Journal of Archaeological Method and Theory

, Volume 23, Issue 2, pp 623–668 | Cite as

Increasing Behavioral Flexibility? An Integrative Macro-Scale Approach to Understanding the Middle Stone Age of Southern Africa

  • Andrew W. Kandel
  • Michael Bolus
  • Knut Bretzke
  • Angela A. Bruch
  • Miriam N. Haidle
  • Christine Hertler
  • Michael Märker
Article

Abstract

The Middle Stone Age (MSA) of southern Africa represents a period during which anatomically modern humans adopted a series of diverse cultural innovations. Researchers generally attribute these behavioral changes to environmental, neurological, or demographic causes, but none of these alone offers a satisfactory explanation. Even as patterns at site level come into focus, large-scale trends in cultural expansions remain poorly understood. This paper presents different ways to view diachronic datasets from localities in southern Africa and specifically tests hypotheses of environmental and cultural causality. We employ an array of analyses in an attempt to understand large-scale variability observed during the MSA. We evaluated the diversity of stone tool assemblages to model site use, examined transport distances of lithic raw materials to understand patterns of movement, assessed the cultural capacities required to manufacture and use different sets of tools, applied stochastic models to examine the geographic distribution of sites, and reconstructed biome classes and climatic constraints. Our large-scale analysis allowed the research team to integrate different types of information and examine diachronic trends during the MSA. Based on our results, the range of cultural capacity expanded during the MSA. We define cultural capacity as the behavioral potential of a group expressed through the problem-solution distance required to manufacture and use tools. Our dataset also indicates that the actual behavior exhibited by MSA people, their cultural performance as expressed in the archaeological record, is not equivalent to their cultural capacity. Instead we observe that the main signature of the southern African MSA is its overall variability, as demonstrated by changing sets of cultural performances. Finally, at the scale of resolution considered here, our results suggest that climate is not the most significant factor driving human activities during the MSA. Instead, we postulate that behavioral flexibility itself became the key adaptation.

Keywords

Southern Africa Middle Stone Age Behavioral flexibility Cultural capacity Tool diversity Site prediction Ecoprofiling 

Supplementary material

10816_2015_9254_MOESM1_ESM.docx (18 kb)
Table ESM 1List of the localities and assemblages considered in the calculation of the Specialization Index. For Early and Late MSA, square brackets indicate the cultural designation as cited in the literature. (DOCX 18 kb)
10816_2015_9254_MOESM2_ESM.docx (20 kb)
Table ESM 2List of the localities and assemblages considered in the calculation of the Tool Group Index. For Early and Late MSA, square brackets indicate the cultural designation as cited in the literature. (DOCX 20 kb)
10816_2015_9254_MOESM3_ESM.docx (18 kb)
Table ESM 3List of the localities and assemblages considered in the calculation of rock transport distance. For Early and Late MSA, square brackets indicate the cultural designation as cited in the literature. (DOCX 18 kb)
10816_2015_9254_MOESM4_ESM.docx (18 kb)
Table ESM 4Species-specific ecological profiles. Diet classes: HFR=frugivore; HXB=folivore/browser; HMB=mixed feeder; HMG=fresh grass grazer; HXG=obligate grazer. Body mass classes [kg]: 2b=2-5; 2c=5-10; 3a=10-20; 3b=20-50; 3c=50-100; 4a=100-200; 4b=200-500; 4c=500-1000; 5a=1000-2000; 5b=2000-5000. Locomotion types: ARB=arboreal; SAR=semi-arboreal/scansorial; AMP=amphibian; UBI=ubiquitous terrestrial; UNG=ungulate; GRA=graviportal. (DOCX 18 kb)
10816_2015_9254_MOESM5_ESM.docx (19 kb)
Table ESM 5Characteristics of the six specialized herbivore communities in the reference sample based on data derived from 30 national parks in southern Africa. The classification results from faunal datasets: deco=ecological diversities; drel=relative diversities, proxy for structural redundancy. Description of the sample: HFR=frugivore; HXB=folivore/browser; HMB=mixed feeder; HMG=fresh grass grazer; HXG=obligate grazer; SM= small <200 kg body mass; LA= large ≥200 kg. (DOCX 19 kb)
10816_2015_9254_MOESM6_ESM.docx (17 kb)
Table ESM 6List of the localities and assemblages considered in assessment of fauna. For Early and Late MSA, square brackets indicate the cultural designation as cited in the literature. (DOCX 16 kb)
10816_2015_9254_MOESM7_ESM.docx (19 kb)
Table ESM 7Quantification of specialized herbivore communities with regard to climatic regimes and vegetation characteristics. The classification results from faunal datasets: deco=ecological diversities; drel=relative diversities, proxy for structural redundancy. Description of the sample: HFR=frugivore; HXB=folivore/browser; HMB=mixed feeder; HMG=fresh grass grazer; HXG=obligate grazer; SM= small <200 kg body mass; LA= large ≥200 kg. Climatic regime: MAT=mean annual temperature; ∆T (WAQ-CQ)=temperature difference between mean temperature of the warmest and coldest quarter, proxy for temperature seasonality; MAP=mean annual precipitation; ∆P1 (WEQ-DQ)=precipitation difference between mean precipitation of wettest and driest quarter, proxy for precipitation seasonality; ∆P2 (WAQ-CQ)=precipitation difference between mean precipitation of warmest and coldest quarter, proxy for summer (>0) vs. winter rains (<0). Vegetation characteristics: LAI=leaf area index (leaf area in relation to base area); greenness=proxy for photosynthesis activity (varies between 0 and 1); vegetation cover=proxy for vegetation density (varies between 0 and 1). (DOCX 18 kb)
