Journal of Archaeological Method and Theory

, Volume 21, Issue 3, pp 616–668 | Cite as

Microarchaeological Approaches to the Identification and Interpretation of Combustion Features in Prehistoric Archaeological Sites

  • Susan M. Mentzer


Combustion features inform archaeologists about the prehistoric use of space, subsistence behaviors, and tempo of site visitation. Their study in the field is difficult because burned sediments are susceptible to reworking and diagenesis. Microarchaeological analyses, including micromorphology, are essential for documenting the composition, preservation, and function of hearths and other burned residues. These investigations focus on the description of fuels, depositional fabrics and structures, and mineralogy. As evidenced by a literature review, microarchaeological analyses have much to offer Paleolithic archaeologists, while applications of the techniques to Late Pleistocene and Early Holocene sites and in ethnographic or experimental contexts are presently rare.


Hearth Micromorphology Ashes Charcoal Controlled use of fire 



The author is grateful to J. Quade, M. Stiner, P. Goldberg, and S. Kuhn for providing comments on earlier versions of this manuscript. Funding for research and a portion of the writing was provided, in part, by the PEO Foundation and the University of Arizona School of Anthropology Emil Haury Dissertation Improvement Grant. Support for micromorphological analyses and access to collections cited in this paper were provided by the Asıklı Höyük project funded by NSF grant no. BCS-0912148 to M. Stiner; the Mt. Lykaion Excavation and Survey Project, funded by donations from Nicholas and Athena Karabots, the Karabots Foundation and Annette Merle-Smith; the excavations at Pech de l’Azé IV funded by an NSF grant to H. Dibble, samples collected by P. Goldberg; the La Quina project, funded by an NSF grant to A. Jelinek, samples collected by T.D. Young; the excavations at Üçağızlı Caves I and II, funded by NSF grant nos. SBR-9804722, BCS-0106433, and BCS-0410654 and a Leakey Foundation Grant, samples collected by P. Goldberg. The author would also like to thank T. Manne and C. Miller for their insights on the topic and contributions to experimental combustion research and the three reviewers for their thoughtful comments and suggestions.


  1. Adler, D. S., Prindiville, T. J., & Conard, N. J. (2003). Patterns of spatial organization and land use during the Eemian Interglacial in the Rhineland: New data from Wallertheim, Germany. Eurasian Prehistory, 1(2), 25–78.Google Scholar
  2. Aitken, M. J. (1978). Archaeological involvements of physics. Physics Reports, 40(5), 277–351.Google Scholar
  3. Aitken, M. J. (1985). Thermoluminescence dating. London: Academic.Google Scholar
  4. Aitken, M. J. (1998). An introduction to optical dating. Oxford: Oxford University Press.Google Scholar
  5. Akazawa, T., & Sakaguchi, Y. (1987). Paleolithic site of Douara Cave and paleogeography of Palmyra Basin in Syria, part IV: 1984 excavations. Tokyo: The University of Tokyo.Google Scholar
  6. Albert, R. M., & Weiner, S. (2001). Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in earth sciences and human history (pp. 251–266). Lisse: Swets and Zeitlinger.Google Scholar
  7. Albert, R. M., Lavi, O., Estroff, L., Weiner, S., Tsatskin, A., Ronen, A., et al. (1999). Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian Period: A study of the sediments and phytoliths. Journal of Archaeological Science, 26(10), 1249–1260.Google Scholar
  8. Albert, R. M., Weiner, S., Bar Yosef, O., & Meignen, L. (2000). Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt. Carmel, Israel: Study of the plant materials used for fuel and other purposes. Journal of Archaeological Science, 27(10), 931–947.Google Scholar
  9. Albert, R. M., Berna, F., & Goldberg, P. (2012). Insights on Neanderthal fire use at Kebara Cave (Israel) through high resolution study of prehistoric combustion features: Evidence from phytoliths and thin sections. Quaternary International, 247, 278–293.Google Scholar
