Journal of Archaeological Method and Theory

, Volume 22, Issue 4, pp 1193–1214 | Cite as

Is Loading a Significantly Influential Factor in the Development of Lithic Microwear? An Experimental Test Using LSCM on Basalt from Olduvai Gorge

  • Alastair J. M. Key
  • W. James Stemp
  • Mikhail Morozov
  • Tomos Proffitt
  • Ignacio de la Torre


Lithic microwear develops as a result of abrasive friction between a stone tool’s working edge and the surface of a worked material. Variation in the loading (i.e. force) applied to a stone tool during its use alters the amount of friction created between these two materials and should subsequently affect the level of any wear accrued. To date, however, no comprehensive account of the interaction between variable working loads and wear development has been undertaken. If such a relationship does exist, it may be possible to calculate the loading levels applied to stone tool artefacts during their use. Here, we use 30 basalt flakes knapped from raw materials collected in Olduvai Gorge, Tanzania, in a controlled experimental cutting task of standardized duration. Loading levels are recorded throughout with each flake being used with a predetermined load, ranging between 150 g and 4.5 kg. Laser scanning confocal microscopy (LSCM), coupled with the relative area (Srel) algorithm, is used to mathematically document the surface texture of the flakes to determine whether variation in loading does in fact significantly affect the amount of wear on the flake surfaces. Results indicate that working load does play a role in the development of lithic microwear; however, its interaction with other variables, including the naturally rough surface of basalt, may reduce the likelihood of its accurate determination on tools recovered from archaeological deposits.


Loading Lithic microwear Force Development Basalt Laser scanning confocal microscopy (LSCM) 



Collection of raw materials from Olduvai Gorge Olduvai Gorge was authorized by COSTECH and Department of Antiquities, Tanzania, and funded by the European Research Council—Starting Grants (ORACEAF: 283366). AJMK is supported through a 50th Anniversary Research Scholarship provided by the University of Kent. We thank Dr. Christopher A. Brown, Director of the Surface Metrology Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute, for access to the Olympus LEXT OLS4000 LSCM and use of their modal filter and Sfrax software (


  1. Ackerly, N. W. (1978). Controlling pressure in experimental lithics research. American Antiquity, 43, 480–482.CrossRefGoogle Scholar
  2. Adams, J. L. (2014). Ground stone use-wear analysis: a review of terminology and experimental methods. Journal of Archaeological Science, 48, 129–138.CrossRefGoogle Scholar
  3. Álvarez, M., Fuentes, N. O., Favret, E. A., Dolce, M. V., & Forlano, A. (2012). Quantifying use-wear traces through RIMAPS and variogram analyses. Archaeological and Anthropological Sciences, 4, 91–101.CrossRefGoogle Scholar
  4. Anderson, P. (1980). A testimony of prehistoric tasks: diagnostic residues on stone tool working edges. World Archaeology, 12, 181–193.CrossRefGoogle Scholar
  5. Anderson, P., Astruc, L., Vargiolu, R., and Zahouani, H. (1998). Contribution of quantitative analysis of surface states to a multi-method approach for characterizing plant-processing traces on flint tools with gloss. In: Antoniazzi, A., Arsuaga Ferreres, J.L., Bermudez de Castro, J.M., Carbonell I Roura, E., Cavallini, E., Fontana, F., Gutiérrez Sàez, C., di Lernia, S., Longo, L., Manzi, G., Milliken, S., Oosterbeek, L., Pavukova, V., Peresani, M., Peretto, C., Pesce Delfino, V., Pizchelauri, K., Prati, L., and Sala I Ramos, R. (eds.) Functional analysis of lithic artefacts: current state of research. Proceedings of the XIII International Congress of the International Union of Prehistoric and Protohistoric Sciences. ABACO, Forli. Pp. 1121–1132Google Scholar
