Journal of Archaeological Method and Theory

, Volume 23, Issue 1, pp 379–398 | Cite as

A Statistical Examination of Flake Edge Angles Produced During Experimental Lineal Levallois Reductions and Consideration of Their Functional Implications



Recent studies have indicated that Levallois-style core reduction offered potential practical benefits to hominin populations. However, none of these studies have yet considered one of the most important functional attributes of flake tools, which is edge angle. To address this shortcoming, we statistically examined flakes produced experimentally during “classic” or “lineal” Levallois core production and reduction. The primary aim of our analyses was to statistically test the null hypothesis of “no difference” between the edge angles of “Levallois” products and the flakes involved in their production. We employ existing edge angle analytical techniques and develop new comparative methodologies to assess flake blank standardization through the case of Levallois core reduction. Having determined the statistical properties of our experimental Levallois reductions, we thereafter evaluated to what extent edge angles produced may, or may not, have been useful to prehistoric hominins. Our analyses demonstrated that the experimentally produced Levallois edge angles were indeed statistically different from the flakes involved in their production. These differences were evident both in terms of relatively higher (i.e., more obtuse) edge angles than debitage flakes and in being significantly less variable around their higher mean edge angles compared to debitage flakes. However, based on current knowledge of how flake edge angle properties relate to issues of functionality, such differences would not have been detrimental to their functionality. Indeed, the edge angle properties they possess would have provided distinct benefits to hominins engaged in their manufacture. Most notably, Levallois-style core organization and reduction would have provided hominins with a reliable means of consistently producing flakes (i.e., “Levallois flakes”) possessing average flake angles that are beneficial in terms of providing a viable cutting edge yet not being so acute as to be friable upon application. Hence, edge angle properties join an array of other features that provide logical motive for why hominins may have organized core production and reduction around Levallois-style patterns at various times and places during the Mid-Late Pleistocene.


Middle Palaeolithic Levallois Edge angles 


  1. Adler, D. S., Wilkinson, K. N., Blockley, S., Mark, D. F., Pinhasi, R., Schmidt-Magee, B. A., Nahapetyan, S., Mallol, C., Berna, F., Glauberman, P. J., Rasczynski-Henk, Y., Wales, N., Frahm, E., Jöris, O., MacLeod, A., Smith, V. C., Cullen, V. L., & Gasparian, B. (2014). Early Levallois technology and the Lower to Middle Paleolithic transition in the Southern Caucasus. Science, 345, 1609–1613.CrossRefGoogle Scholar
  2. Atkins, T. (2009). The science and engineering of cutting: the mechanics and processes of separating, scratching and puncturing biomaterials, metals and non-metals. Oxford: Butterworth-Heinemann.Google Scholar
  3. Beck, C. (1995). Functional attributes and differential persistence of Great Basin dart forms. Journal of California and Great Basin Anthropology, 17, 222–243.Google Scholar
  4. Bleed, P. (2001). Artifice constrained: what determines technological choice? In M. B. Schiffer (Ed.), Perspectives on Technology (pp. 151–162). Albuquerque: University of New Mexico Press.Google Scholar
  5. Boëda, E. (1995). Levallois: a volumetric construction, methods, a technique. In H. L. Dibble & O. Bar-Yosef (Eds.), The Definition and Interpretation of Levallois Technology (pp. 41–68). Madison: Prehistory Press.Google Scholar
  6. Bordes, F. (1950). Principes d’une méthode d’étude des techniques de debitage et de la typologie du Paléolithique ancien et moyen. L'Anthropologie, 54, 19–34.Google Scholar
  7. Borel, A., Gaillard, C., Moncel, M.-H., Sala, R., Pouydebat, E., Simanjuntak, T., & Sémah, F. (2013). How to interpret informal flake assemblages? Integrating morphological description, usewear and morphometric analysis gave better understanding of the behaviors of Anatomically Modern Humans from Song Terus (Indonesia). Journal of Anthropological Archaeology, 32, 630–646.CrossRefGoogle Scholar
