Journal of Archaeological Method and Theory

, Volume 22, Issue 4, pp 1238–1262 | Cite as

Modernizing Spatial Micro-Refuse Analysis: New Methods for Collecting, Analyzing, and Interpreting the Spatial Patterning of Micro-Refuse from House-Floor Contexts



Archaeologists can learn a great deal from the distribution of cultural evidence at various scales ranging from large regions, through small communities, down to individual households. Since in many societies a significant proportion of the human experience takes place within and around houses, houses play a prominent role in discussions of habitus. Yet archaeologists have also experienced challenges in their attempts to understand this habitus, especially when so many archaeological remains pertain to short-term activities that occurred near the end of a house’s use life, or even after, and may not even be typical. Focusing on the tiniest debris that accumulates over long periods may help us overcome these challenges, but many archaeologists have been reluctant to employ micro- refuse analysis because of the erroneous perception that the scale of effort it involves must be astronomical. The approach we demonstrate in this paper shows that careful consideration of sampling both in the field and in the lab makes it possible to detect robust patterns from persistent activities with a fraction of the effort that some previous analysts have employed. One of our key findings is that employing large numbers of volunteer counters, in combination with adequate quality assurance protocols, greatly facilitates this type of research.


Micro-refuse analysis Spatial analysis Household archaeology Activity areas 

Supplementary material

10816_2014_9223_MOESM1_ESM.pdf (46 kb)
ESM 1(PDF 45 kb)
10816_2014_9223_MOESM2_ESM.pdf (28 kb)
ESM 2(PDF 28 kb)


