Journal of Archaeological Method and Theory

, Volume 21, Issue 4, pp 824–836 | Cite as

The Importance of Multiple 14C Dates from Significant Archaeological Contexts

Article

Abstract

Radiocarbon (14C) dates are the most important means for determining the age of Holocene archaeological deposits. The theoretical physical basis of this method is by now unassailable, having been consistently tested and refined over two generations. However, the means by which this method has been applied and the interpretation of these results remain as key issues, particularly for complex archaeological discoveries that substantially affect our understanding of world prehistory and social evolution. Many factors can produce uncertainty or variation in the 14C concentrations of samples, even those that have been selected from the same archaeological context or event. A number of recent studies have also addressed the ways in which ambiguities and irregularities in the 14C calibration curve can affect the interpretation of archaeological dates and temporal patterns. Of greatest concern, however, is a growing practice of using only one or two samples to date a significant prehistoric context or event. The date of these events, usually relative to other human activities, often holds important theoretical implications for evolutionary anthropology and related disciplines. In this article, we demonstrate that such a practice is rarely adequate or acceptable. Rather, proper procedure requires a suite of dates that permit statistical verification that the deposit or event itself is being correctly dated. We present a detailed case study that highlights the importance of analyzing multiple samples of 14C from significant archaeological contexts.