  10. Alperson-Afil, N., Sharon, G., Kislev, M., Melamed, Y., Zohar, I., Ashkenazi, S., et al. (2009). Spatial organization of hominin activities at Gesher Benot Ya’aqov, Israel. Science, 326(5960), 1677–1680.Google Scholar
  11. Angelucci, D. E. (2003). Geoarchaeology and micromorphology of Abric de la Cativera (Catalonia, Spain). Catena, 54(3), 573–601.Google Scholar
  12. Araujo, A. G. M., Feathers, J. K., Arroyo-Kalin, M., & Tizuka, M. M. (2008). Lapa das Boleiras rockshelter: Stratigraphy and formation processes at a Paleoamerican site in Central Brazil. Journal of Archaeological Science, 35(12), 3186–3202.Google Scholar
  13. Arpin, T. L., Mallol, C., & Goldberg, P. (2002). Short contribution: A new method of analyzing and documenting micromorphological thin sections using flatbed scanners: Applications in geoarchaeological studies. Geoarchaeology-An International Journal, 17(3), 305–313.Google Scholar
  14. Asouti, E. (2003). Woodland vegetation and fuel exploitation at the prehistoric campsite of Pınarbaşı, south-central Anatolia, Turkey: The evidence from the wood charcoal macro-remains. Journal of Archaeological Science, 30, 1185–1201.Google Scholar
  15. Audouze, F., & Enloe, J. G. (1997). High resolution archaeology at Verberie: Limits and interpretations. World Archaeology, 29(2), 195–207.Google Scholar
  16. Balbo, A. L., Madella, M., Vila, A., & Estévez, J. (2010). Micromorphological perspectives on the stratigraphical excavation of shell middens: A first approximation from the ethnohistorical site Tunel VII, Tierra del Fuego (Argentina). Journal of Archaeological Science, 37, 1252–1259.Google Scholar
  17. Barkai, R., Gopher, A., Lauritzen, S. E., & Frumkin, A. (2003). Uranium series dates from Qesem Cave, Israel, and the end of the Lower Palaeolithic. Nature, 423(6943), 977–979.Google Scholar
  18. Bar-Yosef, O., Vandermeersch, B., Arensburg, B., Belfer-Cohen, A., Goldberg, P., Laville, H., et al. (1992). The excavations in Kebara Cave, Mount Carmel. Current Anthropology, 33(5), 497–550.Google Scholar
  19. Berna, F., & Goldberg, P. (2008). Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Israel Journal of Earth Science, 56, 107–121.Google Scholar
  20. Berna, F., Matthews, A., & Weiner, S. (2004). Solubilities of bone mineral from archaeological sites: The recrystallization window. Journal of Archaeological Science, 31(7), 867–882.Google Scholar
  21. Berna, F., Behar, A., Shahack-Gross, R., Berg, J., Boaretto, E., Gilboa, A., et al. (2007). Sediments exposed to high temperatures: Reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). Journal of Archaeological Science, 34(3), 358–373.Google Scholar
  22. Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., et al. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences, 109, E1215–E1220.Google Scholar
  23. Binford, L. R. (1978). Dimensional analysis of behavior and site structure: Learning from an Eskimo hunting stand. American Antiquity, 43(3), 330–361.Google Scholar
  24. Bird, M. I., Fifield, L. K., Santos, G. M., Beaumont, P. B., Zhou, Y., di Tada, M. L., et al. (2003). Radiocarbon dating from 40 to 60 ka BP at Border Cave, South Africa. Quaternary Science Reviews, 22(8–9), 943–947.Google Scholar
  25. Boardman, S., & Jones, G. (1990). Experiments on the effects of charring on cereal plant components. Journal of Archaeological Science, 17, 1–11.Google Scholar
  26. Boschian, G. (1997). Sedimentology and soil micromorphology of the late Pleistocene and early Holocene deposits of Grotta dell’Edera (Trieste Karst, NE Italy). Geoarchaeology, 12(3), 227–249.Google Scholar
  27. Braadbaart, F., & Poole, I. (2008). Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. Journal of Archaeological Science, 35(9), 2434–2445.Google Scholar
