Advertisement

Journal of Archaeological Method and Theory

, Volume 21, Issue 2, pp 426–446 | Cite as

Agent-Based Simulation of Holocene Monsoon Precipitation Patterns and Hunter-Gatherer Population Dynamics in Semi-arid Environments

  • A. L. BalboEmail author
  • X. Rubio-Campillo
  • B. Rondelli
  • M. Ramírez
  • C. Lancelotti
  • A. Torrano
  • M. Salpeteur
  • N. Lipovetzky
  • V. Reyes-García
  • C. Montañola
  • M. Madella
Article

Abstract

Based on archaeological evidence from Kutch-Saurashtra (N Gujarat, NW India), we use agent-based modelling (ABM) to explore the persistence of hunter-gatherer (HG) groups in semi-arid environments in the mid and late Holocene. Agents interact within a realistic semi-arid environment dominated by the monsoon. Precipitation trends are modelled from instrumental records (1871–2008) calibrated with existing models for the Asian monsoon in the Holocene (c. 12 ka–present). Experiments aim at exploring dependencies between population dynamics and climate-driven environmental change (in terms of resource availability) for precipitation patterns at the local, regional and continental scales. Resources are distributed across a simplified ground model. Average yearly precipitation (AYP, i.e. mean) and variance in yearly precipitation (VYP, i.e. standard deviation) are the main parameters affecting resource availability in the simulations. We assess the effects of environmental change on HG populations at different timescales: (1) patterns of seasonal (inter-annual) resource availability, (2) effects of changes in mean precipitation trends over the long (Pleistocene–Holocene) and the mid (Holocene, millennial) periods, and (3) effects of intra-annual precipitation variability, i.e. changes in standard deviation from mean precipitation trends over the short period (annual to decadal). Simulations show that (1) strong seasonality is coherent with the persistence of HG populations in India, independently of the geographical scale of the precipitation models, (2) changes in AYP over the mid period (Holocene) are not sufficient to explain the disappearance of HG populations in Kutch-Saurashtra (K-S) 4 ka and (3) precipitation variability (VYP) over the short period (annual to decadal) is the main parameter affecting population performance and overall ecosystem dynamics. To date, sufficiently refined palaeoclimatic records do not exist for the study area, but higher VYP values 4 ka do not exclude the possibility that other factors may have driven the disappearance of HG populations in Kutch-Saurashtra.

Keywords

Archaeology Simulation Monsoon Holocene Kutch-Saurashtra Gujarat India 

Notes

Acknowledgments

This research has been supported by the SimulPast Project – Consolider Ingenio 2010 (CSD2010-00034, PI M. Madella), funded by the former Spanish Ministry for Science and Innovation (MICINN). AT, BR, CL, NL, MS and XRC have worked on this paper with contracts from the SimulPast project. AB with a contract from the Juan de la Cierva Program, funded by the Spanish Ministry of Economy and Competitiveness (MINECO). We wish to thank two anonymous reviewers for helping us improve the original text, H. Geffner for his generous support and insight and F. Cecília Conesa for his help with climate data mining.

Supplementary material

10816_2014_9203_MOESM1_ESM.pdf (294 kb)
SI1 ODD (PDF 293 kb)