Keywords

AMS dating Radiocarbon calibration South America Lake Titicaca Basin Taraco 

References

  1. Abbott, M. B., Wolfe, B. B., Aravena, R., Wolfe, A. P., & Seltzer, G. O. (2000). Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Science Reviews, 19(17), 1801–1820.CrossRefGoogle Scholar
  2. Ahlstrom, R. V. N. and Smiley, F.E. (1998) Archaeological chronometry: Radiocarbon and tree-ring models and applications from Black Mesa, Arizona. Southern Illinois University Center for Archaeological Investigations Occasional Paper 16. Carbondale: Southern Illinois University.Google Scholar
  3. Bamforth, D. B., & Grund, B. (2012). Radiocarbon calibration curves, summed probability distributions, and early Paleoindian population trends in North America. Journal of Archaeological Science, 39(6), 1768–1774. doi:10.1016/j.jas.2012.01.017.CrossRefGoogle Scholar
  4. Bard, E. (1998). Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta, 62(12), 2025–2038.CrossRefGoogle Scholar
  5. Bard, E., Hamelin, B., Fairbanks, R. G., & Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345, 405–410.CrossRefGoogle Scholar
  6. Blackwell, P. G., Buck, C. E., & Reimer, P. J. (2006). Important features of the new radiocarbon calibration curves. Quaternary Science Reviews, 25, 408–413.CrossRefGoogle Scholar
  7. Brennan, R., & Quade, J. (1997). Reliable late-Pleistocene stratigraphic ages and shorter groundwater travel times from 14C in fossil snails from the southern Great Basin. Quaternary Research, 47(3), 329–336. doi:10.1006/qres.1997.1895.CrossRefGoogle Scholar
  8. Bronk Ramsey, C. (2009a). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.Google Scholar
  9. Bronk Ramsey, C. (2009b). Dealing with outliers and offsets in radiocarbon dating. Radiocarbon, 51(3), 1023–1045.Google Scholar
  10. Chávez, S., & Chávez, K. M. (1975). A carved stone stela from Taraco, Puno, Peru, and the definition of an early style of stone sculpture from the altiplano of Peru and Bolivia. Ñawpa Pacha, 13, 45–83.Google Scholar
  11. Cook, A. C., Hainsworth, L. J., Sorey, M. L., Evans, W. C., & Southon, J. R. (2001). Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: A long-term record of magmatic CO2 release. Chemical Geology, 177(1–2), 117–131.CrossRefGoogle Scholar
  12. Culleton, B. J., Kennett, D. J., Ingram, B. L., Erlandson, J. M., & Southon, J. R. (2006). Intrashell radiocarbon variability in marine mollusks. Radiocarbon, 48(3), 387–400.Google Scholar
  13. Dean, J. S. (1978). Independent dating in archaeological analysis. In M. B. Schiffer (Ed.), Advances in archaeological method and theory 1 (pp. 223–255). New York: Academic Press.Google Scholar
  14. Geyh, M. A. (2000). An overview of (14)C analysis in the study of groundwater. Radiocarbon, 42(1), 99–114.Google Scholar
  15. Geyh, M. A., & Schleicher, H. (1990). Absolute age determination: Physical and chemical dating methods and their application. Berlin: Springer.CrossRefGoogle Scholar
  16. Hertelendi, E. (1990). Sources of random error in the Debrecen Radiocarbon Laboratory. Radiocarbon, 32(3), 283–287.Google Scholar
  17. Keith, M. L., Anderson, G. M., & Eichler, R. (1964). Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta, 28, 1757–1786. doi:10.1016/0016-7037(64)90021-3.CrossRefGoogle Scholar
  18. Kidder, A., II (1943). Some early sites in the Northern Lake Titicaca Basin. Vol. 27, No. 1, Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University. Cambridge.Google Scholar
  19. Kra, R. (1986). Standardizing procedures for collecting, submitting, recording, and reporting radiocarbon samples. Radiocarbon, 28(2A), 765–775.Google Scholar
  20. Levine, A. R. (2012). Competition, cooperation, and the emergence of regional centers in the Northern Lake Titicaca Basin, Peru. Ph.D. dissertation, University of California, Los AngelesGoogle Scholar
  21. Levy, T. E., Higham, T., Bronk Ramsey, C., Smith, N. G., Ben-Yosef, E., Robinson, M., et al. (2008). High-precision radiocarbon dating and historical biblical archaeology in southern Jordan. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16460–16465. doi:10.1073/pnas.0804950105.CrossRefGoogle Scholar
  22. Libby, W. F. (1952). Radiocarbon dating. Chicago: University of Chicago Press.Google Scholar
  23. Libby, W. F. (1955). Radiocarbon dating. Chicago: University of Chicago Press.Google Scholar
  24. Lumbreras, L. G., & Amat, H. Secuencia arqueológica del Altiplano occidental del Titicaca. In XXXVII Congreso Internacional de Americanistas, Actas y Memorias, Buenos Aires, 1968 (Vol. 2, pp. 75–106)Google Scholar
  25. Mangerud, J. (1972). Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway. Boreas, 1(2), 143–172.CrossRefGoogle Scholar
  26. Manning, S. W. (2006–2007). Why radiocarbon dating 1200 BCE is difficult: a sidelight on dating the end of the Late Bronze Age and the contrarian contribution. Scripta Mediterranea, 27, 53–80.Google Scholar
  27. Marcus, J. (2008). The archaeological evidence for social evolution. Annual Review of Anthropology, 37, 251–266. doi:10.1146/Annurev.Anthro.37.081407.085246.CrossRefGoogle Scholar
  28. Marcus, J., & Flannery, V. K. (2000). Cultural evolution in Oaxaca: The origins of the Zapotec and Mixtec civilizations. In W. R. E. Adams & J. M. MacLeod (Eds.), Mesoamerica. Cambridge: Cambridge University Press.Google Scholar
  29. Marcus, J., & Flannery, K. V. (2004). The coevolution of ritual and society: New 14C dates from ancient Mexico. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18257–18261. doi:10.1073/pnas.0408551102.CrossRefGoogle Scholar
  30. Martin, C. W., & Johnson, W. C. (1995). Variation in radiocarbon ages of soil organic matter fractions from Late Quaternary buried soils. Quaternary Research, 43(2), 232–237. doi:10.1006/qres.1995.1023.CrossRefGoogle Scholar
  31. McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G., & Reimer, P. J. (2004). SHCal04 Southern hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon, 46(3), 1087–1092.Google Scholar