  28. Brochier, J. É., & Thinon, M. (2003). Calcite crystals, starch grains aggregates or…POCC? Comment on ‘calcite crystals inside archaeological plant tissues’. Journal of Archaeological Science, 30(9), 1211–1214.Google Scholar
  29. Cabanes, D., Mallol, C., Expósito, I., & Baena, J. (2010). Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). Journal of Archaeological Science, 37(11), 2947–2957.Google Scholar
  30. Canti, M. G. (2003). Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena, 54(3), 339–361.Google Scholar
  31. Canti, M. G., & Linford, N. (2000). The effects of fire on archaeological soils and sediments: Temperature and colour relationships. Proceedings of the Prehistoric Society, 66, 385–395.Google Scholar
  32. Carmody, R. N., & Wrangham, R. W. (2009). The energetic significance of cooking. Journal of Human Evolution, 57(4), 379–391.Google Scholar
  33. Chu, V., Regev, L., Weiner, S., & Boaretto, E. (2008). Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. Journal of Archaeological Science, 35(4), 905–911.Google Scholar
  34. Clark, J. L., & Ligouis, B. (2010). Burned bone in the Howieson’s Poort and post-Howieson’s Poort Middle Stone Age deposits at Sibudu (South Africa): Behavioral and taphonomic implications. Journal of Archaeological Science, 37(10), 2650–2661.Google Scholar
  35. Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G., & Weiner, S. (2006). Modern and fossil charcoal: Aspects of structure and diagenesis. Journal of Archaeological Science, 33(3), 428–439.Google Scholar
  36. Conard, N. J., Prindiville, T. J., & Adler, D. S. (1998). Refitting bones and stones as a means of reconstructing Middle Paleolithic subsistence in the Rhineland. In J. P. Brugal, L. Meignen, & M. Patou-Mathis (Eds.), Economie Préhistorique: Les Comportements de Subsistence au Paleolithique, Editions APDCA (pp. 273–290). Antibes: Sophia Antipolis.Google Scholar
  37. Costamagno, S., Théry-Parisot, I., Brugal, J. P., & Guilbert, R. (2005). Taphonomic consequences of the use of bones as fuel. Experimental data and archaeological applications. In T. O’Conner (Ed.), Biosphere to lithosphere: New studies in vertebrate taphonomy (pp. 51–62). London: Oxbow Books.Google Scholar
  38. Costamagno, S., Théry-Parisot, I., Brugal, J. P., & Guilbert, R. (2009). Combustible ou non? Analyse multifactorielle et modèles explicatifs sur des ossements brûlées paléolithiques. In I. Théry-Parisot, S. Costamagno, & A. Henry (Eds.), Gestion des Combustibles au Paléolithique et au Mésolithique: Nouveaux Outils, Nouvelles Interpretations (pp. 65–84). Oxford: Archaeopress.Google Scholar
  39. Courty, M. A., Goldberg, P., & Macphail, R. I. (1989). Soils and micromorphology in archaeology. Cambridge: Cambridge University Press.Google Scholar
  40. Courty, M.-A., Carbonell, E., Vallverdú Poch, J., & Banerjee, R. (2010). Microstratigraphic and multi-analytical evidence for advanced Neanderthal pyrotechnology at Abric Romani (Capellades, Spain). Quaternary International. doi: 10.1016/j.quaint.2010.10.031.
  41. Crawford, H. (1981). Some fire installations from Abu Salabikh, Iraq (Dedicated to the memory of Margaret Munn-Rankin). Paléorient, 7(2), 105–114.Google Scholar
  42. Dibble, H. L., Chase, P. G., Shannon, P. M., & Tuffreau, A. (1997). Testing the reality of a “living floor” with archaeological data. American Antiquity, 62(4), 629–651.Google Scholar
  43. Dibble, H., Berna, F., Goldberg, P., McPherron, S. J. P., Mentzer, S., Niven, L., et al. (2009). A preliminary report on Pech de l’Azé IV, Layer 8 (Middle Paleolithic, France). PaleoAnthropology, 2009, 182–219.Google Scholar
  44. Dreimanis, A. (1962). Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus. Journal of Sedimentary Petrology, 32(3), 520–529.Google Scholar
  45. Drever, J. I. (1997). The geochemistry of natural waters: Surface and groundwater environments. Upper Saddle River: Prentice Hall.Google Scholar
