Journal of Archaeological Method and Theory

, Volume 21, Issue 2, pp 486–510 | Cite as

Modeling Expansive Phenomena in Early Complex Societies: the Transition from Bronze Iron Age in Prehistoric Europe

  • J. A. BarcelóEmail author
  • G. Capuzzo
  • I. Bogdanović


The Bronze Age/Iron Age transition in Prehistoric Europe represents a perfect case study to test different and competing hypotheses of social dynamics and economic change in small-scale societies. The paper discusses the possibilities of modeling what could have happened in Europe between 1800 and 800 bc, in terms of spatiotemporal dynamics. The paper presents some theoretical aspects of the dynamic study of expansive phenomena and gives an overview of a computer model programmed to explain the way new burial forms expanded in Europe. The main idea is comparing classic demic diffusion models (spread of population), cultural transmission models (spread of ideas), and technological innovation diffusion model (spread of goods). We will present the fundamentals of a preliminary study towards the computational simulation of such hypothetical social mechanisms, using a dataset composed of more than 1,500 georeferenced and radiocarbon dated archaeological contexts of a period between the Early Bronze Age and the first Iron Age (1800–800 bc) from an area including the North-East of Iberian Peninsula, Southern France, Northern and Central Italy, Switzerland, Austria, and Southern Germany.


Computer modeling Radiocarbon Bronze Age Prehistoric Europe Demic expansion Cultural transmission 



The authors thank Neus Isern for her estimations of the speed of expansion based on the authors' radiocarbon estimates and assuming a classical Fisher-KPP model. The authors also acknowledge the comments by Quim Fort, external reviewers, and the editors of this volume. This research is part of the project PADICAT (“Patrimoni Digital Arqueològic de Catalunya), funded by the Obra Social la Caixa and the Asociació d” Universitats Catalanes (Programa RecerCaixa, RECER2010-05). Parts of it have been funded by the project “Social and environmental transitions: Simulating the Past to understand human behavior,” funded by the Spanish Ministry for Science and Innovation, under the program CONSOLIDER-INGENIO 2010, CSD2010-00034. In addition, the authors also acknowledge funds from Spanish Ministry of Science and Innovation, through grant no. HAR2009-12258 awarded to J.A. Barceló. Giacomo Capuzzo acknowledges his research grant from the Departament de Universitats, Investigació i Societat de la Informació of the Generalitat de Catalunya.


  1. Achilli, A., Olivieri, A., Pala, M., et al. (2007). Mitochondrial DNA variation of modern Tuscans supports the near eastern origin of Etruscans. Am J Hum Genet, 80, 759–768. doi: 10.1086/512822.CrossRefGoogle Scholar
  2. Ackland, G. J., Signitzer, M., Stratford, K., & Cohen, M. H. (2007). Cultural hitchhiking on the wave of advance of beneficial technologies. Proc Natl Acad Sci U S A, 104, 8714–8719. doi: 10.1073/pnas.0702469104.CrossRefGoogle Scholar
  3. Ammerman, A. J., & Cavalli-Sforza, L. L. (1984). The Neolithic transition and the genetics of populations in Europe. Princeton, NJ: Princeton University Press.Google Scholar
  4. Armit, I., Swindles, G. T., & Becker, K. (2012). From dates to demography in later prehistoric Ireland? Experimental approaches to the meta-analysis of large 14C data-sets. Journal of Archaeological Science, 40(1), 433–438.Google Scholar
  5. Baggaley, A., Boys, R., Golightly, A., Sarson, G. R., & Shukurov, A. (2012). Inference for population dynamics in the Neolithic period. The Annals of Applied Statistics, 6(4), 1352–1376. doi: 10.1214/12-AOAS579.CrossRefGoogle Scholar
  6. Bamforth, D. B., & Grund, B. (2012). Radiocarbon calibration curves, summed probability distributions, and Early Paleoindian population trends in North America. J Archaeol Sci, 39(6), 1768–1774. doi: 10.1016/j.jas.2012.01.017.CrossRefGoogle Scholar
  7. Barceló, J. A. (2008). La incertesa de les cronologies absolutes en arqueologia. Probabilitat i estadística. Cypsela, 17, 23–33.Google Scholar