  32. Moore, T. C., Jr., Rea, D. K., & Godsey, H. (1998). Regional variation in modern radiocarbon ages and the hard-water effects in Lakes Michigan and Huron. Journal of Paleolimnology, 20, 347–351.CrossRefGoogle Scholar
  33. Mujica, E. (1978). Nueva hipotesis sobre el desarrollo temprano del altiplano del Titicaca y de sus áreas de interracción. Arte y Arqueología, 5–6, 285–308.Google Scholar
  34. Neira Avendaño, M. (1962). Informe preliminar de la expedición arqueológica al Altiplano. In Kontisuyo: Boletín del Museo de Arqueología e Historia (pp. 72–80). Arequipa.Google Scholar
  35. O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553–567. doi:10.1016/0031-9422(81)85134-5.CrossRefGoogle Scholar
  36. Olsson, I. U. (1992). 14C activity in different sections and chemical fractions of oak tree rings, AD 1938–1981. Radiocarbon, 34(3), 757–767.Google Scholar
  37. Olsson, I. U., & Osadebe, F. A. N. (1974). Carbon isotope variations and fractionation corrections in 14C dating. Boreas, 3(4), 139–146.CrossRefGoogle Scholar
  38. Plourde, A. M. (2006). Prestige goods are their role in the evolution of social ranking: A costly signaling model with data from the Formative Period of the Northern Lake Titicaca Basin, Peru. Ph.D. Dissertation, University of California, Los AngelesGoogle Scholar
  39. Reimer, P. J., Baillie, M. G. L., Bard, E., et al. (2009). Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years Cal BP. Radiocarbon, 51(4), 1111–1150.Google Scholar
  40. Rick, T. C., Vellanoweth, R. L., & Erlandson, J. M. (2005). Radiocarbon dating and the "old shell" problem: Direct dating of artifacts and cultural chronologies in coastal and other aquatic regions. Journal of Archaeological Science, 32(11), 1641–1648. doi:10.1016/j.jas.2005.05.005.CrossRefGoogle Scholar
  41. Riggs, A. C. (1984). Major carbon-14 deficiency in modern snail shells from southern Nevada Springs. Science, 224(4644), 58–61.CrossRefGoogle Scholar
  42. Rowe, J. H. (1942). Sitios históricos en la región de Pucará, Puno. Revista del Instituto Arqueológico, Cuzco, 6(10, 11), 66–75.Google Scholar
  43. Schiffer, M. B. (1986). Radiocarbon dating and the "old wood" problem: The case of the Hohokam chronology. Journal of Archaeological Science, 13(1), 13–30. doi:10.1016/0305-4403(86)90024-5.CrossRefGoogle Scholar
  44. Shennan, S., & Edinborough, K. (2007). Prehistoric population history: From the late glacial to the late neolithic in central and northern Europe. Journal of Archaeological Science, 34(8), 1339–1345.CrossRefGoogle Scholar
  45. Spencer, C. S. (1998). A mathematical model of primary state formation. Cultural Dynamics, 10(1), 5–20. doi:10.1177/092137409801000101.CrossRefGoogle Scholar
  46. Spencer, C. S., & Redmond, E. M. (2001). The chronology of conquest: implications of new radiocarbon analyses from the Cañada de Cuicatlán, Oaxaca. Latin American Antiquity, 12(2), 182–201.CrossRefGoogle Scholar
  47. Stanish, C. (2003). Ancient Titicaca: The evolution of complex society in Southern Peru and Northern Bolivia. Berkeley: University of California Press.CrossRefGoogle Scholar
  48. Stanish, C., & Levine, A. (2011). War and early state formation in the northern Titicaca Basin, Peru. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 13901–13906. doi:10.1073/pnas.1110176108.CrossRefGoogle Scholar
  49. Stanish, C., & Umire, A. (2004). Prospección arqueológica del sector bajo de la cuenca del Ramis (Ríos Azángaro y Ramis), Puno. Informe Final. Lima: Instituto Nacional de Cultura.Google Scholar
  50. Stuiver, M., & Suess, H. E. (1966). On the relationship between radiocarbon dates and true sample ages. Radiocarbon, 8, 534–540.Google Scholar
  51. Stuiver, M., Reimer, P. J., Bard, et al. (1998). INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon, 40, 1041–1083.Google Scholar
  52. Taylor, R. E. (1978). Radiocarbon dating: an archaeological perspective. In G. F. Carter (Ed.), Archaeological chemistry-II (vol. 171, pp. 33–69). Washington, DC: American Chemical Society.Google Scholar
  53. Taylor, R. E. (1987). Radiocarbon dating: An archaeological perspective. Orlando: Academic Press.Google Scholar
  54. Taylor, R. E. (1996). Radiocarbon dating: The continuing revolution. Evolutionary Anthropology, 4(5), 169–181.CrossRefGoogle Scholar
  55. Taylor, R. E. (1997). Radiocarbon dating. In R. E. Taylor & M. J. Aitken (Eds.), Chronometric dating in archaeology (pp. 65–91). New York: Plenum Press.CrossRefGoogle Scholar
  56. Taylor, R. E. (2000a). The contribution of radiocarbon dating to New World archaeology. Radiocarbon, 42(1), 1–21.Google Scholar
  57. Taylor, R. E. (2000b). Fifty years of radiocarbon dating. American Scientist, 88(1), 60–67.CrossRefGoogle Scholar
  58. Taylor, R. E., Long, A., & Kra, R. S. (1992). Radiocarbon after four decades: An interdisciplinary perspective. New York: Springer.CrossRefGoogle Scholar
  59. Tschopik, M. H. (1946). Some notes on the archaeology of the Department of Puno (Vol. 27, No. 3, Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University). Cambridge.Google Scholar
  60. Ward, G. K., & Wilson, S. R. (1978). Procedures for comparing and combining radiocarbon age determinations: A critique. Archaeometry, 20(1), 19–31.CrossRefGoogle Scholar
  61. Whitehead, W. T. (2007). Radiocarbon dating. In M. S. Bandy & C. A. Hastorf (Eds.), Kala Uyuni: An early political center in the Southern Lake Titicaca Basin (pp. 13–17). Berkeley: Archaeological Research Facility, University of California, Berkeley.Google Scholar
  62. Windes, T. C., & Ford, D. (1996). The Chaco wood project: The chronometric reappraisal of Pueblo Bonito. American Antiquity, 61(2), 295–310.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Cotsen Institute of ArchaeologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations