net wide: papers in honor of Glynn Isaac and his approach to human origins research (pp. 93–114). Cambridge: American School of Prehistoric Research.Google Scholar
  25. Gowlett, J. A. J. (2011b). The vital sense of proportion: transformation, golden section, and 1:2 preference in Acheulean bifaces. PaleoAnthropology, 2011, 174–187.Google Scholar
  26. Gowlett, J. A. J. (2015). Variability in an early hominin percussive tradition: the Acheulean versus cultural variation in modern chimpanzee artefacts. Philosophical Transactions of the Royal Society, 370, 20140358. doi: 10.1098/rstb.2014.0358.CrossRefGoogle Scholar
  27. Gowlett, J. A. J., Crompton, R. H., & Yu, L. (2001). Allometric comparisons between Acheulean and Sangoan large cutting tools at Kalambo Falls. In J. D. Clark (Ed.), Kalambo Falls Prehistoric Site: volume III (pp. 612–619). Cambridge: Cambridge University Press.Google Scholar
  28. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.Google Scholar
  29. Hou, Y., Potts, R., Baoyin, Y., Zhengtang, G., Deino, A., Wei, W., Clark, J., Guangmao, X., & Weiwen, H. (2000). Mid-Pleistocene Acheulean-like stone technology of the Bose Basin, South China. Science, 287, 1622–1626.CrossRefGoogle Scholar
  30. Isaac, G. L. (1969). Studies of early culture in East Africa. World Archaeology, 1, 1–28.CrossRefGoogle Scholar
  31. Isaac, G. L. (1972). Early phases of human behaviour: models in Lower Palaeolithic archaeology. In D. L. Clarke (Ed.), Models in archaeology (pp. 167–199). London: Methuen.Google Scholar
  32. Isaac, G. L. (1977). Olorgesailie: archaeological studies of a Middle Pleistocene lake basin in Kenya. Chicago: University of Chicago Press.Google Scholar
  33. James, H. V. A., & Petraglia, M. D. (2005). Modern human origins and the evolution of behaviour in the later Pleistocene record of south Asia. Current Anthropology, 46, S3–S27.CrossRefGoogle Scholar
  34. Jobson, R. W. (1986). Stone tool morphology and rabbit butchering. Lithic Technology, 15, 9–20.CrossRefGoogle Scholar
  35. Jones, P. R. (1980). Experimental butchery with modern stone tools and its relevance for Palaeolithic archaeology. World Archaeology, 12, 153–165.CrossRefGoogle Scholar
  36. Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size adjustments in morphometrics. Yearbook of Physical Anthropology, 38, 137–161.CrossRefGoogle Scholar
  37. Kempe, M., Lycett, S. J., & Mesoudi, A. (2012). An experimental test of the accumulated copying error model of cultural mutation for Acheulean handaxe size. PLoS ONE, 7, e48333.CrossRefGoogle Scholar
  38. Key, A. J. M. (2013). Applied force as a determining factor in lithic use-wear accrual: an experimental investigation of its validity as a method with which to infer hominin upper limb biomechanics. Lithic Technology, 38, 32–45.CrossRefGoogle Scholar
  39. Key, A. J. M., & Lycett, S. J. (2011). Technology based evolution? A biometric test of the effects of handsize versus tool form on efficiency in an experimental cutting task. Journal of Archaeological Science, 38, 1663–1670.CrossRefGoogle Scholar
  40. Key, A. J. M., & Lycett, S. J. (2014). Are bigger flakes always better? An experimental assessment of flake size variation on cutting efficiency and loading. Journal of Archaeological Science, 41, 140–146.CrossRefGoogle Scholar
  41. Key, A. J. M., & Lycett, S. J. (2015). Edge angle as a variably influential factor in flake cutting efficiency: an experimental investigation of its relationship with tool size and loading. Archaeometry, 57, 911–927.CrossRefGoogle Scholar