  6. Anderson, P. C., Georges, J.-M., Vargiolu, R., & Zahouani, H. (2006). Insights from a tribological analysis of the tribulum. Journal of Archaeological Science, 33, 1559–1568.CrossRefGoogle Scholar
  7. ASME B46.1. (2009). Surface texture (surface roughness, waviness, and lay). New York: An American National Standard. American Society of Mechanical Engineers.Google Scholar
  8. Astruc, L., Vargiolu, R., Ben Tkaya, M., Balkan-Atlı, N., Özbaşaran, M., & Zahouani, H. (2011). Multi-scale tribological analysis of the technique of manufacture of an obsidian bracelet from Aşıklı Höyük (Aceramic Neolithic, Central Anatolia). Journal of Archaeological Science, 38, 3415–3424.CrossRefGoogle Scholar
  9. Atkins, T. (2009). The science and engineering of cutting: the mechanics and processes of separating, scratching and puncturing biomaterials, metals and non-metals. Oxford: Butterworth-Heinemann.Google Scholar
  10. Bamforth, D. B. (1988). Investigating microwear polishes with blind tests: the institute results in context. Journal of Archaeological Science, 15, 11–23.CrossRefGoogle Scholar
  11. Beyries, S. (1982). Comparaison des traces d’utilisation sur différentes roches siliceuses. In D. Cahen (Ed.), Tailler! Pour Quoi Faire: Préhistoire et Technologie Lithique II. Studia Praehistorica Belgica 2 (pp. 235–240). Tervuren: Musée royal de l’Afrique centrale.Google Scholar
  12. Bradley, R., & Clayton, C. (1987). The influence of flint microstructure on the formation of microwear polishes. In G. de G Sieveking & M. Newcomer (Eds.), The human uses of flint and chert: papers from the fourth international flint symposium (pp. 81–89). Cambridge: Cambridge University Press.Google Scholar
  13. Brown, C. A. (2013). Chapter 6: Areal fractal methods. In R. Leach (Ed.), Characterisation of areal surface texture (pp. 129–153). Berlin: Springer.CrossRefGoogle Scholar
  14. Brown, D. R. S., & Brown, C. A. (2010). Investigation of surface topography differences in native and exotic invertebrates in the St. Lawrence River. Scanning, 33, 250–255.CrossRefGoogle Scholar
  15. Brown, C. A., & Savary, G. (1991). Describing ground surface texture using contact profilometry and fractal analysis. Wear, 141, 211–226.CrossRefGoogle Scholar
  16. Brown, C. A., Johnsen, W. A., & Butland, R. M. (1996). Scale-sensitive fractal analysis of turned surfaces. Annual CIRP, 45, 515–518.CrossRefGoogle Scholar
  17. Cantor, G. C., & Brown, C. A. (2009). Scale-based correlations of relative areas with fracture of chocolate. Wear, 266, 609–612.CrossRefGoogle Scholar
  18. Carbonell, E., García-Antón, M., Mallol, C., Mosquera, M., Ollé, A., Rodríguez, X. P., Sahnouni, M., Sala, R., & Vergès, J. M. (1999). The TD6 level lithic industry from Gran Dolina, Atapuerca (Burgos, Spain): production and use. Journal of Human Evolution, 37, 653–693.CrossRefGoogle Scholar
  19. Chen, C., An, J., & Chen, H. (2010). Analysis of the Xiaonanhai lithic assemblage, excavated in 1978. Quaternary International, 211, 75–85.CrossRefGoogle Scholar
  20. Christensen, M. (1998). Processus de formation et characterisation physico-chimique des polis d’utilisation des outils er silex. Applications à la technologie préhistorique de l’ivoire. Bulletin de la Société Préhistorique Française, 95, 183–201.CrossRefGoogle Scholar
  21. Christensen, M., Walter, P., & Menu, M. (1992). Usewear characterisation of prehistoric flints with IBA. Nuclear Instruments and Methods in Physics Research B, 64, 488–493.CrossRefGoogle Scholar
  22. Czichos, H. (1978). Tribology: a systems approach to the science and technology of friction, lubrication, and wear: a systems approach to the science and technology of friction, lubrication, and wear. Amsterdam: Elsevier.Google Scholar
  23. de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A., & Proffitt, T. (2013). Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). Journal of Archaeological Science, 40, 313–332.CrossRefGoogle Scholar