  8. Bradley, B., (1977). Experimental Lithic Technology with Special Reference to the Middle Palaeolithic. Unpublished Ph.D. dissertation, Department of Archaeology, Cambridge University.Google Scholar
  9. Brantingham, P. J., & Kuhn, S. L. (2001). Constraints on Levallois core technology: a mathematical model. Journal of Archaeological Science, 28, 747–761.CrossRefGoogle Scholar
  10. Brantingham, P. J., Olsen, J. W., Rech, J. A., & Krivoshapkin, A. I. (2000). Raw material quality and prepared core technologies in Northeast Asia. Journal of Archaeological Science, 27, 255–271.CrossRefGoogle Scholar
  11. Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P., & Bishop, L. C. (2009). Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. Journal of Archaeological Science, 36, 1605–1614.Google Scholar
  12. Chazan, M. (1997). Redefining Levallois. Journal of Human Evolution, 33, 719–735.CrossRefGoogle Scholar
  13. Clarke, D. L. (1972). Models and paradigms in contemporary archaeology. In D. L. Clarke (Ed.), Models in Archaeology (pp. 1–60). London: Methuen.Google Scholar
  14. Collins, S. (2008). Experimental investigations into edge performance and its implications for stone artefact reduction modelling. Journal of Archaeological Science, 35, 2164–2170.CrossRefGoogle Scholar
  15. Commont, V. (1909). L’industrie moustérienne dans la region de nord de la France. Congrés Préhistorique de France, 5ième session. Bureaux de la Société Préhistoire de France, Paris, pp 115–157.Google Scholar
  16. Delagnes, A. (1995). Variability within uniformity: three levels of variability within the Levallois system. In H. L. Dibble & O. Bar-Yosef (Eds.), The Definition and Interpretation of Levallois Technology (pp. 201–213). Madison: Prehistory Press.Google Scholar
  17. Dibble, H. L. (1989). The implications of stone tool types for the presence of language during the Lower and Middle Palaeolithic. In P. Mellars & C. Stringer (Eds.), The human revolution: behavioural and biological perspectives on the origins of modern humans (pp. 415–432). Edinburgh: Edinburgh University Press.Google Scholar
  18. Dibble, H. L., & Bernard, M. C. (1980). A comparative study of basic edge angle measurement techniques. American Antiquity, 45, 857–865.CrossRefGoogle Scholar
  19. Dytham, C. (2011). Choosing and using statistics: a biologist’s guide (3rd ed.). Oxford: Blackwell Science.Google Scholar
  20. Eerkens, J. W., & Bettinger, R. L. (2001). Techniques for assessing standardization in artifact assemblages: can we scale variability? American Antiquity, 66, 493–504.CrossRefGoogle Scholar
  21. Eren, M., & Bradley, B. (2009). Experimental evaluation of the Levallois “core shape maintenance” hypothesis. Lithic Technology, 34, 119–125.Google Scholar
  22. Eren, M. I., & Lycett, S. J. (2012). Why Levallois? A morphometric comparison of experimental ‘preferential’ Levallois flakes versus debitage flakes. PLoS ONE, 7, e29273. doi:10.1371/journal.pone.0029273.CrossRefGoogle Scholar
  23. Eren, M. I., Bradley, B., & Sampson, C. G. (2011a). Middle Paleolithic skill-level and the Individual knapper: an experiment. American Antiquity, 76, 229–251.CrossRefGoogle Scholar
  24. Eren, M. I., Lycett, S. J., Roos, C., & Sampson, C. G. (2011b). Toolstone constraints on knapping skill: Levallois reduction with two different raw materials. Journal of Archaeological Science, 38, 2731–2739.CrossRefGoogle Scholar
  25. Eren, M. I., Patten, R. J., O’Brien, M. J., & Meltzer, D. J. (2013). Refuting the technological cornerstone of the Ice-Age Atlantic crossing hypothesis. Journal of Archaeological Science, 40, 2934–2941.CrossRefGoogle Scholar
  26. Feltz, C. J., & Miller, G. E. (1996). An asymptotic test for the equality of coefficients of variation from k populations. Statistics in Medicine, 15, 647–658.CrossRefGoogle Scholar
  27. Ferguson, W. C. (1980). Edge-angle classification of the Quininup Brook implements: testing the ethnographic analogy. Archaeology and Physical Anthropology in Oceania, 15, 56–72.Google Scholar
  28. Gould, R. A. (1980). Living Archaeology. Cambridge: Cambridge University Press.Google Scholar