  1. Banning, E. B. (2000). The archaeologist’s laboratory: the analysis of archaeological data. New York: Springer.Google Scholar
  2. Banning, E. B. (2007). Wadi Rabah and related assemblages in the southern Levant: interpreting the radiocarbon evidence. Paléorient, 33, 77–101.CrossRefGoogle Scholar
  3. Banning, E. B., Gibbs, K., & Kadowaki, S. (2011). Changes in material culture at Late Neolithic Tabaqat al Buma, in Wadi Ziqlab, northern Jordan. In J. Lovell & R. M. Yorke (Eds.), Culture, chronology and the chalcolithic: theory and transition (pp. 36–60). Oxford: Oxbow Books.Google Scholar
  4. Barton, C. M., Riel-Salvatore, J., Anderies, J. M., & Popescu, G. (2011). Modeling human ecodynamics and biocultural interactions in the late Pleistocene of western Eurasia. Human Ecology, 39, 705–725. doi:10.1007/s10745-011-9433-8.CrossRefGoogle Scholar
  5. Bertran, P., Lenoble, A., Todisco, D., et al. (2012). Particle size distribution of lithic assemblages and taphonomy of Palaeolithic sites. Journal of Archaeological Science, 39, 3148–3166. doi:10.1016/j.jas.2012.04.055CrossRefGoogle Scholar
  6. Binford, L. R. (1978). Dimensional analysis of behavior and site structure: learning from an Eskimo hunting stand. American Antiquity, 43, 330–361. doi:10.2307/279390.
  7. Brown, C. T., Witschey, W. R., & Liebovitch, L. S. (2005). The broken past: fractals in archaeology. Journal of Archaeological Method and Theory, 12, 37–78.CrossRefGoogle Scholar
  8. Drennan, R. D. (1996). Statistics for archaeologists: a common sense approach. New York: Springer.CrossRefGoogle Scholar
  9. Dunnell, R. C., & Stein, J. K. (1989). Theoretical issues in the interpretation of microartifacts. Geoarchaeology, 4, 31–42.CrossRefGoogle Scholar
  10. Fairbairn, A. (2005). Simple bucket flotation and wet sieving in the wet tropics. Canberra: RSPAS, Australian National University.Google Scholar
  11. Fladmark, K. R. (1982). Microdebitage analysis: Initial considerations. Journal of Archaeological Science, 9, 205–220. doi:10.1016/0305-4403(82)90050-4.CrossRefGoogle Scholar
  12. Gibbs, K., Kadowaki, S., Banning, E. B. (2006). The Late Neolithic at al-Basatîn in Wadi Ziqlab, northern Jordan. Antiquity, 80(310),
  13. GRASS Development Team (2014) Geographic Resources Analysis Support System.
  14. Gregg, S. A., Kintigh, K. W., Whallon, R. (1990). Linking ethnoarchaeological interpretation and archaeological data: the sensitivity of spatial analytical methods to postdepositional disturbance. The Interpretation of Archaeological Spatial Patterning.Google Scholar
  15. Guan, Y., Gao, X., Wang, H., Chen, F., Pei, S., Zhang, X., & Zhou, Z. (2011). Spatial analysis of intra-site use at a Late Paleolithic site at Shuidonggou, Northwest China. Chinese Science Bulletin, 56(32), 3457–3463. Accessed 12 September 2014.CrossRefGoogle Scholar
  16. Hayden, B., & Cannon, A. (1983). Where the garbage goes: refuse disposal in the Maya Highlands. Journal of Anthropological Archaeology, 2, 117–163. doi:10.1016/0278-4165(83)90010-7.CrossRefGoogle Scholar
  17. Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (2000). Understanding robust and exploratory data analysis (2nd ed.). New York: Wiley.Google Scholar
  18. Hodder, I., & Cessford, C. (2004). Daily practice and social memory at Catalhoyuk. American Antiquity, 69, 17–40.CrossRefGoogle Scholar
  19. Hull, K. L. (1987). Identification of cultural site formation processes through microdebitage analysis. American Antiquity, 52, 772–783. doi:10.2307/281385.CrossRefGoogle Scholar
  20. ISO-BSEN (2002). 14688–1. 2002. Geotechnical investigation and testing. Identification and classification of soil. Part 1: identification and description. British Standards Institution. Google Scholar
  21. Johnson, I. (1984). Cell frequency recording and analysis of artifact distributions. In H. Hietala (Ed.), Intrasite spatial analysis in archaeology (pp. 75–96). Cambridge: Cambridge University Press.Google Scholar
  22. Jones, G. E. M. (1983). The use of ethnographic and ecological models in the interpretation of archaeological plant remains: case studies from Greece. Cambridge: University of Cambridge.Google Scholar
  23. Kamp, K. A. (2000). From village to tell: household ethnoarchaeology in Syria. Near Eastern Archaeology, 63, 84–93. doi:10.2307/3210745.CrossRefGoogle Scholar
  24. Kent, S. (1984). Analyzing activity areas: an ethnoarchaeological study of the use of space. Albuquerque: University of New Mexico Press.Google Scholar
  25. Kintigh, K. W. (1990). Intrasite spatial analysis: A commentary on major methods. In A. Voorrips (Ed.), Mathematics and information science in archaeology: a flexible framework (pp. 165–200). Bonn: Helos.Google Scholar
  26. LaMotta, V., & Schiffer, M. B. (1997). Formation processes of house floor assemblages. In P. M. Allison (Ed.), The archaeology of household activities (pp. 19–29). New York: Routledge.Google Scholar
  27. Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation (5th ed.). Hoboken: Wiley.Google Scholar
  28. McLaren, P., Bowles, D. (1985). The effects of sediment transport on grain-size distributions. Journal of Sedimentary Research 55. Google Scholar
  29. Metcalfe, D., & Heath, K. M. (1990). Microrefuse and site structure: the hearths and floors of the Heartbreak Hotel. American Antiquity, 55, 781–796. doi:10.2307/281250CrossRefGoogle Scholar
  30. Mitas, L., & Mitasova, H. (1999) Spatial interpolation. In: P. A. Longley, M. F. Goodchild, D. J. Maguire, & D. W. Rhind (Eds), Geographical information systems: principles, techniques, management and applications (pp 481–492). New York: Wiley.Google Scholar
  31. Mitasova, H., & Mitas, L. (1993). Interpolation by regularized spline with tension: I. Theory and implementation. Mathematical Geology, 25, 641–655.CrossRefGoogle Scholar
  32. Pye, K., & Tsoar, H. (2009). Mechanics of aeolian sand transport. Aeolian Sand and Sand Dunes (pp. 99–139). Berlin: Springer.CrossRefGoogle Scholar
  33. Rosen, A. M. (1986). Cities of clay: the geoarchaeology of tells. Chicago: University of Chicago Press.Google Scholar
  34. Rosen, A. M. (1993). Microartifacts as a reflection of cultural factors in site formation. In P. Goldberg, D. T. Nash, & M. D. Petraglia (Eds.), Formation processes in archaeological context (pp. 141–148). Madison: Prehistory Press.Google Scholar
  35. Sahu, B. K. (1964). Depositional mechanisms from the size analysis of clastic sediments. Journal of Sedimentary Research, 34.Google Scholar
  36. Schiffer, M. B. (1983). Toward the identification of formation processes. American Antiquity, 48, 675–706.CrossRefGoogle Scholar
  37. Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.Google Scholar
  38. Shelton, C. P., & White, C. E. (2010). The hand-pump flotation system: a new method for archaeobotanical recovery. Journal of Field Archaeology, 35, 316–326. doi:10.1179/009346910X12707321358838.CrossRefGoogle Scholar
  39. Shennan, S. (1997). Quantifying archaeology (2nd ed.). Edinburgh: Edinburgh University Press.Google Scholar
  40. Sherwood, S. C., Simek, J. F., & Polhemus, R. R. (1995). Artifact size and spatial process: macro- and microartifacts in a mississippian house. Geoarchaeology, 10, 429–455. doi:10.1002/gea.3340100603.CrossRefGoogle Scholar
  41. Shott, M. J. (2010). Size dependence in assemblage measures: essentialism, materialism, and “SHE” analysis in archaeology. American Antiquity, 75(4), 886–906.CrossRefGoogle Scholar
  42. Simms, S. R., & Heath, K. M. (1990). Site structure of the Orbit Inn: an application of ethnoarchaeology. American Antiquity, 55, 797–813. doi:10.2307/281251.CrossRefGoogle Scholar
  43. Tani, M. (1995). Beyond the identification of formation processes: behavioral inference based on traces left by cultural formation processes. Journal of Archaeological Method and Theory, 2(3), 231–252. doi:10.1007/BF02229008.CrossRefGoogle Scholar
  44. Thompson, S. K., Ramsey, F. L., & Seber, G. A. F. (1992). An adaptive procedure for sampling animal populations. Biometrics, 48, 1195. doi:10.2307/2532710.CrossRefGoogle Scholar
  45. Tucker, P. (1980). A grain mobility model of post-depositional realignment. Geophysical Journal International, 63, 149–163. doi:10.1111/j.1365-246X.1980.tb02614.x.CrossRefGoogle Scholar
  46. Ullah, I. I. T. (2009). Within-room spatial analysis of activity areas at Late Neolithic Tabaqat Al-Buma, Wadi Ziqlab, Al Koura, Jordan. Studies in the History and Archaeology of Jordan, X. The Department of Antiquities of Jordan, Amman, pp 87–95Google Scholar
  47. Ullah, I. I. T. (2012). Particles from the past: Microarchaeologial spatial analysis of ancient house floors. In B. J. Parker & C. P. Foster (Eds.), New perspectives in household archaeology (pp. 123–138). Winowna Lake: Eisenbrauns.Google Scholar
  48. Vance, E. D. (1987). Microdebitage analysis in activity analysis: an application. Northwest Anthropological Research Notes, 20, 179–189.Google Scholar
  49. Visher, G. S. (1969). Grain size distributions and depositional processes. Journal of Sedimentary Research, 39, 1074–1106.Google Scholar
  50. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Isaac I. Ullah
    • 1
    • 3
  • Paul R. Duffy
    • 2
  • E. B. Banning
    • 2
  1. 1.Center for Comparative ArchaeologyUniversity of PittsburghPittsburghUSA
  2. 2.Department of AnthropologyUniversity of TorontoTorontoCanada
  3. 3.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA

Personalised recommendations