  24. Derndarsky, M., & Ocklind, G. (2001). Some preliminary observations on subsurface damage on experimental and archaeological quartz tools using CLSM and Dye. Journal of Archaeological Science, 28, 1149–1158.CrossRefGoogle Scholar
  25. Donahue, R. E., Murphy, M. L., & Robbins, L. H. (2004). Lithic microwear analysis of middle stone age artifacts from white paintings rock shelter, Botswana. Journal of Field Archaeology, 29, 155–163.CrossRefGoogle Scholar
  26. Evans, A. A. (2014). On the importance of blind testing in archaeological science: the example from lithic functional studies. Journal of Archaeological Science, 48, 5–14.CrossRefGoogle Scholar
  27. Evans, A. A., & Donahue, R. E. (2005). The elemental chemistry of lithic microwear: an experiment. Journal of Archaeological Science, 32, 1733–1740.CrossRefGoogle Scholar
  28. Evans, A. A., & Donahue, R. E. (2008). Laser scanning confocal microscopy: a potential technique for the study of lithic microwear. Journal of Archaeological Science, 35, 2223–2230.CrossRefGoogle Scholar
  29. Evans, A. A., & Macdonald, D. A. (2011). Using metrology in early prehistoric stone tool research: further work and a brief instrument comparison. Scanning, 33, 294–303.CrossRefGoogle Scholar
  30. Evans, A. A., Macdonald, D. A., Giusca, C. L., & Leach, R. K. (2014). New method development in prehistoric stone tool research: evaluating use duration and data analysis protocols. Micron, 65, 69–75.CrossRefGoogle Scholar
  31. Faulks, N. R., Kimball, L. R., Hidjrati, N., & Coffey, T. S. (2011). Atomic force microscopy of microwear traces on Mousterian tools from Myshtylagty Lagat (Weasel Cave), Russia. Scanning, 33, 304–315.CrossRefGoogle Scholar
  32. Fullagar, R. L. K. (1991). The role of silica in polish formation. Journal of Archaeological Science, 18, 1–24.CrossRefGoogle Scholar
  33. González-Urquijo, J. E., & Ibáñez-Estévez, J. J. (2003). The quantification of use-wear polish using image analysis. First results. Journal of Archaeological Science, 30, 481–489.CrossRefGoogle Scholar
  34. Grace, R. (1996). Use-wear analysis: the state of the art. Archaeometry, 38(2), 209–229.CrossRefGoogle Scholar
  35. Grace, R., Graham, I. D. G., & Newcomer, M. H. (1985). The quantification of microwear polishes. World Archaeology, 17, 112–120.CrossRefGoogle Scholar
  36. Hayden, B. (1979). Lithic use-wear analysis. New York: Academic.Google Scholar
  37. Homola, A. M., Israelachvili, J. N., McGuiggan, P. M., & Gee, M. L. (1990). Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear, 136, 65–83.CrossRefGoogle Scholar
  38. Hurcombe, L. (1997). The contribution of obsidian use-wear analysis to understanding the formation and alteration of wear. In A. Ramos-Millan & M. A. Bustillo (Eds.), Siliceous rocks and culture (pp. 487–497). Spain: Editorial Universidad de Granada.Google Scholar
  39. ISO 25178–2. (2012). Geometrical product specifications (GPS)—surface texture: areal—part 2: terms, definitions and surface texture parameters.Google Scholar
  40. Jobson, R. W. (1986). Stone tool morphology and rabbit butchering. Lithic Technology, 15, 9–20.Google Scholar
  41. Jones, P. R. (1980). Experimental butchery with modern stone tools and its relevance for Palaeolithic archaeology. World Archaeology, 12, 153–165.CrossRefGoogle Scholar
  42. Jordan, S. E., & Brown, C. A. (2006). Comparing texture characterization parameters on their ability to differentiate ground polyethylene ski bases. Wear, 261, 398–409.CrossRefGoogle Scholar
  43. Keeley, L. H. (1980). Experimental determination of stone tool uses: a microwear analysis. Chicago: University of Chicago Press.Google Scholar
  44. Keeley, L. H., & Toth, N. (1981). Microwear polishes on early stone tools from Koobi Fora, Kenya. Nature, 293, 464–465.CrossRefGoogle Scholar