10816_2015_9254_MOESM8_ESM.docx (20 kb)
Table ESM 8Classification functions for both sets of variables. See Table ESM-7 for legend. (DOCX 19 kb)
10816_2015_9254_MOESM9_ESM.docx (38 kb)
ESM 9(DOCX 38 kb)

References

  1. Ambrose, S. H. (2006). Howiesons Poort lithic raw material procurement patterns and the evolution of modern human behavior: a response to Minichillo. Journal of Human Evolution, 50, 365–369.CrossRefGoogle Scholar
  2. Avery, D. M. (1982). The micromammalian fauna from border cave, Kwazulu, South Africa. Journal of Archaeological Science, 9, 187–204.CrossRefGoogle Scholar
  3. Avery, D. M. (1992). The environment of early modern humans at border cave, South Africa: micromammalian evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 91, 71–87.CrossRefGoogle Scholar
  4. Avery, G., Halkett, D., Orton, J., Steele, T., Tusenius, M., & Klein, R. G. (2008). The Ysterfontein 1 Middle Stone Age rock shelter and the evolution of coastal foraging. South African Archaeological Society Goodwin Series, 10, 66–89.Google Scholar
  5. Backwell, L., d’Errico, F., & Wadley, L. (2008). Middle Stone Age bone tools from the Howiesons Poort layers, Sibudu cave, South Africa. Journal of Archaeological Science, 35, 1566–1580.CrossRefGoogle Scholar
  6. Baxter, M. J. (2001). Methodological issues in the study of assemblage diversity. American Antiquity, 66, 715–725.CrossRefGoogle Scholar
  7. Beaumont, P. B. (1990). Kathu Pan. In P. Beaumont, & D. Morris (Eds.), Guide to archaeological sites in the Northern Cape (pp. 75–100). Kimberley: McGregor Museum.Google Scholar
  8. Beven, K. J., & Kirkby, M. J. (1979). A physically-based variable contributing area model of basin hydrology. Hydrological Science Bulletin, 24, 43–69.CrossRefGoogle Scholar
  9. Binford, L. R. (1979). Organization and formation processes: looking at curated technologies. Journal of Anthropological Research, 35, 255–273.CrossRefGoogle Scholar
  10. Binford, L. R. (1980). Willow smoke and dogs’ tails: hunter-gatherer settlement systems and archaeological site formation. American Antiquity, 45, 4–20.CrossRefGoogle Scholar
  11. Binford, L. R. (1982). The archaeology of space. Journal of Anthropological Archaeology, 1, 5–31.CrossRefGoogle Scholar
  12. Blome, M. W., Cohen, A. S., Tryon, C. A., Brooks, A. S., & Russell, J. (2012). The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. Journal of Human Evolution, 62, 563–592.CrossRefGoogle Scholar
  13. Böhner, U. (2008). Die schicht E3 der sesselfelsgrotte und die funde aus dem abri I am schulerloch. Späte micoquien-inventare und ihre stellung zum moustérien. Stuttgart: Steiner.Google Scholar
  14. Böhner, J., & Antonić, O. (2009). Land surface parameters specific to topo-climatology. In T. Hengl & H. I. Reuter (Eds.), Geomorphometry: concepts, software, applications (pp. 195–226). Amsterdam: Elsevier.CrossRefGoogle Scholar
  15. Brew, J. O. (1946). The use and abuse of taxonomy: the archaeology of Alkali Ridge, Utah. Papers of the Peabody Museum of Archaeology and Ethnology, 21, 44–66.Google Scholar
  16. Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, C. M., & Bernatchez, J. (2009). Fire as an engineering tool of early modern humans. Science, 325, 859–862.CrossRefGoogle Scholar
  17. Brown, K. S., Marean, C. W., Jacobs, Z., Schoville, B. J., Oestmo, S., Fisher, E. C., Bernatchez, J., Karkanas, P., & Matthews, T. (2012). An early and enduring advanced technology originating 71,000 years ago in South Africa. Nature, 491, 590–593.CrossRefGoogle Scholar
  18. Bruch, A. A., Sievers, C., & Wadley, L. (2012). Quantification of climate and vegetation from southern African Middle Stone Age sites—an application using Late Pleistocene plant material from Sibudu, South Africa. Quaternary Science Reviews, 45, 7–17.CrossRefGoogle Scholar
  19. Caley, T., Kim, J.-H., Malaizé, B., Giraudeau, J., Laepple, T., Caillon, N., Charlier, K., Rebaubier, H., Rossignol, L., Castañeda, I. S., Schouten, S., & Sinninghe Damsté, J. S. (2011). High-latitude obliquity as a dominant forcing in the Agulhas current system. Climate of the Past, 7, 1285–1296.CrossRefGoogle Scholar
  20. Carter, P. L., & Vogel, J. C. (1974). The dating of industrial assemblages from stratified sites in eastern Lesotho. Man, 9(4), 557–570.CrossRefGoogle Scholar
  21. Charrié-Duhaut, A., Porraz, G., Cartwright, C. R., Igreja, M., Connan, J., Poggenpoel, C., & Texier, P. J. (2013). First molecular identification of a hafting adhesive in the late Howiesons Poort at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 40, 3506–3518.CrossRefGoogle Scholar
  22. Chase, B. M. (2010). South African paleoenvironments during marine oxygen isotope stage 4: a context for the Howiesons Poort and Still Bay industries. Journal of Archaeological Science, 37, 1359–1366.CrossRefGoogle Scholar
  23. Chase, B. M., & Meadows, M. E. (2007). Late quaternary dynamics of southern Africa’s winter rainfall zone. Earth-Science Reviews, 84, 103–138.CrossRefGoogle Scholar
  24. Clark, J. L., & Kandel, A. W. (2013). The evolutionary implications of variation in human hunting strategies and diet breadth during the Middle Stone Age of southern Africa. Current Anthropology, 54(8), 10.1086/673386.