References

  1. Allchin, B., Goudie, A., & Hedge, K. (1978). The prehistory and palaeogeography of the Great Indian Desert. London: Academic.Google Scholar
  2. Anderson, D. M., Baulcomb, C. K., Duvivier, A. K., & Gupta, A. K. (2010). Indian summer monsoon during the last two millennia. Journal of Quaternary Science, 25, 911–917. doi: 10.1002/jqs.1369.CrossRefGoogle Scholar
  3. Attri, S. D., & Tyagi, A. (2010). Climate profile of India. Contribution to the Indian network of climate change assessment. New Delhi: Environment Monitoring and Research Centre Indian Meteorological Department.Google Scholar
  4. Balbo, A. L., Rondelli, B., Cecília Conesa, F., Lancelotti, C., Madella, M., Ajithprasad, P. (2012). Contributions of geoarchaeology and remote sensing to the study of Holocene hunter–gatherer and agro-pastoral groups in arid margins: the case of North Gujarat (Northwest India). Quaternary International:1–13. doi: 10.1016/j.quaint.2012.12.016.
  5. Box, P. (2002). Spatial units as agents: making the landscape an equal player in agent-based simulations. In H. R. Gimblett (Ed.), Integrating geographic information systems and agent-based modeling techniques for simulating social and ecological processes (pp. 59–82). Oxford: Oxford University Press.Google Scholar
  6. Byrne, D. (1998). Complexity theory and the social sciences. An introduction. London: Routledge.Google Scholar
  7. Clift, P. D., & Plumb, R. A. (2008). The Asian monsoon: causes, history, effects. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Epstein, J. M. (2007). Generative social science: studies in agent-based computational modeling (Princeton studies in complexity). Princeton: Princeton University Press.Google Scholar
  9. Epstein, J. (2008). Why model? Journal of Artificial Societies and Social 11. http://jasss.soc.surrey.ac.uk/11/4/12.html.
  10. FAO/WHO/ONU (2005). Human energy requirements. Scientific background papers from the Joint FAO/WHO/UNU Expert Consultation. October 17–24, 2001. Rome, Italy. Food and Nutrition Technical Repost Series 1. FAO. http://www.ncbi.nlm.nih.gov/pubmed/19856424.
  11. Fleitmann, D., Burns, S. J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., et al. (2003). Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300, 1737. doi: 10.1126/science.1083130.CrossRefGoogle Scholar
  12. Folke, C. (2006). Resilience: the emergence of a perspective for social–ecological systems analyses. Global Environmental Change, 16, 253–267. doi: 10.1016/j.gloenvcha.2006.04.002.CrossRefGoogle Scholar
  13. Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., Walker, B. (2002). Resilience and sustainable development: building adaptive capacity in a world of transformations. Ambio 31,437–40. http://www.ncbi.nlm.nih.gov/pubmed/12374053.
  14. Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: a review and first update. Ecological Modelling, 221, 2760–2768. doi: 10.1016/j.ecolmodel.2010.08.019.CrossRefGoogle Scholar
  15. Hatchwell, B. J. (2009). The evolution of cooperative breeding in birds: kinship, dispersal and life history. Philosophical Transactions of the Royal Society B, 364, 3217–3227.CrossRefGoogle Scholar
  16. Hewlett, B. S. (1991). Demography and childcare in preindustrial societies. Journal of Anthropological Research, 47(1), 1–37.Google Scholar
  17. Holling, C. S. (2001). Understanding the complexity of economic, ecological, and social systems. Ecosystems, 4, 390–405. doi: 10.1007/s10021-001-0101-5.CrossRefGoogle Scholar
  18. IPCC. (2012). Summary for policymakers. In C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, & P. M. Midgley (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change (pp. 1–19). Cambridge: Cambridge University Press.Google Scholar
  19. Kelly, R. L. (1983). Hunter-gatherer mobility strategies. Journal of Anthropological Research, 39, 277–306.Google Scholar
  20. Lézine, A.-M., Tiercelin, J., Robert, C., Saliège, J., Cleuziou, S., Inizan, M., et al. (2007). Centennial to millennial-scale variability of the Indian monsoon during the early Holocene from a sediment, pollen and isotope record from the desert of Yemen. Holocene, 243, 235–249. doi: 10.1016/j.palaeo.2006.05.019.Google Scholar
  21. Liu, Z., Otto-Bliesner, B., Kutzbach, J., Li, L., & Shields, C. (2003). Coupled climate simulation of the evolution of global monsoons in the Holocene. Journal of Climate, 16, 2472–2490. doi: 10.1175/1520-0442(2003)016<2472:CCSOTE>2.0.CO;2.CrossRefGoogle Scholar
  22. Madella, M., & Fuller, D. Q. (2006). Palaeoecology and the Harappan Civilisation of South Asia: a reconsideration. Quaternary Science Reviews, 25, 1283–1301. doi: 10.1016/j.quascirev.2005.10.012.CrossRefGoogle Scholar