  8. Barceló, J.A., Bogdanović, I., & Capuzzo, G. (2013). A Database for radiocarbon dates. Some methodological and theoretical issues about its implementation. In Proceedings of the Computer applications and quantitative methods in Archaeology (CAA2012). (
  9. Bass, F. M. (1969). A new product growth model for consumer durables. Management Science, 15, 215–227. doi: 10.1287/mnsc.15.5.215.CrossRefGoogle Scholar
  10. Bleicher, N. (2013). Summed radiocarbon probability density functions cannot prove solar forcing of Central European lake-level changes. The Holocene, 23(5), 755–765. doi: 10.1177/0959683612467478.CrossRefGoogle Scholar
  11. Bosch Gimpera, P. (1923). Una primera invasión céltica en España hacia 900 a.C., Investigación y Progreso, I.Google Scholar
  12. Boyd, R., & Richerson, P. J. (1985). Culture and the evolutionary process. Chicago: The University of Chicago Press.Google Scholar
  13. Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.Google Scholar
  14. Brun, P. (1991). Systèmes économiques et organisations sociales au Premier âge du Fer, dans la zone nord-alpine. In Les Alpes à l'âge du Fer. Actes du Xe colloque sur l'âge du Fer tenu à Yenne-Chambéry. Paris, C.N.R.S.. Revue archéologique de Narbonnaise, suppl. 22, 313–332.Google Scholar
  15. Brun, P., Chaume, B., Dhennequin, L., & Quilliec, B. (2009). Le passage de l'âge du Bronze à l'âge du Fer … au fil de l'épée. Revue Archéologique de l'Est, 27, 477–485.Google Scholar
  16. Buchanan, B., Hamilton, M., Edinborough, K., O'Brien, M. J., & Collard, M. (2011). A comment on Steele's (2010) “Radiocarbon dates as data: quantitative strategies for estimating colonization front speeds and event densities”. J Archaeol Sci, 38(9), 2116–2122.CrossRefGoogle Scholar
  17. Capuzzo, G., Boaretto, E., & Barceló, J.A. (2013). EUBAR: a database of 14C measurements for the European Bronze Age: a Bayesian analysis of 14C dated archaeological contexts. Radiocarbon (In press).Google Scholar
  18. Cavalli-Sforza, L. L., & Feldman, M. W. (1981). Cultural transmission and evolution: a quantitative approach. Princeton: Princeton University Press.Google Scholar
  19. Chamberlain, A. (2009). Archaeological Demography, Human Biology, 81(2-3), Article 9. Available at:
  20. Childe, G. (1927). The dawn of European civilization. London: K. Paul, Trench, Trubner & Co. Ltd.Google Scholar
  21. Chiverrell, R. C., Thorndycraft, V. C., & Hoffmann, T. O. (2011). Cumulative probability functions and their role in evaluating the chronology of geomorphological events during the Holocene. Journal of Quaternary Science, 26(1), 76–85. doi: 10.1002/jqs.1428.CrossRefGoogle Scholar
  22. Collard, M., Buchanan, B., Hamilton, M. J., & O'Brien, M. J. (2010a). Spatiotemporal dynamics of the Clovis–Folsom transition. J Archaeol Sci, 37(10), 2513–2519. doi: 10.1016/j.jas.2010.05.011.CrossRefGoogle Scholar
  23. Collard, M., Edinborough, K., Shennan, S., & Thomas, M. G. (2010b). Radiocarbon evidence indicates that migrants introduced farming to Britain. J Archaeol Sci, 37(4), 866–870. doi: 10.1016/j.jas.2009.11.016.CrossRefGoogle Scholar
  24. Cressie, N. (1993). Statistics for spatial data. New York: Wiley.Google Scholar
  25. David-Elbiali, M. (2009). Des femmes et des hommes dans l'arc alpin occidental entre le XIIe et le VIIe siècle av. J.-C. In De l'âge du Bronze à l'âge du Fer en France et en Europe occidentale (Xe–VIIe siècle av. J.-C.). La moyenne vallée du Rhône aux âges du Fer, Actes du XXXe colloque international de l'A.F.E.A.F., co-organisé avec l'A.P.R.A.B.. (Saint-Romain-en-Gal, 26–28 Mai 2006), Dijon. Revue Archéologique de l'Est, 27, 343–360.Google Scholar
  26. Davis, B. A. S., Brewer, S., Stevenson, A. C., & Guiot, J. (2003). The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews, 22(15), 1701–1716. doi: 10.1016/S0277-3791(03)00173-2.CrossRefGoogle Scholar
  27. De Beule, H. (2010). Phylogenetic relations and geographic distribution of I-L38 (aka I2b2). The Russian Journal of Genetic Genealogy, 1(2), 56–71.