  25. Conard, N. J., Porraz, G., & Wadley, L. (2012). What is in a name? Characterising the post-Howieson’s Poort at Sibudu. South African Archaeological Bulletin, 67, 180–199.Google Scholar
  26. Conrad, O. (2007). SAGA–Entwurf, Funktionsumfang und Anwendung eines Systems für Automatisierte Geowissenschaftliche Analysen. Ph.D. dissertation, Göttingen: University of Göttingen.Google Scholar
  27. d’Errico, F., Backwell, L., Villa, P., Degano, I., Lucejko, J. J., Bamford, M. K., Higham, T. F. G., Colombini, M. P., & Beaumont, P. B. (2012a). Early evidence of San material culture represented by organic artifacts from Border Cave, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 109, 13214–13219.Google Scholar
  28. d’Errico, F., Backwell, L. R., & Wadley, L. (2012b). Identifying regional variability in Middle Stone Age bone technology: the case of Sibudu cave. Journal of Archaeological Science, 39, 2479–2495.CrossRefGoogle Scholar
  29. Deacon, J. (1978). Changing patterns in the late Pleistocene/early Holocene prehistory of southern Africa as seen from the Nelson Bay Cave stone artifact sequence. Quaternary Research, 10, 84–111.CrossRefGoogle Scholar
  30. Deacon, H. J. (1979). Excavations at Boomplaas Cave—a sequence through the upper Pleistocene and Holocene in South Africa. World Archaeology, 10, 241–257.CrossRefGoogle Scholar
  31. Deacon, H. J. (1989). Late Pleistocene palaeoecology and archaeology in the Southern Cape, South Africa. In C. Stringer & P. Mellars (Eds.), The human revolution: behavioral and biological perspectives on the origins of modern humans (pp. 547–564). Princeton: Princeton University Press.Google Scholar
  32. Deacon, H. J. (1995). Two Late Pleistocene-Holocene archaeological depositories from the Southern Cape, South Africa. South African Archaeological Bulletin, 50, 121–131.CrossRefGoogle Scholar
  33. d'Errico, F., & Henshilwood, C. (2007). Additional evidence for bone technology in the southern African Middle Stone Age. Journal of Human Evolution, 52, 142–163.CrossRefGoogle Scholar
  34. d'Errico, F., Henshilwood, C., & Nilssen, P. (2001). An engraved bone fragment from c. 70,000-year-old Middle Stone Age levels at Blombos Cave, South Africa: Implications for the origin of symbolism and language. Antiquity, 75, 309–318.CrossRefGoogle Scholar
  35. d'Errico, F., Vanhaeren, M., & Wadley, L. (2008). Possible shell beads from the Middle Stone Age layers of Sibudu Cave, South Africa. Journal of Archaeological Science, 35, 2675–2685.CrossRefGoogle Scholar
  36. d'Errico, F., Garcia Moreno, R., & Rifkin, R. F. (2012). Technological, elemental and colorimetric analysis of an engraved ocher fragment from the Middle Stone Age levels of Klasies River Cave 1, South Africa. Journal of Archaeological Science, 39, 942–952.CrossRefGoogle Scholar
  37. Dietl, H., Kandel, A. W., & Conard, N. J. (2005). Middle Stone Age settlement and land use at the open-air sites of Geelbek and Anyskop, South Africa. Journal of African Archaeology, 3(2), 233–244.CrossRefGoogle Scholar
  38. Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813.CrossRefGoogle Scholar
  39. Evans, U. (1994). Hollow Rock Shelter, a Middle Stone Age site in the Cederberg. Southern African Field Archaeology, 3, 63–73.Google Scholar
  40. Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.CrossRefGoogle Scholar
  41. Friedman, J. H. (1999). Stochastic gradient boosting. Technical Report, Department of Statistics, Stanford: Stanford University. http://www.salford-systems.com/treenet.html. Accessed 3 March 2015
  42. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29, 1189–1232.CrossRefGoogle Scholar
  43. Gelhausen, F. (2011). Siedlungsmuster der allerødzeitlichen Federmessergruppen in Niederbieber, Stadt Neuwied. Mainz: Verlag des Römisch-Germanischen Zentralmuseums.Google Scholar
  44. Gibson, N. E., Wadley, L., & Williamson, B. S. (2004). Microscopic residues as evidence of hafting on backed tools from the 60 000 to 68 000 year-old Howiesons Poort layers of Rose Cottage Cave, South Africa. Southern African Humanities, 16, 1–11.Google Scholar
  45. Goldberg, P., Miller, C. E., Schiegl, S., Ligouis, B., Berna, F., Conard, N. J., & Wadley, L. (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences, 1, 95–122.CrossRefGoogle Scholar
  46. Goodwin, A. J. H. (1929). The Stone Age cultures of South Africa. Annals of the South African Museum, 27, 95–145.Google Scholar
  47. Guérin, G., Murray, A. S., Jain, M., Thomsen, K. J., & Mercier, N. (2013). How confident are we in the chronology of the transition between Howieson’s Poort and Still Bay? Journal of Human Evolution, 64, 314–317.CrossRefGoogle Scholar
  48. Haidle, M. N. (2009). How to think a simple spear? In S. A. de Beaune, F. L. Coolidge, & T. Wynn (Eds.), Cognitive archaeology and human evolution (pp. 57–73). New York: Cambridge University Press.Google Scholar
  49. Haidle, M. N. (2010). Working memory capacity and the evolution of modern cognitive capacities—implications from animal and early human tool use. Working memory: beyond language and symbolism Wenner-Gren Symposium. Current Anthropology, 51(S1), S149–S166.CrossRefGoogle Scholar
  50. Haidle, M. N. (2012). How to think tools? A comparison of cognitive aspects in tool behavior of animals and during human evolution. Cognitive perspectives in tool behavior, Vol. 1. http://tobias-lib.uni-tuebingen.de/frontdoor.php?source_opus=6014. Accessed 3 March 2015
  51. Haidle, M. N., Bolus, M., Collard, M., Conard, N. J., Garofoli, D., Lombard, M., Nowell, A., Tennie, C., & Whiten, A. (2015). The nature of culture: an eight-grade model for the evolution and expansion of cultural capacities in hominins and other animals. Journal of Anthropological Sciences 93:1-28. doi:10.4436/jass.93011.