  46. Elbaum, R., Weiner, S., Albert, R. M., & Elbaum, M. (2003). Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. Journal of Archaeological Science, 30(2), 217–226.Google Scholar
  47. Elefanti, P., Panagopoulou, E., & Karkanas, P. (2008). The transition from the Middle to the Upper Paleolithic in the southern Balkans: The evidence from the Lakonis I Cave, Greece. Eurasian Prehistory, 5(2), 85–95.Google Scholar
  48. Eliyahu-Behar, A., Regev, L., Shilstein, S., Weiner, S., Shalev, Y., Sharon, I., et al. (2009). Identifying a Roman casting pit at Tel Dor, Israel: Integrating field and laboratory research. Journal of Field Archaeology, 34(2), 135–151.Google Scholar
  49. Etiégni, L., & Campbell, A. G. (1991). Physical and chemical characteristics of wood ash. Bioresource Technology, 37(2), 173–178.Google Scholar
  50. Folk, R. L., & Hoops, G. K. (1982). An Early Iron-Age layer of glass made from plants at Tel Yin’am, Israel. Journal of Field Archaeology, 9(4), 455–466.Google Scholar
  51. Gale, R., & Carruthers, W. (2000). Charcoal and charred seed remains from Middle Palaeolithic levels at Gorham’s and Vanguard Caves. In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge. Oxford: Oxbow Books.Google Scholar
  52. Godino, I. B., Álvarez, M., Balbo, A., Zurro, D., Madella, M., Villagrán, X., et al. (2011). Towards high-resolution shell midden archaeology: Experimental and ethnoarchaeology in Tierra del Fuego (Argentina). Quaternary International, 239(1–2), 125–134.Google Scholar
  53. Goldberg, P. (1979). Micro-morphology of Pech de L’Azé II sediments. Journal of Archaeological Science, 6(1), 17–47.Google Scholar
  54. Goldberg, P. (2000). Micromorphology and site formation at Die Kelders Cave I, South Africa. Journal of Human Evolution, 38(1), 43–90.Google Scholar
  55. Goldberg, P. (2001). Some micromorphological aspects of prehistoric cave deposits. Cahiers de Archéologie du CELAT, 10(Série archéometrie No. 1), 161–175.Google Scholar
  56. Goldberg, P. (2003). Some observations on Middle and Upper Paleolithic ashy cave and rockshelter deposits in the Near East. In A. N. Goring-Morris & A. Belfer-Cohen (Eds.), More than meets the eye: Studies on Upper Palaeolithic diversity in the Near East (pp. 19–32). Oxford: Oxbow Books.Google Scholar
  57. Goldberg, P., & Bar-Yosef, O. (1998). Site formation processes in Kebara and Hayonim caves and their significance in Levantine prehistoric caves. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 107–125). New York: Plenum.Google Scholar
  58. Goldberg, P., & Berna, F. (2010). Micromorphology and context. Quaternary International, 214(1–2), 56–62.Google Scholar
  59. Goldberg, P., & Sherwood, S. C. (2006). Deciphering human prehistory through the geoarcheological study of cave sediments. Evolutionary Anthropology: Issues, News, and Reviews, 15(1), 20–36.Google Scholar
  60. Goldberg, P., Lev-Yadun, S., & Bar-Yosef, O. (1994). Petrographic thin section of archaeological sediments: A new method for paleobotanical studies. Geoarchaeology, 9(3), 243–257.Google Scholar
  61. Goldberg, P., Weiner, S., Bar-Yosef, O., Xu, Q., & Liu, J. (2001). Site formation processes at Zhoukoudian, China. Journal of Human Evolution, 41(5), 483–530.Google Scholar
  62. Goldberg, P., Schiegl, S., Meligne, K., Dayton, C., & Conard, N. J. (2003). Micromorphology and site formation at Hohle Fels Cave, Swabian Jura, Germany. Eiszeitalter Gegenwart, 53, 1–25.Google Scholar
  63. Goldberg, P., Miller, C., Schiegl, S., Ligouis, B., Berna, F., Conard, N., et al. (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences, 1(2), 95–122.Google Scholar
  64. Goldberg, P., Dibble, H., Berna, F., Sandgathe, D., McPherron, S. J. P., & Turq, A. (2012). New evidence on Neandertal use of fire: Examples from Roc de Marsal and Pech de l’Azé IV. Quaternary International, 247, 325–340.Google Scholar
  65. Goren-Inbar, N., Alperson, N., Kislev, M. E., Simchoni, O., Melamed, Y., Ben-Nun, A., et al. (2004). Evidence of hominin control of fire at Gesher Benot Ya’aqov, Israel. Science, 304(5671), 725–727.Google Scholar