  28. De Beule, H. (2011). Origin, migrations and expansion of haplogroup I-L38 in relation to Haplogroup R1b. The Russian Journal of Genetic Genealogy, 2(1), 10–30.
  29. Doyen, É., Vannière, B., Berger, J. F., Arnaud, F., Tachikawa, K., & Bard, E. (2013). Land-use changes and environmental dynamics in the upper Rhone valley since Neolithic times inferred from sediments in Lac Moras. The Holocene, 23(7), 961–973. doi: 10.1177/0959683612475142.CrossRefGoogle Scholar
  30. Eerkens, J. W., & Lipo, C. P. (2005). Cultural transmission, copying errors, and the generation of variation in material culture and the archaeological record. Journal of Anthropological Archaeology, 24, 316–334. doi: 10.1016/j.jaa.2005.08.001.CrossRefGoogle Scholar
  31. Fedotov, S., Moss, D., & Campos, D. (2008). Stochastic model for population migration and the growth of human settlements during the Neolithic transition. Phys Rev E Stat Nonlin Soft Matter Phys, 78(2), 26–107.CrossRefGoogle Scholar
  32. Fort, J. (2012). Synthesis between demic and cultural diffusion in the Neolithic transition in Europe. Proc Natl Acad Sci, 109(46), 18669–18673. doi: 10.1073/pnas.1200662109.CrossRefGoogle Scholar
  33. Fort, J., & Pérez-Losada, J. (2012). Front Speed of Language Replacement. Human Biology Open Access Pre-Prints. Paper 29.
  34. Fort, J., Pujol, T., & Cavalli-Sforza, L. L. (2004). Paleolithic population waves of advance. Cambridge Archaeological Journal, 14, 53–61.CrossRefGoogle Scholar
  35. Fort, J., Pérez-Losada, J., Suñol, J. J., Escoda, L., & Massaneda, J. M. (2008). Integro-difference equations for interacting species and the Neolithic transition. New J Phys, 10(4), 1–18. doi: 10.1088/1367-2630/10/4/043045.CrossRefGoogle Scholar
  36. Gamble, C., Davies, W., Pettitt, P., Hazelwood, L., & Richards, M. (2005). The archaeological and genetic foundations of the European population during the late glacial: Implications for “agricultural thinking. Cambridge Archaeological Journal, 15(2), 193–223.CrossRefGoogle Scholar
  37. Geel, B., van der Plicht, J., Kilian, M. R., Klaver, E. R., Kouwenberg, J. H. M., Ressen, H., Reynaud-Farrera, I., & Waterbolk, H. T. (1998). The sharp rise of d14C at ca. 800 cal. bc. Possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon, 40, 335–350.Google Scholar
  38. Gkiasta, M., Russell, T., Shennan, S., & Steele, J. (2003). Neolithic transition in Europe: the radiocarbon record revisited. Antiquity, 77, 45–62.Google Scholar
  39. Guidi, A. (2000). Preistoria della complessità sociale. Bari: Laterza.Google Scholar
  40. Hägerstrand, T. (1967). Innovation diffusion as a spatial process. Chicago: University of Chicago Press (1st English edition).Google Scholar
  41. Hamilton, M. J., & Buchanan, B. (2007). Spatial gradients in Clovis-age radiocarbon dates across North America suggest rapid colonization from the north. Proc Natl Acad Sci U S A, 104(40), 15625–15630. doi: 10.1073/pnas.0704215104.CrossRefGoogle Scholar
  42. Hamilton, M., Milne, B. T., Walker, R. S., Burger, O., & Brown, J. (2007). The complex structure of hunter–gatherer social networks. Proc R Soc B, 274(1622), 2195–2203. doi: 10.1098/rspb.2007.0564.CrossRefGoogle Scholar
  43. Hazelwood, L., & Steele, J. (2004). Spatial dynamics of human dispersals: constraints on modeling and archaeological validation. Journal of Archaeoogical Science, 31, 669–679. doi: 10.1016/j.jas.2003.11.009.CrossRefGoogle Scholar