  52. Haidle, M. N., & Conard, N. J. (2011). The nature of culture—summary report on an interdisciplinary symposium held in Tübingen, Germany, 15–18 June 2011. Mitteilungen der Gesellschaft für Urgeschichte, 20, 65–78.Google Scholar
  53. Haidle, M. N., Bolus, M., Bruch, A., Hertler, C., Kandel, A. W., Märker, M., Conard, N. J., Hochschild, V., Schrenk, F., & Mosbrugger, V. (2010). The role of culture in early expansions of humans—a new research center. Quaternary International, 223–224, 429–430.CrossRefGoogle Scholar
  54. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36.CrossRefGoogle Scholar
  55. Henshilwood, C. S., & Dubreuil, B. (2011). The Still Bay and Howiesons Poort, 77–59 ka. Symbolic material culture and the evolution of the mind during the African Middle Stone Age. Current Anthropology, 52, 361–400.CrossRefGoogle Scholar
  56. Henshilwood, C. S., & Marean, C. W. (2006). Remodelling the origins of modern human behaviour. In H. Soodyall (Ed.), The human genome and Africa. Part 1: history and archaeology (pp. 31–48). Pretoria: Human Sciences Research Council.Google Scholar
  57. Henshilwood, C. S., Sealy, J. C., Yates, R., Cruz-Uribe, K., Goldberg, P., Grine, F. E., Klein, R. G., Poggenpoel, C., van Niekerk, K., & Watts, I. (2001). Blombos Cave, Southern Cape, South Africa: preliminary report on the 1992–1999 excavations of the Middle Stone Age levels. Journal of Archaeological Science, 28, 421–448.CrossRefGoogle Scholar
  58. Henshilwood, C. S., d’Errico, F., Yates, R., Jacobs, Z., Tribolo, C., Duller, G. A. T., Mercier, N., Sealy, J. C., Valladas, H., Watts, I., & Wintle, A. G. (2002). Emergence of modern human behavior: Middle Stone Age engravings from South Africa. Science, 295, 1278–1280.CrossRefGoogle Scholar
  59. Henshilwood, C. S., d'Errico, F., Vanhaeren, M., van Niekerk, K. L., & Jacobs, Z. (2004). Middle Stone Age shell beads from South Africa. Nature, 304, 404.Google Scholar
  60. Henshilwood, C. S., d'Errico, F., & Watts, I. (2009). Engraved ochers from the Middle Stone Age levels at Blombos Cave, South Africa. Journal of Human Evolution, 57, 27–47.CrossRefGoogle Scholar
  61. Henshilwood, C. S., d'Errico, F., van Niekerk, K. L., Coquinot, Y., Jacobs, Z., Lauritzen, S.-E., Menu, M., & García Moreno, R. (2011). A 100,000-year-old ocher-processing workshop at Blombos Cave, South Africa. Science, 334, 219–222.CrossRefGoogle Scholar
  62. Henshilwood, C. H., van Niekerk, K. L., Wurz, S., Delagnes, A., Armitage, S. J., Rifkin, R. F., Douze, K., Keene, P., Haaland, M. M., Reynard, J., Discamps, E., & Mienies, S. S. (2014). Klipdrift Shelter, southern Cape, South Africa: preliminary report on the Howiesons Poort layers. Journal of Archaeological Science, 45, 284–303.CrossRefGoogle Scholar
  63. Hodgskiss, T. (2012). An investigation into the properties of the ochre from Sibudu, KwaZulu-Natal, South Africa. Southern African Humanities, 24, 99–120.Google Scholar
  64. Högberg, A., & Larsson, L. (2011). Lithic technology and behavioural modernity: new results from the Still Bay site, Hollow Rock Shelter, Western Cape Province, South Africa. Journal of Human Evolution, 61, 133–155.CrossRefGoogle Scholar
  65. Holzkämper, S., Holmgren, K., Lee-Thorp, J., Talma, S., Mangini, A., & Partridge, T. (2009). Late Pleistocene stalagmite growth in Wolkberg cave, South Africa. Earth and Planetary Science Letters, 282, 212–221.CrossRefGoogle Scholar
  66. Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  67. Jacobs, Z., Roberts, R. G., Galbraith, R. F., Deacon, H. J., Grün, R., Mackay, A., Mitchell, P., Vogelsang, R., & Wadley, L. (2008a). Ages for the Middle Stone Age of southern Africa: Implications for human behavior and dispersal. Science, 322, 733–735.CrossRefGoogle Scholar
  68. Jacobs, Z., Wintle, A. G., Duller, G. A. T., Roberts, R. G., & Wadley, L. (2008b). New ages for the post-Howiesons Poort, Late and Final Middle Stone Age at Sibudu, South Africa. Journal of Archaeological Science, 35, 1790–1807.CrossRefGoogle Scholar
  69. Jacobs, Z., Hayes, E. H., Roberts, R. G., Galbraith, R. F., & Henshilwood, C. S. (2013). An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa. Journal of Archaeological Science, 40, 579–594.CrossRefGoogle Scholar
  70. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2006). Hole-filled seamless SRTM data V3, International Centre for Tropical Agriculture (CIAT), http://srtm.csi.cgiar.org. Accessed 3 March 2015
  71. Jerardino, A., & Marean, C. W. (2010). Shellfish gathering, marine paleoecology and modern human behavior: perspectives from cave PP13B, Pinnacle Point, South Africa. Journal of Human Evolution, 59, 412–424.CrossRefGoogle Scholar
  72. Kandel, A. W., & Conard, N. J. (2012). Settlement patterns during the Earlier and Middle Stone Age around Langebaan Lagoon, Western Cape (South Africa). Quaternary International, 270, 15–29. doi:10.1016/j.quaint.2011.06.038.
