Journal of Archaeological Method and Theory

, Volume 23, Issue 2, pp 669–691 | Cite as

Can Lithic Attribute Analyses Identify Discrete Reduction Trajectories? A Quantitative Study Using Refitted Lithic Sets

  • Eleanor M. L. Scerri
  • Brad Gravina
  • James Blinkhorn
  • Anne Delagnes
Article

Abstract

Quantitative, attribute-based analyses of stone tools (lithics) have been frequently used to facilitate large-scale comparative studies, attempt to mitigate problems of assemblage completeness and address interpretations of the co-occurrence of unrelated technological processes. However, a major barrier to the widespread acceptance of such methods has been the lack of quantified experiments that can be externally validated by theoretically distinct approaches in order to guide analysis and confidence in results. Given that quantitative, attribute-based studies now underpin several major interpretations of the archaeological record, the requirement to test the accuracy of such methods has become critical. In this paper, we test the utility of 31 commonly used flake attribute measurements for identifying discrete reduction trajectories through three refitted lithic sets from the Middle Palaeolithic open-air site of Le Pucheuil, in northern France. The experiment had three aims: (1) to determine which, if any, attribute measurements could be used to separate individual refitted sets, (2) to determine whether variability inherent in the assemblage was primarily driven by different reduction trajectories, as represented by the refitted sets, or other factors, and (3) to determine which multivariate tests were most suitable for these analyses. In order to test the sensitivity of the sample, we ran all analyses twice, the first time with all the available lithics pertaining to each refitted set and the second time with randomly generated 75 % subsamples of each set. All results revealed the consistent accuracy of 16 attribute measurements in quadratic and linear discriminant analyses, principal component analyses and dissimilarity matrices. These results therefore provide the first quantified attribute formula for comparative analyses of Levallois reduction methods and a basis from which further experiments testing core and retouch attributes may be conducted.

Keywords

Lithic analysis Refits Attribute analyses Lithic technology 

References

  1. Andrefsky, W., Jr. (2005). Lithics: Macroscopic Approaches to Analysis (Second Edition). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Bertran, P., Lenoble, A., Todisco, D., Desrosiers, P. M., & Sørensen, M. (2012). Particle size distribution of lithic assemblages and taphonomy of Palaeolithic sites. Journal of Archaeological Science, 39, 3148–3166.CrossRefGoogle Scholar
  3. Boëda, E. (1994). Le concept Levallois : variabilité des méthodes.CRA Monograph Series, CNRS.Google Scholar
  4. Boëda, E., Geneste, J. M., & Meignen, L. (1990). Identification de chaînes opératoires lithiques du Paléolithique ancien et moyen. Paléo, 2, 43–80.CrossRefGoogle Scholar
  5. Bordes, J.-G. (2000). La séquence aurignacienne de Caminade revisitée : l’apport des raccords d'intérêt stratigraphique. Paléo, 12, 387–407.CrossRefGoogle Scholar
  6. Bordes, J.-G. (2002). Les interstratifications Châtelperronien / Aurignacien du Roc-de-Combe et du Piage (Lot, France). Analyse taphonomique des industries lithiques; implications archéologiques. Unpublished Doctoral Dissertation. University of Bordeaux 1.Google Scholar
  7. Bourguignon, L. (1996). La conception de débitage Quina. Quaternaria Nova, 6, 149–166.Google Scholar
  8. Bourguignon, L., Faivre, J.-P., & Turq, A. (2004). Ramification des chaînes opératoires : une spécificité du Moustérien? Paléo, 16, 37–48.Google Scholar
  9. Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26, 211–252.Google Scholar
  10. Brantingham, P. J., & Kuhn, S. L. (2001). Constraints on Levallois Core Technology: A Mathematical Model. Journal of Archaeological Science, 28, 747–761.CrossRefGoogle Scholar
  11. Brenet, M., Bourguignon, L., Folgado, M., & Ortega, I. (2009). Elaboration d’un protocole d'expérimentation lithique pour la compréhension des comportements techniques et techno-économiques au Paléolithique moyen. Les Nouvelles de l’archéologie, 118, 60–64.CrossRefGoogle Scholar
  12. Clarkson, C., Jones, S., & Harris, C. (2012). Continuity and change in the lithic industries of the Jurreru Valley, India, before and after the Toba Eruption’. Quaternary International, 258, 165–179.CrossRefGoogle Scholar
  13. Delagnes, A. (1993). Un mode de production inédit au Paléolithique moyen dans l’industrie du niveau 6e duPucheuil (Seine-Maritime). Paléo, 5, 111–120.CrossRefGoogle Scholar
  14. Delagnes, A. (1996). Le site du Pucheuil à Saint-Saëns (Seine-Maritime): l’industrie lithique de la série B du Pucheuil. In A. Delagnes & A. Ropars (Eds.), Paléolithique moyen en Pays de Caux (Haute-Normandie): Le Pucheuil, Etoutteville: deux gisements de plein air en milieu lœssique (pp. 59–130). Paris: Maison des Sciences de l’Homme (D.A.F. 56).Google Scholar
  15. Delagnes, A., & Ropars, A. (Eds.) (1996a). Paleolithique moyen en Pays de Caux (Haute-Normandie): Le Pucheuil, Etoutteville, deux gisements de plein air en milieu loessique. Maison des Sciences de l'Homme (D.A.F. 56).Google Scholar
  16. Delagnes, A., & Ropars, A. (1996b). Le site du Pucheuil à Saint-Saëns (Seine-Maritime): Synthèse. In A. Delagnes & A. Ropars (Eds.), Paléolithique moyen en Pays de Caux (Haute-Normandie):LePucheuil, Etoutteville: deux gisements de plein air en milieu lœssique (pp. 145–148). Paris: Maison des Sciences de l’Homme (D.A.F. 56).Google Scholar
  17. Dibble, H., & Rezek, Z. (2009). Introducing a new experimental design for controlled studies of flake formation: results for exterior platform angle, platform depth, angle of blow, velocity, and force. Journal of Archaeological Science, 36, 1945–1954.CrossRefGoogle Scholar
  18. Dibble, H., Schurmans, U. A., Iovita, R. P., & McLaughlin, M. V. (2005). The measurement and interpretation of cortex in lithic assemblages. American Antiquity, 70, 545–560.CrossRefGoogle Scholar
  19. Geneste, J.-M. (1985). Analyse lithique d’industries moustéri-ennes du Périgord : une approche technologique du com-portement des groupes humains au Paléolithique moyen. Unpublished Doctoral Dissertation, University of Bordeaux 1.Google Scholar
  20. Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857–871.CrossRefGoogle Scholar
  21. Halbout, H., & Lautridou, J.-P. (1996). Le Site du Pucheuil à Saint-Saëns (Seine-Maritime). Cadre geomorphologique et stratigraphique. In Paléolithique moyen en pays de Caux (Haute-Normandie): Le Pucheuil, Etoutteville: deux gisements de plein air en milieu lœssique (pp. 50–58). Paris: Maison des Sciences de l’Homme (D.A.F. 56).Google Scholar
  22. Inizan, M. -L., Reduron-Ballinger, M., Roche, H., Tixier, J. (1999). Technology and terminology of knapped stone. Nanterre: C.R.E.P.Google Scholar
  23. Iovita, R. (2011). Shape variation in aterian tanged tools and the origins of projectile technology: a morphometric perspective on stone tool function. PLoS ONE, 6, e29029. doi:10.1371/journal.pone.0029029.CrossRefGoogle Scholar
  24. Larson, M. L. (1994). Toward a holistic analysis of chipped stone assemblages. In P. J. Carr (Ed.), The Organization of North American Stone Tool Technology. International Monographs in Prehistory (pp. 57–69). Ann Arbor.Google Scholar
  25. Lauzen, T., & Delagnes, A. (2014). Lithic tool management in the Early Middle Paleolithic: an integrated techno-functional approach applied to Le Pucheuil-type production (Le Pucheuil, northwestern France). Journal of Archaeological Science, 52, 337–353.CrossRefGoogle Scholar
  26. Lenoble, A., Bertran, P., & Lacrampe, F. (2008). Solifluction-induced modifications of archaeological levels: simulation based on experimental data from a modern periglacial slope and application to French Palaeolithic sites. Journal of Archaeological Science, 35, 99–110.CrossRefGoogle Scholar
  27. Lycett, S. J., & Eren, M. I. (2013). Levallois lessons: the challenge of integrating mathematical models, experiments and the archaeological record. World Archaeology, 45, 519–538.CrossRefGoogle Scholar
  28. Manly, B.F.J. (2004). Multivariate statistics: a primer. Chapman and Hall.Google Scholar
  29. Marwick, B. (2008). What attributes are important for the measurement of assemblage reduction intensity? Results from an experimental stone artefact assemblage with relevance to the Hoabinhian of mainland Southeast Asia. Journal of Archaeological Science, 35, 1189–1200.CrossRefGoogle Scholar
  30. Monnier, G. F., & Missal, K. (2014). Another Mousterian Debate? Bordianfacies, chaîneopératoiretechnocomplexes, and patterns of lithic variability in the western European Middle and Upper Pleistocene. Quaternary International, 350, 59–83.CrossRefGoogle Scholar
  31. Oswalt, W. S. (1976). An anthropological analysis of food-getting technology. New York: Wiley.Google Scholar
  32. Peresani, M. (Ed.). (2003). Discoid lithic technology: advances and implications. BAR International Series. Oxford: Archaeo press.Google Scholar
  33. Petraglia, M., Korisettar, R., Boivin, N., Clarkson, C., Ditchfield, P., Jones, S., Koshy, J., Mirazón-Lahr, M., Oppenheimer, C., Pyle, D., Roberts, R., Schwenninger, J. P., Arnold, L., & White, K. (2007). Middle Paleolithic Assemblages from the Indian Subcontinent Before and After the Toba Super-Eruption. Science, 317, 114–116.CrossRefGoogle Scholar
  34. Ropars, A., Billard, C., & Delagnes, A. (1996). Le Site du Pucheuil à Saint-Saëns (Seine-Maritime). Présentation générale de l’opération et des données archéologique. In Paléolithique moyen en pays de Caux (Haute-Normandie). Documents d’archéologie française 56 (pp. 28–49). Paris: Maison des sciences de l’homme.Google Scholar
  35. Scerri, E. M. L., Drake, N., Jennings, R., & Groucutt, H. S. (2014a). Earliest evidence for the structure of homo sapiens populations in africa. Quaternary Science Reviews, 101, 207–216.CrossRefGoogle Scholar
  36. Scerri, E. M. L., Groucutt, H. S., Jennings, R., & Petraglia, M. D. (2014b). Unexpected technological heterogeneity in northern Arabia indicates complex Late Pleistocene demography at the gateway to Asia. Journal of Human Evolution, 75, 125–142.CrossRefGoogle Scholar
  37. Soressi, M., & Geneste, J.-M. (2011). The history and efficacy of the Chaîne Opératoire approach to lithic analysis: studying techniques to reveal past societies in an evolutionary perspective. Paleoanthropology, 2011, 334–350.Google Scholar
  38. Tixier, J. 2012 (1978). Méthode pour l'étude des outillages lithiques: notice sur les travaux scientifiques de J. Tixier. Archeologiques 4, Luxembourg.Google Scholar
  39. Tostevin, G. (2013). Seeing lithics: a middle-range theory for testing for cultural transmission in the Pleistocene. American School of Prehistoric Research Bulletin. Cambridge: Peabody Museum of Archaeology and Ethnology, Harvard University.Google Scholar
  40. Turq, A. (1989). Approche technologique et économique du faciès Moustérien de type Quina: étude préliminaire. Bulletin de la Société Préhistorique Française, 86, 244–256.CrossRefGoogle Scholar
  41. Van Peer, P. (1992). The Levallois Reduction Strategy. Madison: Prehistory Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Eleanor M. L. Scerri
    • 1
    • 2
  • Brad Gravina
    • 1
  • James Blinkhorn
    • 1
  • Anne Delagnes
    • 1
  1. 1.UMR 5199 PACEAUniversity of BordeauxPessac CedexFrance
  2. 2.Research Laboratory for Archaeology and the History of ArtSchool of ArchaeologyOxfordUK

Personalised recommendations