  44. Henrich, J. (2001). Cultural transmission and the diffusion of innovations: adoption dynamics indicate that biased cultural transmission is the predominate force in behavioral change. American Anthropologist, 103(4), 992–1013.CrossRefGoogle Scholar
  45. Hinz, M., Feeser, I., Sjögren, K. G., & Müller, J. (2012). Demography and the intensity of cultural activities: an evaluation of Funnel Beaker Societies (4200–2800 cal bc). J Archaeol Sci, 39(10), 3331–3340. doi: 10.1016/j.jas.2012.05.028.CrossRefGoogle Scholar
  46. Hoffman, D.D., & Richards, W. (1984). Parts of recognition. Cognition, 18, 65–96. (
  47. Housley, R. A., Gamble, C. S., Street, M., et al. (1997). Radiocarbon evidence for the late glacial human recolonization of Northern Europe. Proceedings of the Prehistoric Society, 63, 25–54.CrossRefGoogle Scholar
  48. Isern, N., & Fort, J. (2010). Anisotropic dispersion, space competition and the slow-down of the Neolithic transition. New J Phys, 12, 123002. doi: 10.1088/1367-2630/12/12/123002.CrossRefGoogle Scholar
  49. Isern, N., & Fort, J. (2011). Cohabitation effect on the slowdown of the Neolithic expansion. EPL (Europhysics Letters), 96(5). DOI:  10.1209/0295-5075/96/58002.
  50. Kadushin, C. (2012). Understanding social networks: theories, concepts, and findings. New York: Oxford University Press.Google Scholar
  51. Kandler, A., & Steele, J. (2009). Innovation diffusion in time and space: effects of social information and of income inequality. Diffusion Fundamentals, 11(3), 1–17.Google Scholar
  52. Kimmig, W. (Ed.). (2000). Importe und Mediterrane Einflüsse auf der Heuneburg. Mainz: Zabern.Google Scholar
  53. Kristiansen, K. (1998). Europe before history. Cambridge: Cambridge University Press.Google Scholar
  54. Lemmen, C., & Wirtz, K.W. (2006). Socio-technological revolutions and migration waves re-examining early world history with a mathematical model. In D. Gronenborn & J. Petrasch (Eds.), The Spread of the Neolithic to Central Europe (pp. 25–38). RGZM Tagungen Volume 4 (1).Google Scholar
  55. López Cachero, F. J. (2008). Necrópolis de incineración y arquitectura funeraria en el noreste de la Península Ibérica durante el Bronce Final y la Primera Edad del Hierro. Complutum, 19(1), 139–171.Google Scholar
  56. Magny, M. (1993). Climatic contribution can provide an answer for prehistoric lake dwellings. Compte-Rendus Académie des Sciences Paris, 316, 1619–1625.Google Scholar
  57. Magny, M. (2004). Holocene climatic variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International, 113, 65–79. doi: 10.1016/S1040-6182(03)00080-6.CrossRefGoogle Scholar
  58. Magny, M., Billaud, Y., Bossuet, G., Gauthier, G., Marguet, A., Mouthon, J., Richard, H., & Vannière, B. (2007). Variations du climat pendant l'Age du Bronze au centre ouest de l'Europe: vers l'établissement d'une chronologie à haute rèsolution. In H. Richard, M. Magny, & C. Mordant (Eds.), Environnements et cultures à l'Age du Bronze en Europe occidentale (pp. 13–28). Paris: Editions CTHS.Google Scholar
  59. Magny, M., Peyron, O., Gauthier, E., Rouèche, Y., Bordon, A., Billaud, Y., Chapron, E., Marguet, A., Pétrequin, P., & Vannière, B. (2009). Quantitative reconstruction of climatic variations during the Bronze and early Iron ages based on pollen and lake-level data in the NW Alps, France. Quaternary International, 200(1), 102–110. doi: 10.1016/j.quaint.2008.03.011.CrossRefGoogle Scholar