  42. Key, A. J. M., & Lycett, S. J. (2016). Reassessing the production of handaxes versus flakes from a functional perspective. Archaeological and Anthropological Sciences. doi: 10.1007/s12520-015-0300-1.Google Scholar
  43. Kohn, M., & Mithen, S. (1999). Handaxes: products of sexual selection? Antiquity, 73, 518–526.CrossRefGoogle Scholar
  44. Kuman, K., Li, C., & Li, H. (2014). Large cutting tools in the Danjiangkou Reservoir Region, central China. Journal of Human Evolution, 76, 129–153.CrossRefGoogle Scholar
  45. Leakey, M. D. (1971). Olduvai Gorge: excavations in Beds I and II, 1960–1963 (Vol. 3). Cambridge: Cambridge University Press.Google Scholar
  46. Lepre, C. J., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J.-P., Texier, P.-J., Lenoble, A., & Feibel, C. S. (2011). An earlier origin for the Acheulian. Nature, 477, 82–85.CrossRefGoogle Scholar
  47. Li, H., Li, C. R., Kuman, K., Cheng, J., Yao, H. T., & Li, Z. (2014). The Middle Pleistocene handaxe site of Shuangshu in the Danjiangkou Reservoir Region, central China. Journal of Archaeological Science, 52, 391–409.CrossRefGoogle Scholar
  48. Lorenzo, C., Pablos, A., Carretero, J. M., Huguet, R., Valverdú, J., Martinón-Torres, M., Arsuaga, J. L., Carbonell, E., & de Castro, J. M. B. (2015). Early Pleistocene human hand phalanx from the Sima del Elefante (TE) cave site in Sierra de Atapuerca (Spain). Journal of Human Evolution, 78, 114–121.CrossRefGoogle Scholar
  49. Lycett, S. J. (2008). Acheulean variation and selection: does handaxe symmetry fit neutral expectations? Journal of Archaeological Science, 35, 2640–2648.CrossRefGoogle Scholar
  50. Lycett, S. J. (2009). Quantifying transitions: morphometric approaches to Palaeolithic variability and technological change. In M. Camps & P. R. Chauhan (Eds.), Sourcebook of Palaeolithic transitions: methods, theories, and interpretations (pp. 79–92). New York: Springer.CrossRefGoogle Scholar
  51. Lycett, S. J., & Gowlett, J. A. J. (2008). On questions surrounding the Acheulean ‘tradition’. World Archaeology, 40, 295–315.CrossRefGoogle Scholar
  52. Lycett, S. J., & von Cramon-Taubadel, N. (2008). Acheulean variability and hominin dispersals: a model-bound approach. Journal of Archaeological Science, 35, 553–562.CrossRefGoogle Scholar
  53. Lycett, S. J., von Cramon-Taubadel, N., & Foley, R. A. (2006). A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: a description, test and empirical examples of application. Journal of Archaeological Science, 33, 847–861.CrossRefGoogle Scholar
  54. Lycett, S. J., von Cramon-Taubadel, N., & Gowlett, J. A. J. (2010). A comparative 3D geometric morphometric analysis of Victoria West cores: implications for the origins of Levallois technology. Journal of Archaeological Science, 37, 1110–1117.CrossRefGoogle Scholar
  55. Lycett, S.J., & von Cramon-Taubadel, N. (2015). Toward a "quantitative genetic" approach to lithic variation. Journal of Archaeological Method and Theory, 22, 646–675.Google Scholar
  56. Lycett, S. J., Schillinger, K., Eren, M. I., von Cramon-Taubadel, N., & Mesoudi, A. (2016). Factors affecting Acheulean handaxe variation: experimental insights, microevolutionary processes, and macroevolutionary outcomes. Quaternary International. doi: 10.1016/j.quaint.2015.08.021.Google Scholar
  57. Machin, A. J., Hosfield, R. T., & Mithen, S. J. (2007). Why are some handaxes symmetrical? Testing the influence of handaxe morphology on butchery effectiveness. Journal of Archaeological Science, 34, 883–893.CrossRefGoogle Scholar
  58. Massy-Westropp, N. M., Gill, T. K., Taylor, A. W., Bohannon, R. W., & Hill, C. L. (2011). Hand grip strength: age and gender stratified normative data in a population-based study. BMC Research Notes, 4, 127.CrossRefGoogle Scholar
  59. Mathiowetz, V., Wiemer, D. M., & Federman, S. M. (1986). Grip and pinch strength: norms for 6 to 19-year-olds. American Journal of Occupational Therapy, 40, 705–711.CrossRefGoogle Scholar
  60. McPherron, S. P. (1999). Ovate and pointed handaxe assemblages: two points make a line. Préhistoire Européenne, 14, 9–32.Google Scholar
  61. Mitchell, J. C. (1995). Studying biface utilisation at Boxgrove: roe deer butchery with replica handaxes. Lithics, 16, 64–69.Google Scholar
  62. Mithen, S. (1999). Imitation and cultural change: a view from the Stone Age, with specific reference to the manufacture of handaxes. In H. O. Box & K. R. Gibson (Eds.), Mammalian social learning: comparative and ecological perspectives (pp. 389–399). Cambridge: Cambridge University Press.Google Scholar
  63. Movius, H. L. (1948). The Lower Palaeolithic cultures of Southern and Eastern Asia. Transactions of the American Philosophical Society, 38, 329–426.CrossRefGoogle Scholar
  64. Niewoehner, W. A. (2001). Behavioral inferences from the Skhul/Qafzeh early modern human hand remains. Proceedings of the National Academy of Sciences, 98, 2979–2984.CrossRefGoogle Scholar
  65. Noll, M. P., & Petraglia, M. D. (2003). Acheulean bifaces and early human behavioral patterns in East Africa and South India. In M. Soressi & H. L. Dibble (Eds.), Multiple approaches to the study of bifacial technologies (pp. 31–53). Philadelphia: University of Pennsylvania.Google Scholar
  66. Norton, C. J., Bae, K., Harris, J. W. K., & Lee, H. (2006). Middle Pleistocene handaxes from the Korean peninsula. Journal of Human Evolution, 51, 527–536.CrossRefGoogle Scholar
  67. O’Brien, M. J., Holland, T. D., Hoard, R. J., & Fox, G. L. (1994). Evolutionary implications of design and performance characteristics of prehistoric pottery. Journal of Archaeological Method and Theory, 1, 259–304.CrossRefGoogle Scholar
  68. Petraglia, M. D., & Shipton, C. (2008). Large cutting tool variation west and east of the Movius Line. Journal of Human Evolution, 55, 962–966.CrossRefGoogle Scholar
  69. Petraglia, M. D., Shipton, C., & Paddayya, K. (2005). Life and minds in the Acheulean: early humans of southern Asia. In C. Gamble & M. Porr (Eds.), The hominid individual in context: archaeological investigations of Lower and Middle Palaeolithic landscapes, locales and artefacts (pp. 197–219). London: Routledge.Google Scholar
  70. Phillipson, L. (1997). Edge modification as an indicator of function and handedness of Acheulian handaxes from Kariandusi, Kenya. Lithic Technology, 22, 171–183.CrossRefGoogle Scholar
  71. Pitcher, J. B., & Miles, T. S. (1997). Influence of muscle blood flow on fatigue during intermittent human hand-grip exercise and recovery. Clinical and Experimental Pharmacology and Physiology, 24, 471–476.CrossRefGoogle Scholar
  72. Pope, M., Russell, K., & Watson, K. (2006). Biface form and structured behavior in the Acheulean. Lithics, 27, 44–57.Google Scholar
  73. Posnansky, M. (1959). Some functional considerations on the handaxe. Man, 59, 42–44.CrossRefGoogle Scholar
  74. Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  75. Roberts, M. B., & Parfitt, S. (1999). Boxgrove: a Middle Pleistocene hominid site at Eartham Quarry, Boxgrove, West Sussex. London: English Heritage.Google Scholar
  76. Roe, D. A. (1968). British Lower and Middle Palaeolithic handaxe groups. Proceedings of the Prehistoric Society, 34, 1–82.CrossRefGoogle Scholar
  77. Roe, D. (1976). Typology and the trouble with handaxes. In G. de Sieveking, I. H. Longworth, & K. E. Wilson (Eds.), Problems in economic and social archaeology (pp. 61–70). London: Duckworth.Google Scholar
  78. Schick, K. (1994). The Movius line reconsidered. In R. S. Corruccini & R. L. Ciochon (Eds.), Integrative paths to the past (pp. 569–596). Englewood Cliffs: Prentice Hall.Google Scholar
  79. Schick, K. (1998). A comparative perspective on Paleolithic cultural patterns. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 449–460). New York: Plenum Press.Google Scholar
  80. Schiffer, M. B., & Skibo, J. B. (1987). Theory and experiment in the study of technological change. Current Anthropology, 28, 595–622.CrossRefGoogle Scholar
  81. Schiffer, M. B., & Skibo, J. M. (1997). The explanation of artifact variability. American Antiquity, 62, 27–50.CrossRefGoogle Scholar
  82. Schillinger, K., Mesoudi, A., & Lycett, S. J. (2014). Copying error and the cultural evolution of “additive” vs. “reductive” material traditions: an experimental assessment. American Antiquity, 79, 128–143.CrossRefGoogle Scholar
  83. Sharon, G. (2007). Acheulian large flake industries: technology, chronology, and significance. Oxford: Archaeopress (BAR International Series).Google Scholar
  84. Sharon, G. (2008). The impact of raw material on Acheulian large flake production. Journal of Archaeological Science, 35, 1329–1344.CrossRefGoogle Scholar
  85. Sharon, G. (2010). Large flake Acheulian. Quaternary International, 223, 226-233.Google Scholar
  86. Shea, J. J. (2007). Lithic archaeology, or, what stone tools can (and can’t) tell us about early hominin diets. In P. S. Ungar (Ed.), Evolution of the human diet: the known, the unknown, and the unknowable (pp. 212–229). Oxford: Oxford University Press.Google Scholar
  87. Shipton, C., & Clarkson, C. (2015). Handaxe reduction and its influence on shape: an experimental test and archaeological case study. Journal of Archaeological Science, 3, 408–419.CrossRefGoogle Scholar
  88. Shipton, C., Clarkson, C., Pal, J. N., Jones, S. C., Roberts, R. G., Harris, C., Gupta, M. C., Ditchfield, P. W., & Petraglia, M. D. (2013). Generativity, hierarchical action and recursion in the technology of the Acheulean to Middle Palaeolithic transition: a perspective from Patpara, the Son Valley, India. Journal of Human Evolution, 65, 93–108.CrossRefGoogle Scholar
  89. Simão, J. (2002). Tools evolve: the artificial selection and evolution of Paleolithic stone tools. Behavioral and Brain Sciences, 25, 419.CrossRefGoogle Scholar
  90. Skibo, J. M., & Schiffer, M. B. (2001). Understanding artifact variability and change: a behavioral framework. In M. B. Schiffer (Ed.), Anthropological perspectives on technology (pp. 139–149). Albuquerque: University of New Mexico Press.Google Scholar
  91. Sokal, R. R., & Rohlf, F. J. (1995). Biometry (3rd ed.). New York: W.H. Freeman & Co.Google Scholar