  66. Grigor’ev, G. P. (1993). The Kostenki-Avdeevo archaeological culture and the Villendorf-Pavlov-Kostenki-Avdeevo cultural unity. In O. Soffer & N. D. Praslov (Eds.), From Kostenki to Clovis: Upper Paleolithic and Paleo-Indian adaptations (pp. 51–66). New York: Plenum.Google Scholar
  67. Herries, A. I. R. (2009). New approaches for integrating palaeomagnetic and mineral magnetic methods to answer archaeological and geological questions on Stone Age sites. In A. Fairbairn, S. O’Conner, & B. Marwick (Eds.), Terra Australis 28—New directions in archaeological science (pp. 235–253). Canberra: Australia National University Press.Google Scholar
  68. Herries, A. I. R., & Fisher, E. C. (2011). Multidimensional GIS modeling of magnetic mineralogy as a proxy for fire use and spatial patterning: Evidence from the Middle Stone Age bearing sea cave of Pinnacle Point 13B (Western Cape, South Africa). Journal of Human Evolution, 59(3–4), 306–320.Google Scholar
  69. Herries, A. I. R., Kovacheva, M., Kostadinova, M., & Shaw, J. (2007). Archaeo-directional and -intensity data from burnt structures at the Thracian site of Halka Bunar (Bulgaria): The effect of magnetic mineralogy, temperature and atmosphere of heating in antiquity. Physics of the Earth and Planetary Interiors, 162(3–4), 199–216.Google Scholar
  70. Hiller, J. C., Thompson, T. J. U., Evison, M. P., Chamberlain, A. T., & Wess, T. J. (2003). Bone mineral change during experimental heating: An X-ray scattering investigation. Biomaterials, 24(28), 5091–5097.Google Scholar
  71. Homsey, L. K., & Capo, R. C. (2006). Integrating geochemistry and micromorphology to interpret feature use at Dust Cave, a Paleo-Indian through Middle-Archaic site in northwest Alabama. Geoarchaeology, 21(3), 237–269.Google Scholar
  72. Homsey, L. K., & Sherwood, S. C. (2010). Interpretation of prepared clay surfaces at Dust Cave, Alabama. Ethnoarchaeology, 2(1), 73–98.Google Scholar
  73. James, S. R., Dennell, R. W., Gilbert, A. S., Lewis, H. T., Gowlett, J. A. J., Lynch, T. F., et al. (1989). Hominid use of fire in the Lower and Middle Pleistocene: A review of the evidence [and comments and replies]. Current Anthropology, 30(1), 1–26.Google Scholar
  74. Karkanas, P. (2001). Site formation processes in Theopetra Cave: A record of climatic change during the Late Pleistocene and Early Holocene in Thessaly, Greece. Geoarchaeology, 16(4), 373–399.Google Scholar
  75. Karkanas, P. (2002). Micromorphological studies of Greek prehistoric sites: New insights in the interpretation of the archaeological record. Geoarchaeology, 17(3), 237–259.Google Scholar
  76. Karkanas, P. (2007). Identification of lime plaster in prehistory using petrographic methods: A review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology, 22(7), 775–796.Google Scholar
  77. Karkanas, P. (2010). Geology, stratigraphy and site formation processes in the Upper Paleolithic and later sequence in Kissoura Cave 1. Eurasian Prehistory, 7(2), 15–36.Google Scholar
  78. Karkanas, P., & Goldberg, P. (2010). Site formation processes at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa): Resolving stratigraphic and depositional complexities with micromorphology. Journal of Human Evolution, 59(3–4), 256–273.Google Scholar
  79. Karkanas, P., Kyparissi-Apostolika, N., Bar-Yosef, O., & Weiner, S. (1999). Mineral assemblages in Theopetra, Greece: A framework for understanding diagenesis in a prehistoric cave. Journal of Archaeological Science, 26(9), 1171–1180.Google Scholar
  80. Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27(10), 915–929.Google Scholar
  81. Karkanas, P., Rigaud, J.-P., Simek, J. F., Albert, R. M., & Weiner, S. (2002). Ash, bones and guano: A study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. Journal of Archaeological Science, 29(7), 721–732.Google Scholar