  60. Mellars, P. (2006). A new radiocarbon revolution and the dispersal of modern humans in Europe. Nature, 439, 931–935. doi: 10.1038/nature04521.CrossRefGoogle Scholar
  61. Mitchell, A. (2009). The ESRI Guide to GIS Analysis (Vol. 2 Spatial measurements & Statistics). Redlands (CA): ESRI.Google Scholar
  62. Moosauer, M., & Bachmaier, T. (2000). Bernstorf-Die versunkene Stadt aus der Bronzezeit. Die befestigte Höhensiedlung der mittleren Bronzezeit bei Bernstorf (Gemeinde Kranzberg, Landkreis Freising). Stuttgart: Theiss.Google Scholar
  63. Müller-Karpe, H. (1959). Beiträge zur Chronologie der urnenfelderzeit nördlich und südlich der Alpen. Römisch-Germanisches Forschungen, 22. Berlin: Rö Ge Komm.Google Scholar
  64. Palmer, S. (1999). Vision Science: Photons to phenomenology. Cambridge, MA: The MIT Press.Google Scholar
  65. Pare, C. (2008). Archaeological periods and their purpose. In Construire le temps: histoire et méthodes des chronologies et calendriers des derniers millénaires avant notre ère en Europe occidentale, Actes du XXXe colloque international de Halma-Ipel (CNRS, Lille 3, MCC, 7–9 Décembre 2006), (pp. 69–84).Google Scholar
  66. Pinhasi, R., Fort, J., & Ammerman, A. J. (2005). Tracing the origin and spread of agriculture in Europe. PLoS Biol, 3(12), e410. doi: 10.1371/journal.pbio.0030410.CrossRefGoogle Scholar
  67. Plaza, S., Calafell, F., Helal, A., Bouzerna, N., Lefranc, G., Betranpetit, J., & Comas, D. (2003). Joining the Pillars of Hercules: mtDNA sequences show multidirectional gene flow in the Western Mediterranean. Ann Hum Genet, 67, 312–328.CrossRefGoogle Scholar
  68. Pons, E. (1989). The beginning of the first Iron Age in Catalonia, Spain, BAR International Series, 483, 112–136.Google Scholar
  69. Pons, E., Graells, R., Valldepèrez, M. (2010). La formación de las sociedades protourbanas en en NE de la Península Ibérica a partir de los contextos funerarios (1100–550 ANE cal.). In Proceeding of the XV Congress of the International Union for Prehistoric and Protohistoric Sciences (Lisbon, 4–9 September 2006), BAR International Series, 2124, pp. 47–60Google Scholar
  70. Rahmstorf, L. (2011). Re-integrating ‘Diffusion’: the spread of innovations among the Neolithic and Bronze Age Societies of Europe and the Near East. In T. Wilkinson, S. Sherratt & J. Bennet (Eds.). Interweaving worlds: systemic interactions in Eurasia, 7th to 1st millennia BC, International Conference, 1st–4th April 2008, Sheffield. Oxford: Oxbow. pp. 100–119Google Scholar
  71. Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.Google Scholar
  72. Rootsi, S., Magri, C., Kivisild, T., et al. (2004). Phylogeography of Y-chromosome haplogroup reveals distintc domains of prehistoric gene flow in Europe. The American Journal of Human Genetics, 75(1), 128–137.CrossRefGoogle Scholar
  73. Rychner, V., Bolliger Schreyer, S., Carazzetti, R., David-Elbiali, M., Hafner, A., Hochuli, S., Janke, R., Rageth, J., & Seifert, M. (1998). Geschichte und Kulturen der Bronzezeit in der Schweiz. In S. Hochuli, U. Niffeler, & V. Rychner (Eds.), Die Schweiz vom Paläolithikum bis zum frühen Mittelalter-Bronzezeit (pp. 103–133). Basel: Verlag Schweizerische Gesellschaft für Ur- und Frühgeschichte.Google Scholar
  74. Schauer, P. (1975). Beginn und Dauer der Urnenfelderkultur in Südfrankreich. Germania, 53, 47–63.Google Scholar
  75. Scholnick, J. B. (2012). The spatial and temporal diffusion of stylistic innovations in material culture. Advances in Complex Systems, 15(1–2). doi:  10.1142/S0219525911003244.
