Journal of Archaeological Method and Theory

, Volume 24, Issue 2, pp 424–450 | Cite as

Computational Reproducibility in Archaeological Research: Basic Principles and a Case Study of Their Implementation

  • Ben MarwickEmail author


The use of computers and complex software is pervasive in archaeology, yet their role in the analytical pipeline is rarely exposed for other researchers to inspect or reuse. This limits the progress of archaeology because researchers cannot easily reproduce each other’s work to verify or extend it. Four general principles of reproducible research that have emerged in other fields are presented. An archaeological case study is described that shows how each principle can be implemented using freely available software. The costs and benefits of implementing reproducible research are assessed. The primary benefit, of sharing data in particular, is increased impact via an increased number of citations. The primary cost is the additional time required to enhance reproducibility, although the exact amount is difficult to quantify.


Reproducible research Computer programming Software engineering Australian archaeology Open science 



Thanks to Chris Clarkson, Mike Smith, Richard Fullagar, Lynley A. Wallis, Patrick Faulkner, Tiina Manne, Elspeth Hayes, Richard G. Roberts, Zenobia Jacobs, Xavier Carah, Kelsey M. Lowe, and Jacqueline Matthews for their cooperation with the JHE paper. Thanks to the Mirarr Senior Traditional Owners, and to our research partners, the Gundjeimhi Aboriginal Corporation, for granting permission to carry out the research that was published in the JHE paper, and led to this paper. Thanks to Kyle Bocinsky and Oliver Nakoinz for their helpful peer reviews and many constructive suggestions. This research was carried out as part of ARC Discovery Project DP110102864. This work was supported in part by the University of Washington eScience Institute, and especially benefited from the expertise of the Reproducibility and Open Science working group. An earlier version was presented at an International Neuroinformatics Coordinating Facility (INCF) meeting in December 2014 organised by Stephen Eglen, and benefited from discussion during that meeting. I am a contributor to the Software and Data Carpentry projects and the rOpenSci collective; beyond this, I declare that I have no conflict of interest.


  1. Abari, K. (2012). Reproducible research in speech sciences. International Journal of Computer Science Issues, 9(6), 43–52. Retrieved from
  2. Arbuckle, B. S., Kansa, S. W., Kansa, E., Orton, D., Çakırlar, C., Gourichon, L., & Würtenberger, D. (2014). Data sharing reveals complexity in the westward spread of domestic animals across neolithic Turkey. PloS One, 9(6), e99845. doi: 10.1371/journal.pone.0099845.CrossRefGoogle Scholar
  3. Baggerly, K. A., & Coombes, K. R. (2009). Deriving chemosensitivity from cell lines: forensic bioinformatics and reproducible research in high-throughput biology. The Annals of Applied Statistics, 1309–1334.Google Scholar
  4. Barnes, N. (2010). Publish your computer code: it is good enough. Nature News, 467(7317), 753–753. doi: 10.1038/467753a.CrossRefGoogle Scholar
  5. Bassi, S. (2007). A primer on Python for life science researchers. PLoS Computational Biology, 3(11). doi: 10.1371/journal.pcbi.0030199
  6. Baumer, B., & Udwin, D. (2015). R markdown. Wiley Interdisciplinary Reviews: Computational Statistics, 7(3), 167–177. doi: 10.1002/wics.1348.CrossRefGoogle Scholar
  7. Baumer, B., Cetinkaya-Rundel, M., Bray, A., Loi, L., & Horton, N. J. (2014). R markdown: Integrating a reproducible analysis tool into introductory statistics. Technology Innovations in Statistics Education, 8(1). Retrieved from