  82. Karkanas, P., Koumouzelis, M., Kozlowski, J. K., Sitlivy, V., Sobczyk, K., Berna, F., et al. (2004). The earliest evidence for clay hearths: Aurignacian features in Klisoura Cave 1, southern Greece. Antiquity, 78(301), 513–525.Google Scholar
  83. Karkanas, P., Shahack-Gross, R., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., et al. (2007). Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-formation processes at Qesem Cave, Israel. Journal of Human Evolution, 53(2), 197–212.Google Scholar
  84. Kedrowski, B. L., Crass, B. A., Behm, J. A., Luetke, J. C., Nichols, A. L., Moreck, A. M., et al. (2009). GC/MS analysis of fatty acids from ancient hearth residues at the Swan Point archaeological site. Archaeometry, 51(1), 110–122.Google Scholar
  85. Kourampas, N., Simpson, I. A., Perera, N., Deraniyagala, S. U., & Wijeyapala, W. H. (2009). Rockshelter sedimentation in a dynamic tropical landscape: Late Pleistocene–Early Holocene archaeological deposits in Kitulgala Beli-lena, Southwestern Sri Lanka. Geoarchaeology, 24(6), 677–714.Google Scholar
  86. Lanting, J. N., Aerts-Bijma, A. T., & Van der Plicht, J. (2001). Dating of cremated bones. Radiocarbon, 43(2A), 249–254.Google Scholar
  87. Latham, A. G., & Herries, A. I. R. (2004). The formation and sedimentary infilling of the Cave of Hearths and Historic Cave complex, Makapansgat, South Africa. Geoarchaeology, 19(4), 323–342.Google Scholar
  88. Ligouis, B. (2006). Jais, lignite, charbon et autres matières organiques fossiles: Application de la pétrologie organique à la’étude des élements de parure et des fragments bruts. In J. Bullinger, D. Leesch, & N. Plumettaz (Eds.), Le site magdalénian de Monruz, 1. Premiers éléments pour l’analyse d’un habitat de plein air (pp. 197–216). Neuchâtel: Service et Musée Cantonal d’Archéologie.Google Scholar
  89. Macphail, R., & Crowther, I. (2007). Soil micromorphology, chemistry and magnetic susceptibility studies at Huizui (Yilou region, Henan province, northern China), with special focus on a typical Yangshao floor sequence. Indo-Pacific Prehistory Association Bulletin, 27, 103–113.Google Scholar
  90. Macphail, R., & Goldberg, P. (2000). Geoarchaeological investigations of sediments from Gorham’s and Vanguard Caves, Gibralter: Microstrigraphical (soil micromorphological and chemical) signatures. In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge (pp. 183–200). Oxford: Oxbow Books.Google Scholar
  91. Madella, M., Jones, M. K., Goldberg, P., Goren, Y., & Hovers, E. (2002). The exploitation of plant resources by Neanderthals in Amud Cave (Israel): The evidence from phytolith studies. Journal of Archaeological Science, 29(7), 703–719.Google Scholar
  92. Mallol, C., Marlowe, F. W., Wood, B. M., & Porter, C. C. (2007). Earth, wind, and fire: Ethnoarchaeological signals of Hadza fires. Journal of Archaeological Science, 34(12), 2035–2052.Google Scholar
  93. Mallol, C., Mentzer, S. M., & Wrinn, P. J. (2009). A micromorphological and mineralogical study of site formation processes at the late Pleistocene site of Obi-Rakhmat, Uzbekistan. Geoarchaeology, 24(5), 548–575.Google Scholar
  94. Mallol, C., Cabanes, D., & Baena, J. (2010). Microstratigraphy and diagenesis at the upper Pleistocene site of Esquilleu Cave (Cantabria, Spain). Quaternary International, 214(1–2), 70–81.Google Scholar
  95. March, R. J., Baldessari, A., Ferreri, J. C., Grande, A., Gros, E. G., Morello, O., et al. (1989). Étude des structures de combustion archéologiques d’Argentine. Bulletin de la Société Préhistorique Française, 86(10/12), 384–392.Google Scholar
  96. March, R. J., Ferreri, J. C., & Guez, C. (1993). Etude des foyers préhistoriques des gisements Magdaleniens du Bassin Parisien. L’approche experimentale. Memoires du Groupement Archeologique de Seine-et-Marne, 1, 87–95.Google Scholar