  73. Kaplan, J. (1990). The Umhlatuzana Rock Shelter sequence: 100,000 years of Stone Age history. Natal Museum Journal of Humanities, 2, 1–94.Google Scholar
  74. Kaufman, D. (1998). Measuring archaeological diversity: an application of the jackknife technique. American Antiquity, 63, 73–85.CrossRefGoogle Scholar
  75. Kintigh, K. W. (1984). Measuring archaeological diversity by comparison with simulated assemblages. American Antiquity, 49, 44–54.CrossRefGoogle Scholar
  76. Klein, R. G. (1974). Environment and subsistence of prehistoric man in the Southern Cape Province, South Africa. World Archaeology, 5, 249–284.CrossRefGoogle Scholar
  77. Klein, R. G. (1977). The mammalian fauna from the Middle and Later Stone Age (Later Pleistocene) levels of Border Cave, Natal Province, South Africa. South African Archaeological Bulletin, 32, 14–27.CrossRefGoogle Scholar
  78. Klein, R. G. (2001). Southern Africa and modern human origins. Journal of Anthropological Research, 57, 1–16.CrossRefGoogle Scholar
  79. Klein, R. G. (2008). Out of Africa and the evolution of human behavior. Evolutionary Anthropology, 17, 267–281.CrossRefGoogle Scholar
  80. Klein, R. G., Avery, G., Cruz-Uribe, K., & Steele, T. E. (2007). The mammalian fauna associated with an archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape Province, South Africa. Journal of Human Evolution, 52, 164–186.CrossRefGoogle Scholar
  81. Kovarovic, K., Aiello, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classification rates too good to be true? Journal of Archaeological Science, 38, 3006–3018.CrossRefGoogle Scholar
  82. Kuman, K., & Clarke, R. J. (2000). Stratigraphy, artefact industries and hominid associations for Sterkfontein, Member 5. Journal of Human Evolution, 38, 827–847.CrossRefGoogle Scholar
  83. Kuman, K., Inbar, M., & Clarke, R. J. (1999). Palaeoenvironments and cultural sequence of the Florisbad Middle Stone Age hominid site, South Africa. Journal of Archaeological Science, 26, 1409–1425.CrossRefGoogle Scholar
  84. Langejans, G. H. J., van Niekerk, K. L., Dusseldorp, G. L., & Thackeray, J. F. (2012). Middle Stone Age shellfish exploitation: Potential indications for mass collecting and resource intensification at Blombos Cave and Klasies River, South Africa. Quaternary International, 270, 80–94.CrossRefGoogle Scholar
  85. Lombard, M. (2006). First impressions of the functions and hafting technology of Still Bay pointed artefacts from Sibudu Cave. Southern African Humanities, 18(1), 27–41.Google Scholar
  86. Lombard, M. (2008). Finding resolution for the Howiesons Poort through the microscope: micro-residue analysis of segments from Sibudu Cave, South Africa. Journal of Archaeological Science, 35, 26–41.CrossRefGoogle Scholar
  87. Lombard, M. (2011). Quartz-tipped arrows older than 60 ka: further use-trace evidence from Sibudu, KwaZulu-Natal, South Africa. Journal of Archaeological Science, 38, 1918–1930.CrossRefGoogle Scholar
  88. Lombard, M. (2012). Thinking through the Middle Stone Age of sub-Saharan Africa. Quaternary International, 270, 140–155.CrossRefGoogle Scholar
  89. Lombard, M., & Haidle, M. N. (2012). Thinking a bow-and-arrow: cognitive implications of Middle Stone Age bow and stone-tipped arrow technology. Cambridge Archaeological Journal, 22, 237–264.CrossRefGoogle Scholar
  90. Lombard, M., & Parsons, I. (2011). What happened to the human mind after the Howiesons Poort? Antiquity, 85, 1433–1443.CrossRefGoogle Scholar
  91. Lombard, M., & Phillipson, L. (2010). Indications of bow and stone-tipped arrow use 64000 years ago in KwaZulu-Natal, South Africa. Antiquity, 84, 1–14.CrossRefGoogle Scholar
  92. Lombard, M., Wadley, L., Jacobs, Z., Mohapi, M., & Roberts, R. G. (2010). Still bay and serrated points from Umhlatuzana Rock Shelter, Kwazulu-Natal, South Africa. Journal of Archaeological Science, 37, 1–12.CrossRefGoogle Scholar
  93. Lombard, M., Wadley, L., Deacon, J., Wurz, S., Parsons, I., Mohapi, M., Swart, J., & Mitchell, P. (2012). South African and Lesotho Stone Age sequence updated (I). South African Archaeological Bulletin, 67, 123–144.Google Scholar
  94. Mackay, A. (2009). History and selection in the late Pleistocene archaeology of the Western Cape, South Africa. Unpublished Ph.D. thesis, Canberra: Australian National University.Google Scholar
  95. Mackay, A. (2011a). Potentially stylistic differences between backed artefacts from two nearby sites occupied ~60,000 years before present in South Africa. Journal of Anthropological Archaeology, 30, 235–245.CrossRefGoogle Scholar
  96. Mackay, A. (2011b). Nature and significance of the Howiesons Poort to post-Howiesons Poort transition at Klein Kliphuis rockshelter, South Africa. Journal of Archaeological Science, 38, 1430–1440.CrossRefGoogle Scholar
  97. Mackay, A., & Welz, A. (2008). Engraved ocher from a Middle Stone Age context at Klein Kliphuis in the Western Cape of South Africa. Journal of Archaeological Science, 35, 152–1532.Google Scholar
  98. Mackay, A. Stewart, B. A., & Chase, B. M. (2014). Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. Journal of Human Evolution, 10.1016/j.jhevol.2014.03.003.