  8. Beale, N. (2012). How community archaeology can make use of open data to achieve further its objectives. World Archaeology, 44(4), 612–633.CrossRefGoogle Scholar
  9. Begley, C. G., & Ioannidis, J. P. A. (2015). Reproducibility in science improving the standard for basic and preclinical research. Circulation Research, 116(1), 116–126. doi: 10.1161/CIRCRESAHA.114.303819.CrossRefGoogle Scholar
  10. Bivand, R. S., Pebesma, E. J., Gomez-Rubio, V., & Pebesma, E. J. (2008). Applied spatial data analysis with R (Vol. 747248717). Springer.Google Scholar
  11. Bocinsky, R. K. (2014). Extrinsic site defensibility and landscape-based archaeological inference: an example from the northwest coast. Journal of Anthropological Archaeology, 35, 164–176.CrossRefGoogle Scholar
  12. Bocinsky, R. K., & Kohler, T. A. (2014). A 2,000-year reconstruction of the rain-fed maize agricultural niche in the US southwest. Nature Communications, 5.Google Scholar
  13. Boettiger, C. (2015). An introduction to docker for reproducible research. SIGOPS Operating System Review, 49(1), 71–79. doi: 10.1145/2723872.2723882.CrossRefGoogle Scholar
  14. Boettiger, C., Hart, T., Chamberlain, S., & Ram, K. (2015). Building software, building community: lessons from the rOpenSci project. Journal of Open Research Software, 1(1), e8.Google Scholar
  15. Bonhomme, V., Picq, S., Gaucherel, C., & Claude, J. (2014). Momocs: outline analysis using r. Journal of Statistical Software, 56(13), 1–24. doi: 10.18637/jss.v056.i13.CrossRefGoogle Scholar
  16. Borck, L., Mills, B. J., Peeples, M. A., & Clark, J. J. (2015). Are social networks survival networks? An example from the late pre-Hispanic US southwest. Journal of Archaeological Method and Theory, 22(1), 33–57.CrossRefGoogle Scholar
  17. Borgman, C. L. (2012). The conundrum of sharing research data. Journal of the American Society for Information Science and Technology, 63(6), 1059–1078.CrossRefGoogle Scholar
  18. Buckheit, J. B., & Donoho, D. L. (1995). WaveLab and reproducible research. In A. Antoniadis & G. Oppenheim (Eds.), Wavelets and statistics (pp. 55–81). Springer New York. Retrieved from 10.1007/978-1-4612-2544-7_5
  19. Buffalo, V. (2015). Bioinformatics data skills reproducible and robust research with open source tools. CA: O’Reilly Media.Google Scholar
  20. Chambers, J. M. (2009). Software for data analysis: Programming with R (1st ed. 2008. Corr. 2nd printing 2009 edition.). New York: Springer.Google Scholar
  21. Clarkson, C., Smith, M., Marwick, B., Fullagar, R., Wallis, L. A., Faulkner, P., & Florin, S. A. (2015). The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): a site in northern australia with early occupation. Journal of Human Evolution, 83, 46–64. doi: 10.1016/j.jhevol.2015.03.014.CrossRefGoogle Scholar
  22. Contreras, D. A., & Meadows, J. (2014). Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. Journal of Archaeological Science, 52, 591–608.CrossRefGoogle Scholar
  23. Crema, E., Edinborough, K., Kerig, T., & Shennan, S. (2014). An approximate bayesian computation approach for inferring patterns of cultural evolutionary change. Journal of Archaeological Science, 50, 160–170.CrossRefGoogle Scholar
  24. Dafoe, A. (2014). Science deserves better: the imperative to share complete replication files. PS: Political Science & Politics, 47(01), 60–66. doi: 10.1017/S104909651300173X.Google Scholar
  25. Delescluse, M., Franconville, R., Joucla, S., Lieury, T., & Pouzat, C. (2012). Making neurophysiological data analysis reproducible: why and how? Journal of Physiology-Paris, 106(3–4), 159–170. doi: 10.1016/j.jphysparis.2011.09.011.CrossRefGoogle Scholar