  23. Meadow, R. H., & Patel, A. K. (2003). Prehistoric pastoralism in Northwestern South Asia from the Neolithic through the Harappan Period. In S. Weber & W. Belcher (Eds.), Indus ethnobiology: New perspectives from the field (pp. 65–93). Lanham: Lexington Books.Google Scholar
  24. Misra, V. N. (1973). Bagor, a late Mesolithic settlement in north-west India. World Archaeology, 5, 92–110.CrossRefGoogle Scholar
  25. Nagar, M. (2008). Hunter-gatherers of North and Central India: an ethnoarchaeological study. Oxford: Archaeopress. BAR International Series 1749.Google Scholar
  26. Patel, A. K. (2009). Occupational histories, settlements and subsistence in Western India: What bones and genes can tell us about the origins and spread of pastoralism. Anthropozoologica, 44, 173–188.CrossRefGoogle Scholar
  27. Prasad, V., Phartiyal, B., & Sharma, A. (2007). Evidence of enhanced winter precipitation and the prevalence of a cool and dry climate during the mid to late Holocene in mainland Gujarat, India. The Holocene, 17, 889–896. doi: 10.1177/0959683607082403.CrossRefGoogle Scholar
  28. Rosen, A. M., & Rivera-Collazo, I. (2012). Climate change, adaptive cycles, and the persistence of foraging economies during the late Pleistocene/Holocene transition in the Levant. PNAS, 109, 3640–3645.CrossRefGoogle Scholar
  29. Saini, H. S., & Mujtaba, S. A. I. (2012). Depositional history and palaeoclimatic variations at the northeastern fringe of Thar Desert, Haryana Plains, India. Quaternary International, 250, 37–48. doi: 10.1016/j.quaint.2011.06.002.CrossRefGoogle Scholar
  30. Singh, N., Ranade, A. (2010). Global temperature and Indian Monsoon. Geography and You. 41–43.Google Scholar
  31. Singh, V., Prasad, V., Chakraborty, S. (2007). Phytoliths as indicators of monsoonal variability during mid-late Holocene in mainland Gujarat, western India. Current Science 92, 8–13. http://www.pages-igbp.org/products/osmabstracts/Singh_Vartika.pdf.
  32. Sontakke, N. A., & Singh, N. (1996). Longest instrumental regional and all-India summer monsoon rainfall series using optimum observations: reconstruction and update. The Holocene, 6, 315–331.CrossRefGoogle Scholar
  33. Sontakke, N. A., Singh, N., & Singh, H. N. (2008). Instrumental period rainfall series of the Indian region (AD 1813–2005): revised reconstruction, update and analysis. The Holocene, 18, 1055–1066. doi: 10.1177/0959683608095576.CrossRefGoogle Scholar
  34. Tanaka, J., & Sugawara, K. (1996). The /Gui and //Gana of Botswana. In R. B. Lee & R. Daly (Eds.), The Cambridge encyclopedia of hunters and gatherers (pp. 195–199). Cambridge: Cambridge University Press.Google Scholar
  35. Turner, N. J., Davidson-Hunt, I. J., & Flaherty, M. O. (2003). Living on the edge: ecological and cultural edges as sources of diversity for social–ecological resilience. Human Ecology, 31, 439–461.CrossRefGoogle Scholar
  36. Widlok, T., Aufgebauer, A., Bradtmöller, M., Dikau, R., Hoffmann, T., Kretschmer, I., et al. (2012). Towards a theoretical framework for analyzing integrated socio-environmental systems. Quaternary International, 274, 259–272. doi: 10.1016/j.quaint.2012.01.020.CrossRefGoogle Scholar
  37. Wittek, P., Rubio-Campillo, X. (2012). Scalable agent-based modelling with Cloud HPC Resources for social simulations. In: 2012 I.E. 4th International Conference on Cloud Computing Technology and, Science. pp 355–362.Google Scholar
  38. Yang, T.-N., Lee, T.-Q., Meyers, P. A., Song, S.-R., Kao, S.-J., Löwemark, L., et al. (2011). Variations in monsoonal rainfall over the last 21 kyr inferred from sedimentary organic matter in Tung-Yuan Pond, southern Taiwan. Quaternary Science Reviews, 30, 3413–3422.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. L. Balbo
    • 1
    Email author
  • X. Rubio-Campillo
    • 2
  • B. Rondelli
    • 1
  • M. Ramírez
    • 3
  • C. Lancelotti
    • 1
  • A. Torrano
    • 2
  • M. Salpeteur
    • 4
  • N. Lipovetzky
    • 5
  • V. Reyes-García
    • 6
    • 4
  • C. Montañola
    • 7
    • 2
  • M. Madella
    • 6
    • 1
  1. 1.Complexity and Socio-ecological Dynamics (CaSEs, www.cases-bcn.net)Istitució Milà i Fontanals, Spanish National Research Council (IMF-CSIC)BarcelonaSpain
  2. 2.Barcelona Supercomputing Centre (BSC)BarcelonaSpain
  3. 3.School of Computer Science and Information TechnologyRMIT University of MelbourneMelbourneAustralia
  4. 4.Institut de Ciència i Tecnologia AmbientalsUniversitat Autonoma de Barcelona (ICTA-UAB)BarcelonaSpain
  5. 5.Department of Computer Science and Software EngineeringUniversity of MelbourneMelbourneAustralia
  6. 6.Catalan Institute of Research and Advanced Studies (ICREA)BarcelonaSpain
  7. 7.Departament d′Estadística i Investigació OperativaUniversitat Politècnica de Catalunya (EIO-UPC)BarcelonaSpain

Personalised recommendations