  99. Malan, B. D. (1955). The archaeology of the Tunnel Cave and Skildergat Kop, Fish Hoek, Cape of Good Hope. South African Archaeological Bulletin, 10, 3–9.CrossRefGoogle Scholar
  100. Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating presence–absence models in ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921–931.CrossRefGoogle Scholar
  101. Marean, C. W., & Assefa, Z. (2005). The Middle and Upper Pleistocene African record for the biological and behavioral origins of modern humans. In A. B. Stahl (Ed.), African archaeology (pp. 93–129). Malden: Blackwell.Google Scholar
  102. Marean, C. W., Nilssen, P. J., Brown, K., Jerardino, A., & Stynder, D. (2004). Paleoanthropological investigations of Middle Stone Age sites at Pinnacle Point, Mossel Bay (South Africa): Archaeology and hominid remains from the 2000 field season. PaleoAnthropology, 1, 14–83.Google Scholar
  103. Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P. J., Thompson, E., Watts, I., & Williams, H. M. (2007). Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449, 905–908.CrossRefGoogle Scholar
  104. Marean, C. W., Bar-Matthews, M., Fisher, E., Goldberg, P., Herries, A., Karkanas, P., Nilssen, P. J., & Thompson, E. (2010). The stratigraphy of the Middle Stone Age sediments at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa). Journal of Human Evolution, 59, 234–255.CrossRefGoogle Scholar
  105. Märker, M., Bolus, M., & Kanaeva, Z. (2011). Spatial assessment of early human expansions using GIS and Database Techniques: Examples from Southern Africa and Eurasia. In R. Macchiarelli, & G.-C. Weniger (Eds.), Pleistocene databases: Acquisition, storing, sharing (pp. 69–75). Wissenschaftliche Schriften des Neanderthal Museums 4. Mettmann: Neanderthal Museum.Google Scholar
  106. Mason, R. J. (1962). Prehistory of the Transvaal. Johannesburg: Witwatersrand University Press.Google Scholar
  107. Mazza, P., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., Landucci, F., Lemorini, C., Modugno, F., & Ribechini, E. (2006). A new Palaeolithic discovery: tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 1310–1318.CrossRefGoogle Scholar
  108. McBrearty, S. (2012). Sharpening the mind. Nature, 491, 531–532.CrossRefGoogle Scholar
  109. McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn't: a new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.CrossRefGoogle Scholar
  110. McCall, G. S. (2007). Behavioral ecological models of lithic technological change during the later Middle Stone Age of South Africa. Journal of Archaeological Science, 34, 1738–1751.CrossRefGoogle Scholar
  111. McCartney, P. H., & Glass, M. F. (1990). Simulation models and the interpretation of archaeological diversity. American Antiquity, 55, 521–536.CrossRefGoogle Scholar
  112. Miller, G. H., Beaumont, P. B., Deacon, H. J., Brooks, A. S., Hare, P. E., & Jull, A. J. T. (1999). Earliest modern humans in southern Africa dated by isoleucine epimerization in ostrich eggshell. Quaternary Science Reviews, 18, 1537–1548.CrossRefGoogle Scholar
  113. Mitchell, P. J. (1996). The late Quaternary of the Lesotho highlands, southern Africa: Preliminary results and future potential of ongoing research at Sehonghong shelter. Quaternary International, 33, 35–43.CrossRefGoogle Scholar
  114. Mitchell, P. J., & Steinberg, J. M. (1992). Ntloana Tsoana: A Middle Stone Age sequence from western Lesotho. South African Archaeological Bulletin, 47, 26–33.CrossRefGoogle Scholar
  115. Moore, I. D., Garson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological and biological applications. Hydrological Processes, 5, 3–30.CrossRefGoogle Scholar
  116. Mourre, V., Villa, P., & Henshilwood, C. S. (2010). Early use of pressure flaking on lithic artifacts at Blombos Cave, South Africa. Science, 330, 659–662.CrossRefGoogle Scholar
  117. Nobre, A. D., Cuartas, L. A., Hodnett, M., Rennó, C. D., Rodrigues, G., Silveira, A., Waterloo, M., & Saleska, S. (2011). Height Above the Nearest Drainage—a hydrologically relevant new terrain model. Journal of Hydrology, 404(1–2), 13–29.CrossRefGoogle Scholar
  118. Olaya, V., & Conrad, O. (2008). Geomorphometry in SAGA. In T. Hengl & H. I. Reuter (Eds.), Geomorphometry: concepts, software, applications (pp. 293–308). Amsterdam: Elsevier.Google Scholar
  119. Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D'amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. BioScience, 51, 933–938.CrossRefGoogle Scholar
  120. Opperman, H., & Heydenrych, B. (1990). A 22 000 year-old Middle Stone Age camp site with plant food remains from the North-Eastern Cape. South African Archaeological Bulletin, 45, 93–99.CrossRefGoogle Scholar
  121. Parkington, J. E. (2003). Middens and moderns: shellfishing and the Middle Stone Age of the Western Cape, South Africa. South African Journal of Science, 99, 243–247.Google Scholar
  122. Planchon, O., & Darboux, F. (2001). A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 46, 159–176.CrossRefGoogle Scholar
  123. Porraz, G., Texier, P.-J., Rigaud, J.-P., Parkington, J. E., Poggenpoel, C., & Roberts, D. L. (2008). Preliminary characterization of a Middle Stone Age lithic assemblage preceding the 'classic' Howieson's Poort complex at Diepkloof Rock Shelter, Western Cape Province, South Africa. South African Archaeological Society Goodwin Series, 10, 105–121.Google Scholar
  124. Porraz, G., Texier, P.-J., Archer, W., Piboule, M., Rigaud, J.-P., & Tribolo, C. (2013). Technological successions in the Middle Stone Age sequence of Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3376–3400.CrossRefGoogle Scholar
  125. Rector, A. L., & Reed, K. E. (2010). Middle and late Pleistocene faunas of Pinnacle Point and their paleoecological implications. Journal of Human Evolution, 59, 340–357.CrossRefGoogle Scholar
  126. Reed, K. E. (1997). Early hominid evolution and ecological change through the African Plio-Pleistocene. Journal of Human Evolution, 32, 289–322.CrossRefGoogle Scholar
  127. Reed, K. E. (1998). Using large mammal communities to examine ecological and taxonomic structure and predict vegetation in extant and extinct assemblages. Paleobiology, 24, 384–408.Google Scholar