  29. Gould, R. A., Koster, D. A., & Sontz, A. H. L. (1971). The lithic assemblage of the Western Desert Aborigines of Australia. American Antiquity, 36, 149–169.CrossRefGoogle Scholar
  30. Hayden, B., Franco, N., & Spafford, J. (1996). Evaluating lithic strategies and design criteria. In G. H. Odell (Ed.), Stone tools: theoretical insights into human prehistory (pp. 9–50). New York: Plenum Press.CrossRefGoogle Scholar
  31. Hovers, E., & Belfer-Cohen, A. (2013). On variability and complexity. Current Anthropology, 54, S337–S357.CrossRefGoogle Scholar
  32. Hublin, J.-J. (2009). The origin of Neandertals. Proceedings of the National Academy of Sciences USA, 106, 16022–16027.CrossRefGoogle Scholar
  33. Jensen, H. J. (1986). Unretouched blades in the Late Mesolithic of South Scandinavia: a functional study. Oxford Journal of Archaeology, 5, 19–33.CrossRefGoogle Scholar
  34. Kardong, K. V. (2006). Vertebrates: comparative anatomy, function, evolution. Boston: MA, McGraw-Hill.Google Scholar
  35. Key, A. J. M., & Lycett, S. J. (2015). Edge angle as a variably influential factor in flake cutting efficiency: an experimental investigation of its relationship with tool size and loading. Archaeometry. doi:10.1111/arcm.12140.Google Scholar
  36. Kuhn, S. L. (1994). A formal approach to the design and assembly of mobile toolkits. American Antiquity, 59, 426–442.CrossRefGoogle Scholar
  37. Kuhn, S. L., & Hovers, E. (2013). Alternative pathways to complexity: evolutionary trajectories in the Middle Paleolithic and Middle Stone Age. Current Anthropology, 54, S176–S182.CrossRefGoogle Scholar
  38. Lycett, S. J. (2009). Are Victoria West cores ‘proto-Levallois’? A phylogenetic assessment. Journal of Human Evolution, 56(2), 175–191.CrossRefGoogle Scholar
  39. Lycett, S. J., & Eren, M. I. (2013a). Levallois lessons: the challenge of integrating mathematical models, quantitative experiments and the archaeological record. World Archaeology, 45, 519–538.CrossRefGoogle Scholar
  40. Lycett, S. J., & Eren, M. I. (2013b). Levallois economics: an examination of ‘waste’ production in experimentally produced Levallois reduction sequences. Journal of Archaeological Science, 40, 2384–2392.CrossRefGoogle Scholar
  41. Lycett, S. J., & Gowlett, J. A. J. (2008). On questions surrounding the Acheulean ‘tradition’. World Archaeology, 40, 295–315.CrossRefGoogle Scholar
  42. McBrearty, S., Bishop, L., Plummer, T., Dewar, R., & Conard, N. (1998). Tools underfoot: human trampling as an agent of lithic artifact edge modification. American Antiquity, 63, 108–129.CrossRefGoogle Scholar
  43. McPherron, S. P., Braun, D. R., Dogandžić, T., Archer, W., Desta, D., & Lin, S. C. (2014). An experimental assessment of the influences on edge damage to lithic artifacts: a consideration of edge angle, substrate grain size, raw material properties, and exposed face. Journal of Archaeological Science, 49, 70–82.CrossRefGoogle Scholar
  44. Meignen, L., Delagnes, A., & Bourguignon, L. (2009). Patterns of lithic material procurements and transformation during the Middle Palaeolithic in western Europe. In B. Adams & B. S. Blades (Eds.), Lithic Materials and Palaeolithic Societies (pp. 15–24). Chichester: Blackwell.CrossRefGoogle Scholar
  45. Moncel, M.-H., Moigne, A.-M., Sam, Y., & Combier, J. (2011). The emergence of Neanderthal technical behavior: new evidence from Orgnac 3 (Level 1, MIS 8), southeastern France. Current Anthropology, 52, 37–75.CrossRefGoogle Scholar
  46. Noble, W., & Davidson, I. (1996). Human evolution, language and mind: a psychological and archaeological enquiry. Cambridge: Cambridge University Press.Google Scholar
  47. O’Brien, M. J., Holland, T. D., Hoard, R. J., & Fox, G. L. (1994). Evolutionary implications of design and performance characteristics of prehistoric pottery. Journal of Archaeological Method and Theory, 1, 259–304.CrossRefGoogle Scholar
  48. Okumura, M., & Araujo, A. G. (2014). Long-term cultural stability in hunter–gatherers: a case study using traditional and geometric morphometric analysis of lithic stemmed bifacial points from Southern Brazil. Journal of Archaeological Science, 45, 59–71.CrossRefGoogle Scholar