  26. Donoho, D. L., Maleki, A., Rahman, I. U., Shahram, M., & Stodden, V. (2009). Reproducible research in computational harmonic analysis. Computing in Science & Engineering, 11(1), 8–18. doi: 10.1109/MCSE.2009.15.CrossRefGoogle Scholar
  27. Dorch, S. (2012). On the citation advantage of linking to data: Astrophysics. Retrieved from
  28. Drake, W. H. A. H., Lee, B., & Wills, W. (2014). Strontium isotopes and the reconstruction of the Chaco regional system: evaluating uncertainty with bayesian mixing models. PloS One, 9(5), e95580. doi: 10.1371/journal.pone.0095580.CrossRefGoogle Scholar
  29. Dudley, J. T., & Butte, A. J. (2010). Reproducible in silico research in the era of cloud computing. Nature Biotechnology, 28(11), 1181–1185. doi: 10.1038/nbt1110-1181.CrossRefGoogle Scholar
  30. Dye, T. S. (2011). A model-based age estimate for polynesian colonization of Hawai’i. Archaeology in Oceania, 46(3), 130–138.CrossRefGoogle Scholar
  31. Eglen, S. J. (2009). A quick guide to teaching R programming to computational biology students. PLoS Computational Biology, 5(8), e1000482. doi: 10.1371/journal.pcbi.1000482.CrossRefGoogle Scholar
  32. Faris, J., Kolker, E., Szalay, A., Bradlow, L., Deelman, E., Feng, W., & Kolker, E. (2011). Communication and data-intensive science in the beginning of the 21st century. Omics: A Journal of Integrative Biology, 15(4), 213–215.CrossRefGoogle Scholar
  33. Gandrud, C. (2013a). Github: a tool for social data development and verification in the cloud. The Political Methodologist, 20(2), 7–16.Google Scholar
  34. Gandrud, C. (2013b). Reproducible research with R and RStudio. CRC Press.Google Scholar
  35. Gentleman, R., & Temple Lang, D. (2007). Statistical analyses and reproducible research. Journal of Computational and Graphical Statistics, 16(1), 1–23. doi: 10.1198/106186007X178663.CrossRefGoogle Scholar
  36. Glatard, T., Lewis, L. B., Ferreira da Silva, R., Adalat, R., Beck, N., Lepage, C., & Evans, A. C. (2015). Reproducibility of neuroimaging analyses across operating systems. Frontiers in Neuroinformatics, 9, 12. doi: 10.3389/fninf.2015.00012.CrossRefGoogle Scholar
  37. Gleditsch, N. P., & Strand, H. (2003). Posting your data: will you be scooped or will you be famous? International Studies Perspectives, 4(1), 72–107. doi: 10.1111/1528-3577.04105.CrossRefGoogle Scholar
  38. Guedes, J. d., Jin, G., & Bocinsky, R. K. (2015). The impact of climate on the spread of rice to north-eastern China: a new look at the data from shandong province. PloS One, 10(6), e0130430.CrossRefGoogle Scholar
  39. Haddock, S. H. D., & Dunn, C. W. (2011). Practical computing for biologists. MA: Sinauer Associates Sunderland.Google Scholar
  40. Hatton, L., & Roberts, A. (1994). How accurate is scientific software? IEEE Transactions on Software Engineering, 20(10), 785–797. doi: 10.1109/32.328993.CrossRefGoogle Scholar
  41. Healy, K. (2011). Choosing your workflow applications. The Political Methodologist, 18(2), 9–18.Google Scholar
  42. Henley, M., & Kemp, R. (2008). Open source software: an introduction. Computer Law & Security Review, 24(1), 77–85.CrossRefGoogle Scholar
  43. Henneken, E. A., & Accomazzi, A. (2011). Linking to data - effect on citation rates in astronomy. CoRR, abs/1111.3618. Retrieved from
  44. Herndon, T., Ash, M., & Pollin, R. (2014). Does high public debt consistently stifle economic growth? A critique of Reinhart and Rogoff. Cambridge Journal of Economics, 38(2), 257–279. doi: 10.1093/cje/bet075.CrossRefGoogle Scholar