  128. Reed, K. E., & Rector, A. L. (2007). African Pliocene Paleoecology. Hominin habitats, resources, and diets. In P. S. Ungar (Ed.), Evolution of the Human Diet (pp. 262–288). New York: Oxford University Press.Google Scholar
  129. Reineking, B., & Schröder, B. (2006). Constrain to perform: regularization of habitat models. Ecological Modeling, 193, 675–690.CrossRefGoogle Scholar
  130. Rhode, D. (1988). Measurement of archaeological diversity and the sample-size effect. American Antiquity, 53, 708–716.CrossRefGoogle Scholar
  131. Richter, J. (1990). Diversität als Zeitmass im Spätmagdalénien. Archäologisches Korrespondenzblatt, 20, 249–257.Google Scholar
  132. Rigaud, J.-P., Texier, P.-J., Parkington, J. E., & Poggenpoel, C. (2006). Le mobilier Still Bay et Howiesons Poort de l'abri Diepkloof. La chronologie du Middle Stone Age sud-africain et ses implications. Comptes Rendus Palevol, 5, 839–849.CrossRefGoogle Scholar
  133. Rots, V., & Van Peer, P. (2006). Early evidence of complexity in lithic economy: core-axe production, hafting and use at Late Middle Pleistocene site 8-B-11, Sai Island (Sudan). Journal of Archaeological Science, 33, 360–371.CrossRefGoogle Scholar
  134. Sappington, J. M., Longshore, K. M., & Thompson, D. B. (2007). Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. Journal of Wildlife Management, 71(5), 1419–1426.CrossRefGoogle Scholar
  135. Schmidt, P., Porraz, G., Slodczyk, A., Bellot-gurlet, L., Archer, W., & Miller, C. E. (2013). Heat treatment in the South African Middle Stone Age: temperature induced transformations of silcrete and their technological implications. Journal of Archaeological Science, 40, 3519–3531.CrossRefGoogle Scholar
  136. Sealy, J. C. (2006). Diet, mobility, and settlement pattern among Holocene hunter-gatherers in southernmost Africa. Current Anthropology, 47, 569–595.CrossRefGoogle Scholar
  137. Singer, R., & Wymer, J. (1982). The Middle Stone Age at Klasies River Mouth in South Africa. Chicago: The University of Chicago Press.Google Scholar
  138. Soriano, S., Villa, P., & Wadley, L. (2007). Blade technology and tool forms in the Middle Stone Age of South Africa: the Howiesons Poort and post-Howiesons Poort at Rose Cottage Cave. Journal of Archaeological Science, 34, 681–703.CrossRefGoogle Scholar
  139. Soriano, S., Villa, P., & Wadley, L. (2009). Ocher for the toolmaker: shaping the Still Bay points at Sibudu (KwaZulu-Natal, South Africa). Journal of African Archaeology, 7, 41–54.CrossRefGoogle Scholar
  140. Steele, T. E., & Klein, R. G. (2005). Mollusk and tortoise size as proxies for stone age population density in South Africa: Implications for the evolution of human cultural capacity. Munibe. Sociedad de Ciencias Naturales Aranzadi (San Sebastian), 57, 221–237.Google Scholar
  141. Steele, T. E., & Klein, R. G. (2009). Late Pleistocene subsistence strategies and resource intensification in Africa. In J.-J. Hublin & M. P. Richards (Eds.), The evolution of hominin diets: integrating approaches to the study of Palaeolithic subsistence, vertebrate paleobiology and paleoanthropology (pp. 113–126). Dordrecht: Springer.CrossRefGoogle Scholar
  142. Steele, T. E., & Klein, R. G. (2013). The Middle and Later Stone Age faunal remains from Diepkloof Rockshelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3453–3462.CrossRefGoogle Scholar
  143. Steele, T. E., Mackay, A., Orton, J., & Schwortz, S. (2012). Varsche Rivier 003, a new Middle Stone Age site in southern Namaqualand, South Africa. South African Archaeological Bulletin, 67, 108–119.Google Scholar
  144. Stewart, B. A., Dewar, G. I., Morley, M. W., Inglis, R. H., Wheeler, M., Jacobs, Z., & Roberts, R. G. (2012). Afromontane foragers of the Late Pleistocene: site formation, chronology and occupational pulsing at Melikane Rockshelter, Lesotho. Quaternary International, 270, 40–60.CrossRefGoogle Scholar
  145. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.CrossRefGoogle Scholar
  146. Tattersall, I. (2014). An evolutionary context for the emergence of language. Language Sciences, 46B, 199–206.CrossRefGoogle Scholar
  147. Texier, P.-J., Porraz, G., Parkington, J. E., Rigaud, J.-P., Poggenpoel, C., Miller, C. E., Tribolo, C., Cartwright, C., Coudenneau, A., Klein, R. G., Steele, T., & Verna, C. (2010). A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 6180–6185.CrossRefGoogle Scholar
  148. Texier, P. J., Porraz, G., Parkington, J., Rigaud, J.-P., Poggenpoel, C., & Tribolo, C. (2013). The context, form and significance of the MSA engraved ostrich eggshell collection from Diepkloof Rock Shelter, Western Cape, South Africa. Journal of Archaeological Science, 40, 3412–3431.CrossRefGoogle Scholar
  149. Thackeray, J. F. (1988). Molluscan fauna from Klasies River, South Africa. South African Archaeological Bulletin, 43, 27–32.CrossRefGoogle Scholar
  150. Thackeray, A. I. (2000). Middle Stone Age artifacts from the 1993 and 1995 excavations of Die Kelders Cave 1, South Africa. Journal of Human Evolution, 38, 147–168.CrossRefGoogle Scholar
  151. Thieme, H. (1999). Altpaläolithische Holzgeräte aus Schöningen. Lkr. Helmstedt. Germania, 77(2), 451–487.Google Scholar
  152. Tribolo, C., Mercier, N., Valladas, H., Joron, J. L., Guibert, P., Lefrais, Y., Selo, M., Texier, P.-J., Rigaud, J.-P., Porraz, G., Poggenpoel, C., Parkington, J., Texier, J.-P., & Lenoble, A. (2009). Thermoluminescence dating of a Stillbay–Howiesons Poort sequence at Diepkloof Rock Shelter (Western Cape, South Africa). Journal of Archaeological Science, 36, 730–739.CrossRefGoogle Scholar
  153. Tribolo, C., Mercier, N., Douville, E., Joron, J.-L., Reyss, J.-L., Rufer, D., Cantin, N., Lefrais, Y., Miller, C. E., Porraz, G., Parkington, J., Rigaud, J.-P., & Texier, P.-J. (2013). OSL and TL dating of the Middle Stone Age sequence at Diepkloof Rock Shelter (South Africa): a clarification. Journal of Archaeological Science, 40, 3401–3411.CrossRefGoogle Scholar
  154. Turner, A. (1999). Evolution in the Africa Plio-Pleistocene Mammalian fauna: correlation and causation. In T. G. Bromage & F. Schrenk (Eds.), African biogeography, climate change, and human evolution (pp. 76–90). New York: Oxford University Press.Google Scholar
  155. Underhill, D. (2011). A history of Stone Age archaeological study in South Africa. South African Archaeological Bulletin, 66, 3–14.Google Scholar
  156. Uthmeier, T. (2004). Micoquien, Aurignacien und Gravettien in Bayern. Eine regionale Studie zum Übergang vom Mittel- zum Jungpaläolithikum. Archäologische Berichte, 18. Bonn: Habelt.Google Scholar
  157. Vanhaeren, M., d’Errico, F., van Niekerk, K. L., Henshilwood, C. S., & Erasmus, R. M. (2013). Thinking strings: additional evidence for personal ornament use in the Middle Stone Age at Blombos Cave, South Africa. Journal of Human Evolution, 64, 500–517.CrossRefGoogle Scholar
  158. Villa, P., Delagnes, A., & Wadley, L. (2005). A late Middle Stone Age artifact assemblage from Sibudu (KwaZulu-Natal): comparisons with the European Middle Paleolithic. Journal of Archaeological Science, 32, 399–422.CrossRefGoogle Scholar
  159. Villa, P., Soressi, M., Henshilwood, C. S., & Mourre, V. (2009). The Still Bay points of Blombos Cave (South Africa). Journal of Archaeological Science, 36, 441–460.CrossRefGoogle Scholar
  160. Villa, P., Soriano, S., Teyssandier, N., & Wurz, S. (2010). The Howiesons Poort and MSA III at Klasies River main site, Cave 1A. Journal of Archaeological Science, 37, 630–655.CrossRefGoogle Scholar
  161. Vogelsang, R. (1998). Middle-Stone-Age-Fundstellen in Südwest-Namibia. Köln: Heinrich-Barth-Institute.Google Scholar
  162. Vogelsang, R., Richter, J., Jacobs, Z., Eichhorn, B., Linseele, V., & Roberts, R. G. (2010). New excavations of Middle Stone Age deposits at Apollo 11 Rockshelter, Namibia: stratigraphy, archaeology, chronology and past environments. Journal of African Archaeology, 8(2), 185–218.CrossRefGoogle Scholar
  163. Volman, T. P. (1978). Early archeological evidence for shellfish collecting. Science, 201, 911–913.CrossRefGoogle Scholar
  164. Volman, T. P. (1981). The Middle Stone Age in the Southern Cape. Ph.D. dissertation, Chicago: University of Chicago.Google Scholar
  165. Wadley, L. (1991). Rose Cottage Cave: background and a preliminary report on the recent excavations. South African Archaeological Bulletin, 46, 125–130.CrossRefGoogle Scholar
  166. Wadley, L. (2005). Putting ocher to the test: replication studies of adhesives that may have been used for hafting tools in the Middle Stone Age. Journal of Human Evolution, 49, 587–601.CrossRefGoogle Scholar
  167. Wadley, L. (2006). Partners in grime: results of multi-disciplinary archaeology at Sibudu Cave. Southern African Humanities, 18(1), 315–341.Google Scholar
  168. Wadley, L. (2007). Announcing a Still Bay industry at Sibudu Cave, South Africa. Journal of Human Evolution, 52, 681–689.CrossRefGoogle Scholar
  169. Wadley, L. (2010a). Compound-adhesive manufacture as a behavioral proxy for complex cognition in the Middle Stone Age. Current Anthropology, 51(S1), S111–S119.CrossRefGoogle Scholar
  170. Wadley, L. (2010b). Were snares and traps used in the Middle Stone Age and does it matter? A review and a case study from Sibudu, South Africa. Journal of Human Evolution, 58, 179–192.CrossRefGoogle Scholar
  171. Wadley, L. (2013). Recognizing complex cognition through innovative technology in Stone Age and Palaeolithic sites. Cambridge Archaeological Journal, 23, 163–183.CrossRefGoogle Scholar
  172. Wadley, L., & Mohapi, M. (2008). A segment is not a monolith: evidence from the Howiesons Poort of Sibudu, South Africa. Journal of Archaeological Science, 35, 2594–2605.CrossRefGoogle Scholar
  173. Wadley, L., Hodgskiss, T., & Grant, M. (2009). Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 106, 9590–9594.CrossRefGoogle Scholar
  174. Wadley, L., Sievers, C., Bamford, M., Goldberg, P., Berna, F., & Miller, C. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334, 1388–1391.CrossRefGoogle Scholar
  175. Wendt, W. E. (1976). ‘Art mobilier’ from the Apollo 11 Cave, South West Africa: Africa's oldest dated works of art. South African Archaeological Bulletin, 31, 5–11.CrossRefGoogle Scholar
  176. Weniger, G. C. (1991). Überlegungen zur Mobilität jägerischer Gruppen im Jungpaläolithikum. In Urgeschichte als Kulturanthropologie. Beiträge zum 70. Geburtstag von Karl J. Narr. Saeculum, 42, 82–103.CrossRefGoogle Scholar
  177. Wilkins, J., Schoville, B. J., Brown, K. S., & Chazan, M. (2012). Evidence for early hafted hunting technology. Science, 338, 942–946.CrossRefGoogle Scholar
  178. Will, M., Parkington, J. E., Kandel, A. W., & Conard, N. J. (2013). Coastal adaptations and the MSA lithic assemblages from Hoedjiespunt 1 in the Western Cape, South Africa. Journal of Human Evolution, 64, 518–537.CrossRefGoogle Scholar
  179. Wurz, S. (2002). Variability in the Middle Stone Age lithic sequence, 115,000-60,000 years ago at Klasies River, South Africa. Journal of Archaeological Science, 29, 1001–1015.CrossRefGoogle Scholar
  180. Wurz, S., Le Roux, N. J., Gardner, S., & Deacon, H. J. (2003). Discriminating between the end products of the earlier Middle Stone Age sub-stages at Klasies River using biplot methodology. Journal of African Archaeology, 30, 1107–1126.Google Scholar
  181. Yokoyama, R., Shirasawa, M., & Pike, R. J. (2002). Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric Engineering & Remote Sensing, 68, 257–266.Google Scholar
  182. Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of the land surface topography. Earth Surface Process and Landform, 12, 47–56.CrossRefGoogle Scholar
  183. Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., & Zahn, R. (2013). Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications, 4(1905), doi:10.1038/ncomms2897.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Andrew W. Kandel
    • 1
  • Michael Bolus
    • 1
  • Knut Bretzke
    • 1
  • Angela A. Bruch
    • 2
  • Miriam N. Haidle
    • 2
  • Christine Hertler
    • 2
  • Michael Märker
    • 1
  1. 1.Heidelberg Academy of Sciences and Humanities ROCEEH—The Role of Culture in Early Expansions of HumansUniversity of TübingenTübingenGermany
  2. 2.Heidelberg Academy of Sciences and Humanities ROCEEH—The Role of Culture in Early Expansions of HumansSenckenberg Research Institute and Natural History MuseumFrankfurt am MainGermany

Personalised recommendations