  45. Key, A. J. M. (2013). Applied force as a determining factor in lithic use-wear accrual: an experimental investigation of its validity as a method with which to infer hominin upper limb biomechanics. Lithic Technology, 38(1), 32–45.CrossRefGoogle Scholar
  46. Key, A. J. M., & Lycett, S. J. (2011). Technology based evolution? A biometric test of the effects of handsize versus tool form in an experimental cutting task. Journal of Archaeological Science, 38, 1663–1670.CrossRefGoogle Scholar
  47. Key, A. J. M., & Lycett, S. J. (2014a). Are bigger flakes always better? An experimental assessment of flake size variation on cutting efficiency and loading. Journal of Archaeological Science, 41, 140–146.CrossRefGoogle Scholar
  48. Key, A. J. M., & Lycett, S. J. (2014b). Edge angle as a variably influential factor in flake cutting efficiency: an experimental investigation of its relationship with tool size and loading. Archaeometry. doi: 10.1111/arcm.12140.Google Scholar
  49. Kimball, L. R., Kimball, J. F., & Allem, P. E. (1995). Microwear polishes as viewed through the atomic force microscope. Lithic Technology, 20, 6–28.Google Scholar
  50. Kimball, L., Allen, P., Kimball, J., Schlichting, B., and Phan, K. (1998). The analysis of microwear polishes with the atomic force microscope. In: Antoniazzi, A., Arsuaga Ferreres, J.L., Bermudez de Castro, J.M., Carbonell I Roura, E., Cavallini, E., Fontana, F., Gutiérrez Sàez, C., di Lernia, S., Longo, L., Manzi, G., Milliken, S., Oosterbeek, L., Pavukova, V., Peresani, M., Peretto, C., Pesce Delfino, V., Pizchelauri, K., Prati, L., and Sala I Ramos, R. (eds.) Functional analysis of lithic artefacts: current state of research. Proceedings of the XIII International Congress of the International Union of Prehistoric and Protohistoric Sciences. ABACO, Forli. Pp. 11121–1132Google Scholar
  51. Leakey, M. D. (1971). Olduvai Gorge. Vol 3. Excavations in beds I and II, 1960–1963. Cambridge: Cambridge University Press.Google Scholar
  52. Lemorini, C., Stiner, M. C., Gopher, A., Shimelmitz, R., & Barkai, R. (2006). Use-wear analysis of an Amudian laminar assemblage from the Acheuleo-Yabrudian of Qesem Cave, Israel. Journal of Archaeological Science, 33, 921–934.CrossRefGoogle Scholar
  53. Lerner, H. J. (2014). Intra-raw material variability and use-wear formation: an experimental examination of a Fossiliferous chert (SJF) and Silicified Wood (YSW) from NW New Mexico using clemex vision processing frame. Journal of Archaeological Science, 48, 34–45.CrossRefGoogle Scholar
  54. Lerner, H., Du, X., Costopoulos, A., & Ostoja-Starzewski, M. (2007). Lithic raw material physical properties and use-wear accrual. Journal of Archaeological Science, 34, 711–722.CrossRefGoogle Scholar
  55. Lerner, H. J., Dytchkowskyj, D., and Nielsen, C. (2010). Raw material variability, use-wear accrual rates and addressing the ambiguity of some use-wear traces: an example from northwestern New Mexico. Rivista di Scienze Preistoriche, 313–333.Google Scholar
  56. Lewenstein, S. (1987). Stone tool use at Cerros: the ethnoarchaeological use-wear analysis. Austin: University of Texas Press.Google Scholar
  57. Lipson, C., & Seth, N. J. (1973). Statistical design and analysis of engineering experiments. New York: McGraw-Hill.Google Scholar
  58. Macdonald, D. A. (2014). The application of focus variation microscopy for lithic use-wear quantification. Journal of Archaeological Science, 48, 26–33.CrossRefGoogle Scholar
  59. Masson, A., Coqueugniot, E., & Roy, S. (1981). Silice et traces d’usage: le lustre des faucilles. Nouvelles Archives Museum d’Histoire Naturelle de Lyon, 19, 43–51.Google Scholar
  60. Mecholsky, J. J., & Mackin, T. J. (1988). Fractal analysis of fracture in Ocala chert. Journal of Material Science Letters, 7, 1145–1147.CrossRefGoogle Scholar