  92. Solodenko, N., Zupancich, A., Cesaro, S. N., Marder, O., Lemorini, C., & Barkai, R. (2015). Fat residue and use-wear found on Acheulian biface and scraper associated with butchered elephant remains at the site of Revadim, Israel. PLoS ONE, 10(3), e0118572.CrossRefGoogle Scholar
  93. Stout, D., Apel, J., Commander, J., & Roberts, M. (2014). Late Acheulean technology and cognition at Boxgrove, UK. Journal of Archaeological Science, 41, 576–590.CrossRefGoogle Scholar
  94. Tocheri, M. W., Orr, C. M., Jacofsky, M. C., & Marzke, M. W. (2008). The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. Journal of Anatomy, 212, 544–562.CrossRefGoogle Scholar
  95. Torrence, R. (1989). Re-tooling: towards a behavioural theory of stone tools. In R. Torrence (Ed.), Time, energy, and stone tools (pp. 57–66). Cambridge: Cambridge University Press.Google Scholar
  96. Toth, N., & Schick, K. (2009). The importance of actualistic studies in early Stone Age research: some personal reflections. In K. Schick & N. Toth (Eds.), The cutting edge: new approaches to the archaeology of human origins (pp. 267–344). Gosport: Stone Age Institute Press.Google Scholar
  97. Vaughan, C. D. (2001). A million years of style and function: regional and temporal variation in Acheulean handaxes. In T. D. Hurt & G. F. M. Rakita (Eds.), Style and function: conceptual issues in evolutionary archaeology (pp. 141–163). Westport: Bergin & Garvey.Google Scholar
  98. Wang, W., Lycett, S. J., Cramon-Taubadel, N., Jin, J. J. H., & Bae, C. J. (2012). Comparison of handaxes from Bose Basin (China) and the western Acheulean indicates convergence of form, not cognitive differences. PLoS ONE, 7(4), e35804.CrossRefGoogle Scholar
  99. Wang, W., Bae, C. J., Huang, S., Huang, X., Tian, F., Mo, J., Huang, Z., Huang, C., Xie, S., & Li, D. (2014). Middle Pleistocene bifaces from Fengshudao (Bose Basin, Guangxi, China). Journal of Human Evolution, 69, 110–122.CrossRefGoogle Scholar
  100. Ward, C. V., Tocheri, M. W., Plavcan, J. M., Brown, F. H., & Manthi, F. K. (2014). Early Pleistocene third metacarpal from Kenya and the evolution of modern human-like hand morphology. Proceedings of the National Academy of Sciences, 111, 121–124.CrossRefGoogle Scholar
  101. Wenban-Smith, F. (2004). Handaxe typology and Lower Palaeolithic cultural development: ficrons, cleavers and two giant handaxes from Cuxton. Lithics, 25, 11–21.Google Scholar
  102. Wymer, J. J. (1968). Lower Palaeolithic archaeology in Britain as represented by the Thames Valley. London: John Baker.Google Scholar
  103. Wynn, T. (1995). Handaxe enigmas. World Archaeology, 27, 10–24.CrossRefGoogle Scholar
  104. Wynn, T., & Tierson, F. (1990). Regional comparison of the shapes of later Acheulean handaxes. American Anthropologist, 92, 73–84.CrossRefGoogle Scholar
  105. Yravedra, J., Domínguez-Rodrigo, M., Santonja, M., Pérez-González, A., Panera, J., Rubio-Jara, S., & Baquedano, E. (2010). Cut marks on the Middle Pleistocene elephant carcass of Áridos 2 (Madrid, Spain). Journal of Archaeological Science, 37, 2469–2476.CrossRefGoogle Scholar
  106. Zaidner, Y., Druck, D., & Weistein-Evron, M. (2006). Acheulo-Yabrudian handaxes from Misliya Cave, Mount Carmel, Israel. In N. Goren-Inbar & G. Sharon (Eds.), Axe age: Acheulian tool-making from quarry to discard (pp. 243–266). London: Equinox.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Anthropology and ConservationUniversity of KentCanterburyUK
  2. 2.Department of Anthropology (Evolutionary Anthropology Laboratory)University at Buffalo, SUNYBuffaloUSA

Personalised recommendations