  76. Shennan, S. (2013). Demographic continuities and discontinuities in Neolithic Europe: evidence, methods and implications. Journal of Archaeological Method and Theory, 20(2), 300–311. doi: 10.1007/s10816-012-9154-3.CrossRefGoogle Scholar
  77. Shennan, S., & Edinborough, K. (2007). Prehistoric population history: from the Late Glacial to the late Neolithic in central and northern Europe. J Archaeol Sci, 34, 1339–1345. doi: 10.1016/j.jas.2006.10.031.CrossRefGoogle Scholar
  78. de Smith, M.J., Goodchild, M.F., & Longley, P.A, (2009). Geospatial Analysis: a Comprehensive Guide to Principles, Techniques and Software Tools. Troubador, Leicester, UK.Google Scholar
  79. Sonka, M., Hlavac, V., & Boykle, R. (1994). Image processing, analysis, and machine vision. London: Chapman and Hall.Google Scholar
  80. Sørensen, M.L.S., & Thomas, R. (Ed.) (1989). The Bronze Age–Iron Age transition in Europe: aspects of continuity and change in European Societies c. 1200–500 b . c ., BAR International Series, 483.Google Scholar
  81. Sperber, L. (1987). Untersuchungen zur Chronologie der Urnenfelderkultur im nördlichen Alpenvorland von der Schweiz bis Oberösterreich, Bonn: Antiquitas 3 (29).Google Scholar
  82. Steele, J. (2009). Human dispersals: mathematical models and the archaeological record. Hum Biol, 81(2–3), 121–140.CrossRefGoogle Scholar
  83. Steele, J. (2010). Radiocarbon dates as data: quantitative strategies for estimating colonization front speeds and event densities. J Archaeol Sci, 37(8), 2017–2030. doi: 10.1016/j.jas.2010.03.007.CrossRefGoogle Scholar
  84. Stein, M. L. (1999). Statistical Interpolation of spatial data: some theory for kriging. New York: Springer.CrossRefGoogle Scholar
  85. Surovell, T. A., & Brantingham, P. J. (2007). A note on the use of temporal frequency distributions in studies of prehistoric demography. Journal of Archaeological Scienc, 34, 1868–1877. doi: 10.1016/j.jas.2007.01.003.CrossRefGoogle Scholar
  86. Swindles, G. T., Plunkett, G., & Roe, H. M. (2007). A delayed climatic response to solar forcing at 2800 cal. bp: multiproxy evidence from three Irish peatlands. The Holocene, 17(2), 177–182. doi: 10.1177/0959683607075830.CrossRefGoogle Scholar
  87. Tinner, W., Lotter, A. F., Ammann, B., Conedera, M., Hubschmid, P., van Leeuwen, J. F., & Wehrli, M. (2003). Climatic change and contemporaneous land-use phases north and south of the Alps 2300 bc to 800 ad. Quaternary Science Reviews, 22(14), 1447–1460. doi: 10.1016/S0277-3791(03)00083-0.CrossRefGoogle Scholar
  88. Vagnetti, L. (2002). Ceramiche di tipo miceneo dal territorio veronese e dall'area padana. In A. Aspes (a cura di), Preistoria veronese: contributi e aggiornamenti (pp. 134–136). Memorie del Museo Civico di Storia Naturale di Verona, 2 serie, vol. V.Google Scholar
  89. van der Plicht, J., Van Geel, B., Bohncke, S. J. P., Bos, J. A. A., Blaauw, M., Speranza, A. O. M., Muscheler, R., & Björck, S. (2004). The Preboreal climate reversal and a subsequent solar‐forced climate shift. Journal of Quaternary Science, 19(3), 263–269. doi: 10.1002/jqs.835.CrossRefGoogle Scholar
  90. Varien, M. D., & Mills, B. J. (1997). Accumulations research: problems and prospects for estimating site occupation span. Journal of Archaeological Method and Theory, 4(2), 141–191. doi: 10.1007/BF02428057.CrossRefGoogle Scholar
  91. Williams, A. N. (2012). The use of summed radiocarbon probability distributions in archaeology: a review of methods. J Archaeol Sci, 39, 578–589. doi: 10.1016/j.jas.2011.07.014.CrossRefGoogle Scholar
  92. Zimmermann, A., Hilpert, J., & Wendt, K. P. (2009). Estimations of population density for selected periods between the Neolithic and ad 1800. Human biology, 81(2), 357–380.CrossRefGoogle Scholar
  93. Zolitschka, B., Behre, H. H., & Schneider, J. (2003). Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives—examples from the Bronze Age to the migration period, Germany. Quaternary Science Reviews, 22(1), 81–100. doi: 10.1016/S0277-3791(02)00182-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PrehistoryAutonomous University of Barcelona, Faculty of Philosophy and LettersBarcelonaSpain

Personalised recommendations