  61. Meeks, N. D., de G Sieveking, G., Tite, M. S., & Cook, J. (1982). Gloss and use-wear traces on flint sickles and similar phenomena. Journal of Archaeological Science, 9, 317–340.CrossRefGoogle Scholar
  62. Miller, G. L. (2013). Illuminating activities at Paleo Crossing (33ME274) through microwear analysis. Lithic Technology, 38, 97–108.Google Scholar
  63. Moller, G. F., & Swisher, C. C., III. (2012). The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism. Journal of Human Evolution, 63, 274–283.CrossRefGoogle Scholar
  64. Myshkin, N. K., Petrokovets, M. I., & Kovalev, A. V. (2005). Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribology International, 38, 910–921.CrossRefGoogle Scholar
  65. Newcomer, M., Grace, R., & Unger-Hamilton, R. (1986). Investigating microwear polishes with blind tests. Journal of Archaeological Science, 13, 203–217.CrossRefGoogle Scholar
  66. Odell, G. H. (2001). Stone tool research at the end of the millennium: classification, function, and behaviour. Journal of Archaeological Research, 9, 45–100.CrossRefGoogle Scholar
  67. Ollé, A., & Vergès, J. M. (2008). SEM functional analysis and the mechanism of microwear formation. Prehistoric Technology, 40, 39–49.Google Scholar
  68. Ollé, A., & Vergès, J. M. (2014). The use of sequential experiments and SEM in documenting stone tool microwear. Journal of Archaeological Science, 48, 60–72.CrossRefGoogle Scholar
  69. Rees, D., Wilkinson, G. G., Grace, R., & Orton, C. R. (1991). An investigation into the fractal properties of flint microwear images. Journal of Archaeological Science, 18, 629–640.CrossRefGoogle Scholar
  70. Rots, V. (2013). Insights into early Middle Palaeolithic tool use and hafting in Western Europe. The functional analysis of level 11a of the early Middle Palaeolithic site of Biache-Saint-Vaast (France). Journal of Archaeological Science, 40, 497–506.CrossRefGoogle Scholar
  71. Sano, K. (2012). Functional variability in the Magdalenian of north-western Europe: a lithic microwear analysis of the Gönnersdorf K-11 assemblage. Quaternary International, 272–273, 264–274.CrossRefGoogle Scholar
  72. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., & Walker, A. (2005). Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 436, 693–695.CrossRefGoogle Scholar
  73. Seeman, M. F., Loebel, T. J., Comstock, A., & Summers, G. L. (2013). Working with Wilmsen: Paleoindian End Scraper design and use at Nobles Pond. American Antiquity, 78, 407–432.CrossRefGoogle Scholar
  74. Semenov, S. (1950). O protivostavenii bol’shogo pal’tsa ruki Neanderthal’skogo cheloveka. Sovetskaya Etnografya, 11, 70–82.Google Scholar
  75. Semenov, S. (1964). Prehistoric technology. London: Cory, Adams and Mackay.Google Scholar
  76. Shea, J. J. (1992). Lithic microwear analysis in archaeology. Evolutionary Anthropology, 1, 143–150.CrossRefGoogle Scholar
  77. Sheppard, C. J. R., & Shotton, D. M. (1997). Confocal laser scanning microscopy. Oxford: BIOS.Google Scholar
  78. Smallwood, A.M. (2013). Building experimental use-wear analogues for Clovis biface functions. Archaeological and Anthropological Sciences, 1–14.Google Scholar
  79. Šmit, Z., Petru, S., Grime, G., Vidmar, T., Budnar, M., Zorko, B., & Ravnikar, M. (1998). Usewear-induced deposition on prehistoric flint tools. Nuclear Instruments and Methods in Physics Research B, 140, 209–216.CrossRefGoogle Scholar
  80. Šmit, Z., Grime, G. W., Petru, S., & Rajta, I. (1999). Microdistribution and composition of usewear polish on prehistoric stone tools. Nuclear Instruments and Methods in Physics Research B, 150, 565–570.CrossRefGoogle Scholar
  81. Stemp, W. J. (2014). A review of quantification of lithic use-wear using laser profilometry: a method based on metrology and fractal analysis. Journal of Archaeological Science, 48, 15–25.CrossRefGoogle Scholar
  82. Stemp, W. J., & Chung, S. (2011). Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces). Scanning, 33, 279–293.CrossRefGoogle Scholar