  45. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., & Good, J. (2008). On the use of cloud computing for scientific workflows. In IEEE fourth international conference on eScience, 2008. eScience’08 (pp. 640–645). doi: 10.1109/eScience.2008.167
  46. Howe, B. (2012). Virtual appliances, cloud computing, and reproducible research. Computing in Science & Engineering, 14(4), 36–41. doi: 10.1109/MCSE.2012.62.CrossRefGoogle Scholar
  47. Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The case for open computer programs. Nature, 482(7386), 485–488. doi: 10.1038/nature10836.CrossRefGoogle Scholar
  48. Janssen, M. A., Alessa, L. N., Barton, M., Bergin, S., & Lee, A. (2008). Towards a community framework for agent-based modelling. Journal of Artificial Societies and Social Simulation, 11(2), 6.Google Scholar
  49. Jones, Z. M. (2013). Git/GitHub, transparency, and legitimacy in quantitative research. The Political Methodologist, 21(1), 6–7. Retrieved from
  50. Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., & Emmott, S. (2013). Troubling trends in scientific software use. Science, 340(6134), 814–815.CrossRefGoogle Scholar
  51. Kahle, D., & Wickham, H. (2013). Ggmap: spatial visualization with ggplot2. The R Journal, 5(1), 144–161.Google Scholar
  52. Kansa, E. (2012). Openness and archaeology’s information ecosystem. World Archaeology, 44(4), 498–520.CrossRefGoogle Scholar
  53. Kansa, E. C., Kansa, S. W., & Watrall, E. (2011). Archaeology 2.0: new approaches to communication and collaboration. Cotsen Digital Archaeology Series.Google Scholar
  54. Keeling, K. B., & Pavur, R. J. (2007). A comparative study of the reliability of nine statistical software packages. Computational Statistics & Data Analysis, 51(8), 3811–3831. doi: 10.1016/j.csda.2006.02.013.CrossRefGoogle Scholar
  55. King, G. (1995). Replication, replication. PS: Political Science & Politics, 28(03), 444–452.Google Scholar
  56. Kintigh, K. (2006). The promise and challenge of archaeological data integration. American Antiquity, 71(3), 567–578. doi: 10.2307/40035365.CrossRefGoogle Scholar
  57. Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzig, A. P., & Kohler, T. A. (2014). Grand challenges for archaeology. Proceedings of the National Academy of Sciences, 111(3), 879–880.CrossRefGoogle Scholar
  58. Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111.CrossRefGoogle Scholar
  59. Laine, C., Goodman, S. N., Griswold, M. E., & Sox, H. C. (2007). Reproducible research: moving toward research the public can really trust. Annals of Internal Medicine, 146(6), 450–453. doi: 10.7326/0003-4819-146-6-200703200-00154.CrossRefGoogle Scholar
  60. Lang, S. (1993). Questions of scientific responsibility: the Baltimore case. Ethics & Behavior, 3(1), 3–72. doi: 10.1207/s15327019eb0301_1.CrossRefGoogle Scholar
  61. Leisch, F., Eugster, M., & Hothorn, T. (2011). Executable papers for the R community: the R2 platform for reproducible research. Procedia Computer Science, 4, 618–626.CrossRefGoogle Scholar
  62. Loeliger, J., & McCullough, M. (2012). Version control with Git: Powerful tools and techniques for collaborative software development. “O’Reilly Media, Inc.”Google Scholar
  63. Lowe, K. M., Wallis, L. A., Pardoe, C., Marwick, B., Clarkson, C., Manne, T., & Fullagar, R. (2014). Ground-penetrating radar and burial practices in western Arnhem Land, Australia. Archaeology in Oceania, 49(3), 148–157.CrossRefGoogle Scholar
  64. Mackay, A., Sumner, A., Jacobs, Z., Marwick, B., Bluff, K., & Shaw, M. (2014). Putslaagte 1 (PL1), the Doring river, and the later middle stone age in southern Africa’s winter rainfall zone. Quaternary International, 350, 43–58.CrossRefGoogle Scholar
  65. Mair, P., Hofmann, E., Gruber, K., Hatzinger, R., Zeileis, A., & Hornik, K. (2015). Motivation, values, and work design as drivers of participation in the r open source project for statistical computing. Proceedings of the National Academy of Sciences, 112(48), 14788–14792. doi: 10.1073/pnas.1506047112.CrossRefGoogle Scholar
  66. Markowetz, F. (2015). Five selfish reasons to work reproducibly. Genome Biology, 16.Google Scholar
  67. Marwick, B. (2013). Multiple optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in northwest Thailand. Journal of Anthropological Archaeology, 32(4), 553–564.CrossRefGoogle Scholar
  68. Marwick, B. (2015). Code and data repository for a report on the 1989 excavations at Madjebebe, northern territory, Australia. Retrieved May 30, 2015, from 10.6084/m9.figshare.1297059
  69. McCullough, B. (2007). Got replicability? The _journal of money, credit and banking_ archive. Econ Journal Watch, 4(3), 326–337.Google Scholar
  70. McCullough, B., & Vinod, H. D. (2003). Verifying the solution from a nonlinear solver: a case study. American Economic Review, 93(3), 873–892. doi: 10.1257/000282803322157133.CrossRefGoogle Scholar
  71. McCullough, B., McGeary, K. A., & Harrison, T. D. (2006). Lessons from the JMCB archive. Journal of Money, Credit, and Banking, 38(4), 1093–1107. doi: 10.1353/mcb.2006.0061.CrossRefGoogle Scholar
  72. McCullough, B., McGeary, K. A., & Harrison, T. D. (2008). Do economics journal archives promote replicable research? The Canadian Journal of Economics / Revue Canadienne d’Economique, 41(4), 1406–1420.CrossRefGoogle Scholar
  73. Miguel, E., Camerer, C., Casey, K., Cohen, J., Esterling, K. M., Gerber, A., & Van der Laan, M. (2014). Promoting transparency in social science research. Science (New York, N.Y.), 343(6166), 30–31. doi: 10.1126/science.1245317.CrossRefGoogle Scholar
  74. Miller, G. (2006). A scientist’s nightmare: software problem leads to five retractions. Science, 314(5807), 1856–1857. doi: 10.1126/science.314.5807.1856.CrossRefGoogle Scholar
  75. Morandat, F., Hill, B., Osvald, L., & Vitek, J. (2012). Evaluating the design of the R language. In ECOOP 2012–Object-oriented programming (pp. 104–131). Springer.Google Scholar
  76. Morin, A., Urban, J., & Sliz, P. (2012). A quick guide to software licensing for the scientist-programmer. PLoS Computational Biology, 8(7), e1002598.CrossRefGoogle Scholar
  77. Narasimhan, B., et al. (2005). Lisp-stat to Java to R. Journal of Statistical Software, 13(4), 1–10.CrossRefGoogle Scholar
  78. Noble, W. S. (2009). A quick guide to organizing computational biology projects. PLoS Computational Biology, 5(7), e1000424. doi: 10.1371/journal.pcbi.1000424.CrossRefGoogle Scholar
  79. Nosek, B., Alter, G., Banks, G., Borsboom, D., Bowman, S., & Breckler, S. (2015). Promoting an open research culture: author guidelines for journals could help to promote transparency, openness, and reproducibility. Science (New York, NY), 348(6242), 1422.CrossRefGoogle Scholar
  80. Nowakowski, P., Ciepiela, E., Harżlak, D., Kocot, J., Kasztelnik, M., Bartyński, T., & Malawski, M. (2011). The collage authoring environment. Procedia Computer Science, 4, 608–617.CrossRefGoogle Scholar
  81. Peeples, M. A., & Schachner, G. (2012). Refining correspondence analysis-based ceramic seriation of regional data sets. Journal of Archaeological Science, 39(8), 2818–2827.CrossRefGoogle Scholar
  82. Peng, R. D. (2009). Reproducible research and biostatistics. Biostatistics, 10(3), 405–408. doi: 10.1093/biostatistics/kxp014.CrossRefGoogle Scholar
  83. Peng, R. D. (2011). Reproducible research in computational science. Science (New York, Ny), 334(6060), 1226.CrossRefGoogle Scholar
  84. Perkel, J. M. (2015). Programming: pick up Python. Nature, 518(7537), 125–126. doi: 10.1038/518125a.CrossRefGoogle Scholar
  85. Pienta, A. M., Alter, G. C., & Lyle, J. A. (2010). The enduring value of social science research: the use and reuse of primary research data.Google Scholar
  86. Piwowar, H. A., & Vision, T. J. (2013). Data reuse and the open data citation advantage. Peer Journal, 1, e175.CrossRefGoogle Scholar
  87. Piwowar, H. A., Day, R. S., & Fridsma, D. B. (2007). Sharing detailed research data is associated with increased citation rate. PloS One, 2(3), e308. doi: 10.1371/journal.pone.0000308.CrossRefGoogle Scholar
  88. Plummer, M., & others. (2003). JAGS: A program for analysis of Bayesian graphical models using gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing (Vol. 124, p. 125). Technische Universit at Wien.Google Scholar
  89. Ram, K. (2013). Git can facilitate greater reproducibility and increased transparency in science. Source Code for Biology and Medicine, 8(1), 7.CrossRefGoogle Scholar
  90. Reich, V. (2008). CLOCKSS—it takes a community. The Serials Librarian, 54(1-2), 135–139.CrossRefGoogle Scholar
  91. Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., & Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334(6062), 1518–1524. doi: 10.1126/science.1205438.CrossRefGoogle Scholar
  92. Richards, J. D. (1997). Preservation and re-use of digital data: the role of the archaeology data service. Antiquity, 71(274), 1057–1057.CrossRefGoogle Scholar
  93. Rieth, C. (2013). Report from the SAA board of directors. SAA Archaeological Record, May, 42–44.Google Scholar
  94. Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible computational research. PLoS Computational Biology, 9(10), e1003285. doi: 10.1371/journal.pcbi.1003285.CrossRefGoogle Scholar
  95. Sarkar, D. (2008). Lattice: Multivariate data visualization with R. Springer Science & Business Media.Google Scholar
  96. Schulte, E., Davison, D., Dye, T., & Dominik, C. (2012). A multi-language computing environment for literate programming and reproducible research. Journal of Statistical Software, 46(3), 1–24. Retrieved from
  97. Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible. Computing in Science & Engineering, 2(6), 61–67.CrossRefGoogle Scholar
  98. Scopatz, A., & Huff, K. D. (2015). Effective computation in physics: Field guide to research with python. CA: O’Reilly Media.Google Scholar
  99. Sears, J. (2011). Data sharing effect on article citation rate in paleoceanography. In AGU fall meeting abstracts (Vol. 1, p. 1628).Google Scholar
  100. Sharpe, D. (2013). Why the resistance to statistical innovations? Bridging the communication gap. Psychological Methods, 18(4), 572. Retrieved from
  101. Shennan, S. J., Crema, E. R., & Kerig, T. (2015). Isolation-by-distance, homophily, and’core’ vs’.package’ cultural evolution models in neolithic europe. Evolution and Human Behavior, 36(2), 103–109.CrossRefGoogle Scholar
  102. Stanisic, L., Legrand, A., & Danjean, V. (2015). An effective git and org-mode based workflow for reproducible research. ACM SIGOPS Operating Systems Review, 49(1), 61–70. Retrieved from = 2723881
  103. Stodden, V. (2009). The legal framework for reproducible scientific research: licensing and copyright. Computing in Science & Engineering, 11(1), 35–40. doi: 10.1109/MCSE.2009.19.CrossRefGoogle Scholar
  104. Stodden, V., & Miguez, S. (2014). Best practices for computational science: software infrastructure and environments for reproducible and extensible research. Journal of Open Research Software, 2(1), e21. doi: 10.5334/jors.ay.