  49. Pelegrin, J. (2005). Remarks about archaeological techniques and methods of knapping. In V. Roux & B. Bril (Eds.), Stone Knapping: the Necessary Conditions for a Uniquely HomininBehaviour (pp. 23–33). Cambridge: McDonald Institute Monographs.Google Scholar
  50. Pepère, M. (1986). Apport de la typométrie à la definition des éclats Levallois: l'exemple d'Ault. Bulletin de la Société préhistorique française, 83, 115–118.Google Scholar
  51. Picin, A., Vaquero, M., Weniger, G. C., & Carbonell, E. (2014). Flake morphologies and patterns of core configuration at the AbricRomaní rock-shelter: a geometric morphometric approach. Quaternary International, 350, 84–93.CrossRefGoogle Scholar
  52. Pool, C. A., & Britt, G. M. (2000). Ceramic perspective on the Formative to Classic transition in Southern Veracruz, Mexico. Latin American Antiquity, 11, 139–161.CrossRefGoogle Scholar
  53. Sandgathe, D. M. (2004). Alternative interpretation of the Levallois reduction technique. Lithic Technology, 29, 147–159.Google Scholar
  54. Schiffer, M. B., & Skibo, J. M. (1987). Theory and experiment in the study of technological change. Current Anthropology, 595–622.Google Scholar
  55. Schlanger, N. (1996). Understanding Levallois: lithic technology and cognitive archaeology. Cambridge Archaeological Journal, 6, 231–254.CrossRefGoogle Scholar
  56. Skibo, J. M., & Schiffer, M. B. (2001). Understanding artifact variability and change: a behavioral framework. In M. B. Schiffer (Ed.), Perspectives on Technology (pp. 139–149). Albuquerque: University of New Mexico Press.Google Scholar
  57. Simão, J. (2002). Tools evolve: the artificial selection and evolution of Paleolithic stone tools. Behavioral and Brain Sciences, 25, 419.CrossRefGoogle Scholar
  58. Smith, R. A. (1911). A Palaeolithic industry at Northfleet, Kent. Archaeologica, 62, 512–532.Google Scholar
  59. Sokal, R. R., & Rohlf, F. J. (1995). Biometry. Third Edition ed. W.H. Freeman & Co, New York.Google Scholar
  60. Spurrell, F. C. J. (1884). On some Palaeolithic knapping tools and modes of using them. Journal of the Anthropological Institute, 13, 109–118.Google Scholar
  61. Tringham, R., Cooper, G., Odell, G., Voytek, B., & Whitman, A. (1974). Experimentation in the formation of edge damage. Journal of Field Archaeology, 1, 171–196.CrossRefGoogle Scholar
  62. Tryon, C. A., & Faith, J. T. (2013). Variability in the Middle Stone Age of eastern Africa. Current Anthropology, 54, S234–S254.CrossRefGoogle Scholar
  63. Turq, A. (1992). Raw material and technological studies of the Quina Mousterian in Perigord. In: Dibble H, Mellars P (eds) The Middle Paleolithic: adaptation, behavior, and variability. The University Museum, University of Pennsylvania, Philadelphia, pp 75–85.Google Scholar
  64. Van Peer, P. (1992). The Levallois Reduction Strategy. Madison: Prehistory Press.Google Scholar
  65. White, J. P., & Thomas, D. H. (1972). What means these stones? Ethno-taxonomic models and archaeological interpretations in the New Guinea Highlands. In D. L. Clarke (Ed.), Models in archaeology (pp. 275–308). London: Duckworth Press.Google Scholar
  66. White, J. P., Modjeska, N., & Hipuya, I. (1977). Group definitions and mental templates: an ethnographic experiment. In R. V. S. Wright (Ed.), Stone tools as cultural markers. Change, evolution and complexity (pp. 380–390). Camberra: Australian Institute of Aboriginal Studies.Google Scholar
  67. Wilmsen, E. N. (1968). Functional analysis of flaked stone artefacts. American Antiquity, 33, 156–161.CrossRefGoogle Scholar
  68. Wurz, S. (2013). Technological trends in the Middle Stone Age of South Africa between MIS 7 and MIS 3. Current Anthropology, 54, S305–S319.CrossRefGoogle Scholar
  69. Wynn, T., & Coolidge, F. L. (2004). The expert Neandertal mind. Journal of Human Evolution, 46, 467–487.CrossRefGoogle Scholar
  70. Wynn, T., & Coolidge, F. L. (2010). How Levallois reduction is similar to, and not similar to, playing chess. In A. Nowell & I. Davidson (Eds.), Stone tools and the evolution of human cognition (pp. 83–103). Boulder: University Press of Colorado.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of MissouriColumbiaUSA
  2. 2.Department of ArchaeologyCleveland Museum of Natural HistoryClevelandUSA
  3. 3.Department of AnthropologyUniversity at Buffalo, The State University of New YorkAmherstUSA

Personalised recommendations