  83. Stemp, W. J., & Stemp, M. (2001). UBM laser profilometry and lithic use-wear analysis: a variable length scale investigation of surface topography. Journal of Archaeological Science, 28, 81–88.CrossRefGoogle Scholar
  84. Stemp, W. J., & Stemp, M. (2003). Documenting stages of polish development on experimental stone tools: surface characterization by fractal geometry using UBM laser profilometry. Journal of Archaeological Science, 30(3), 287–296.CrossRefGoogle Scholar
  85. Stemp, W. J., Childs, B. E., Vionnet, S., & Brown, C. A. (2008). The quantification of microwear on chipped stone tools: assessing the effectiveness of root mean square roughness (Rq). Lithic Technology, 33, 173–189.Google Scholar
  86. Stemp, W. J., Childs, B. E., Vionnet, S., & Brown, C. A. (2009). Quantification and discrimination of lithic use-wear: surface profile measurements and length-scale fractal analysis. Archaeometry, 51, 366–382.CrossRefGoogle Scholar
  87. Stemp, W. J., Childs, B. E., & Vionnet, S. (2010). Laser profilometry and length-scale analysis of stone tools: second series experiment results. Scanning, 32, 233–243.CrossRefGoogle Scholar
  88. Stemp, W.J., Evans, A.A. and Lerner, H.J. (2012). Reaping the rewards: the potential of well designed methodology, a comment on Vardi et al. (Journal of Archeological Science 37 (2010) 1716–1724) and Goodale et al. (Journal of Archeological Science 37 (2010) 1192–1201). Journal of Archeological Science, 39, 1901–1904Google Scholar
  89. Stemp, W. J., Lerner, H. J., & Kristant, E. H. (2013). Quantifying microwear on experimental Mistassini quartzite scrapers: preliminary results of exploratory research using LSCM and scale-sensitive fractal analysis. Scanning, 35, 28–39.CrossRefGoogle Scholar
  90. Stemp, W. J., Andruskiewicz, M. D., Gleason, M. A., & Rashid, Y. H. (2014). Experiments in ancient maya blood-letting: quantification of surface wear on obsidian blades. Archaeological and Anthropological Sciences. doi: 10.1007/s12520-014-0204-5.Google Scholar
  91. Stevens, N. E., Harro, D. R., & Hicklin, A. (2010). Practical quantitative lithic use-wear analysis using multiple classifiers. Journal of Archaeological Science, 37, 2671–2678.CrossRefGoogle Scholar
  92. Tringham, R., Cooper, G., Odell, G. H., Voytek, B., & Whitman, A. (1974). Experimentation in the formation of edge-damage: a new approach to lithic analysis. Journal of Field Archaeology, 1, 171–196.CrossRefGoogle Scholar
  93. Unger, P. S., Brown, C. A., Bergstrom, T. S., & Walker, A. (2003). Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning, 25, 185–193.CrossRefGoogle Scholar
  94. Unger-Hamilton, R. (1984). The formation of use-wear polish on flint: beyond the “deposit versus abrasion” controversy. Journal of Archaeological Science, 11, 91–98.CrossRefGoogle Scholar
  95. Vaughan, P. (1985). Use wear analysis of flaked stone tools. Arizona: University of Arizona Press.Google Scholar
  96. Yamada, S. (1993). The formation process of “use-wear polishes”. In P. Amderson, S. Beyries, M. Otte, & H. Plisson (Eds.), Traces et Function: Les Gestes Retrouvés (pp. 447–457). Liege: Eraul.Google Scholar
  97. Zang, B., Liu, X., Brown, C. A., & Bergstrom, T. S. (2002). Micro-grinding of nanostructured material coatings. Annual CIRP, 51, 251–254.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alastair J. M. Key
    • 1
  • W. James Stemp
    • 2
  • Mikhail Morozov
    • 3
  • Tomos Proffitt
    • 4
  • Ignacio de la Torre
    • 4
  1. 1.Department of AnthropologyUniversity of KentCanterburyUK
  2. 2.Department of Sociology, Anthropology and CriminologyKeene State CollegeKeeneUSA
  3. 3.Surface Metrology Lab, Mechanical Engineering DepartmentWorcester Polytechnic InstituteWorcesterUSA
  4. 4.Institute of ArchaeologyUniversity College LondonLondonUK

Personalised recommendations