  105. Stodden, V., Guo, P., & Ma, Z. (2013). Toward reproducible computational research: an empirical analysis of data and code policy adoption by journals. PloS One, 8(6), e67111. doi: 10.1371/journal.pone.0067111.CrossRefGoogle Scholar
  106. Teal, T. K., Cranston, K. A., Lapp, H., White, E., Wilson, G., Ram, K., & Pawlik, A. (2015). Data carpentry: workshops to increase data literacy for researchers. International Journal of Digital Curation, 10(1), 135–143.CrossRefGoogle Scholar
  107. Tenopir, C., Allard, S., Douglass, K., Aydinoglu, A. U., Wu, L., Read, E., & Frame, M. (2011). Data sharing by scientists: practices and perceptions. PloS One, 6(6), e21101. doi: 10.1371/journal.pone.0021101.CrossRefGoogle Scholar
  108. Thompson, P. A., & Burnett, A. (2012). Reproducible research. CORE Issues in Professional and Research Ethics, 1(6).Google Scholar
  109. Tippmann, S. (2014). Programming tools: adventures with R. Nature, 517(7532), 109–110. doi: 10.1038/517109a.CrossRefGoogle Scholar
  110. Vandewalle, P. (2012). Code sharing is associated with research impact in image processing. Computing in Science and Engineering, 14(4), 42–47.CrossRefGoogle Scholar
  111. VanPool, T. L., & Leonard, R. D. (2010). Quantitative analysis in archaeology (1 edition.). Chichester, West Sussex, U.K. Malden, MA: Wiley-Blackwell.CrossRefGoogle Scholar
  112. Vihinen, M. (2015). No more hidden solutions in bioinformatics. Nature, 521(7552), 261–261. doi: 10.1038/521261a.CrossRefGoogle Scholar
  113. Wicherts, J. M., Bakker, M., & Molenaar, D. (2011). Willingness to share research data is related to the strength of the evidence and the quality of reporting of statistical results. PloS One, 6(11), e26828. doi: 10.1371/journal.pone.0026828.CrossRefGoogle Scholar
  114. Wickham, H. (2009). Ggplot2: Elegant graphics for data analysis. Springer Science & Business Media.Google Scholar
  115. Wickham, H. (2014). Advanced R (1 edition.). Boca Raton, FL: Chapman; Hall/CRC.Google Scholar
  116. Wickham, H. (2015). R packages (1 edition.). Sebastopol, Calif.: O’Reilly Media.Google Scholar
  117. Widemann, B. T. y, Bolz, C. F., & Grelck, C. (2013). The functional programming language r and the paradigm of dynamic scientific programming. In H.-W. Loidl & R. Peña (Eds.), Trends in functional programming (Vol. 7829, pp. 182–197). Springer Berlin Heidelberg. doi: 10.1007/978-3-642-40447-4_12
  118. Wilson, G. (2014). Software carpentry: Lessons learned. F1000Research, Retrieved from
  119. Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy, R. T., & Wilson, P. (2014). Best practices for scientific computing. Plos Biology, 12(1), e1001745. doi: 10.1371/journal.pbio.1001745.CrossRefGoogle Scholar
  120. Xie, Y. (2013). Dynamic documents with R and knitr. CRC Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Anthropology, University of WashingtonSeattleUSA
  2. 2.Center for Archaeological Science, University of WollongongWollongongAustralia

Personalised recommendations