  97. March, R. J., Muhieddine, M., & Canot, É. (2010). Simulation 3D des structures de combustion préhistoriques. In R. Vernieux & C. Delevoie (Eds.), Actes du Colloque Virtual Retrospect 2009 (pp. 19–29). Bordeaux: Editions Ausonius.Google Scholar
  98. Matthews, W. (2010). Geoarchaeology and taphonomy of plant remains and microarchaeological residues in early urban environments in the Ancient Near East. Quaternary International, 214(1–2), 98–113.Google Scholar
  99. Meignen, L., Bar-Yosef, O., & Goldberg, P. (1989). Les structures de combustion moustériennes de la grotte de Kébara (Mont Carmel, Israël). In M. Olive & Y. Taborin (Eds.), Nature et fonctions des foyers prehistoriques (pp. 141–146). Nemours: APRAIF.Google Scholar
  100. Meignen, L., Bar Yosef, O., Goldberg, P., & Weiner, S. (2001). Le feu au Paléolithique moyen: recherches sur les structures de combustion et le statut des foyers. Paleorient, 26(2), 9–22.Google Scholar
  101. Meignen, L., Goldberg, P., & Bar Yosef, O. (2007). The hearths at Kebara Cave and their role in site formation processes. In O. Bar Yosef & L. Meignen (Eds.), Kebara Cave, Mt. Carmel, Israel: The middle and upper Paleolithic archaeology, part 1. Cambridge: Peabody Museum of Archaeology and Ethnology.Google Scholar
  102. Mentzer, S. M. (2009). Bone as a fuel source: The effects of initial fragment size distribution. In I. Théry-Parisot, S. Costamagno, & A. Henry (Eds.), Gestion des Combustibles au Paleolithique et au Mesolithique: Nouveaux Outiles, Nouvelles Interpretations. UISPP Proceedings of the XV World Congress (Lisbon, 4–9 September 2006) (pp. 53–64). Oxford: Archaeopress (BAR International Series 1914).Google Scholar
  103. Mentzer, S. M. (2011). Macro- and micro-scale geoarchaeology of Üçağızlı Caves I and II, Hatay, Turkey. Unpublished dissertation, School of Anthropology, University of Arizona, Tucson.Google Scholar
  104. Mentzer, S. M., & Quade, J. (in press). Short contribution: Compositional and isotopic analytical methods in archaeological micromorphology. Geoarchaeology, in press.Google Scholar
  105. Miller, C., & Sievers, C. (2012). An experimental micromorphological investigation of bedding construction in the Middle Stone Age of Sibudu, South Africa. Journal of Archaeological Science, 39(10), 3039–3051.Google Scholar
  106. Miller, C., Conard, N. J., Goldberg, P., & Berna, F. (2009). Dumping, sweeping and trampling: Experimental micromorphological analysis of anthropogenically modified combustion features. P@lethnologie, 2009, 25–37.Google Scholar
  107. O’Connell, J. F. (1987). Alyawara site structure and its archaeological implications. American Antiquity, 52(1), 74–108.Google Scholar
  108. Parr, J. F. (2006). Effect of fire on phytolith coloration. Geoarchaeology, 21(2), 171–185.Google Scholar
  109. Pastó, I., Allué, E., & Vallverdú, J. (2000). Mousterian hearths at Abric Romaní, Catalonia (Spain). In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge: Papers from a conference marking the 150th anniversary of the Forbes’ Quarry discovery, Gibraltar (pp. 59–67). Oxford: Oxbow Books.Google Scholar
  110. Perlès, C. (1981). Hearth and home in the Old Stone Age. Natural History, 90, 38–41.Google Scholar
  111. Quivira, M. P., & Dillehay, T. D. (1988). Monte Verde, South-Central Chile: Stratigraphy, climate change, and human settlement. Geoarchaeology, 3(3), 177–191.Google Scholar
  112. Regev, L., Poduska, K. M., Addadi, L., Weiner, S., & Boaretto, E. (2010). Distinguishing between calcites formed by different mechanisms using infrared spectrometry: Archaeological applications. Journal of Archaeological Science, 37(12), 3022–3029.Google Scholar
  113. Rigaud, J.-P., Simek, J. F., & Gé, T. (1995). Mousterian fires from Grotte XVI (Dordogne, France). Antiquity, 69, 902–912.Google Scholar
  114. Roebroeks, W., & Villa, P. (2011). On the earliest evidence for habitual use of fire in Europe. Proceedings of the National Academy of Sciences, 108(13), 5209–5214.Google Scholar
  115. Rogers, K. D., & Daniels, P. (2002). An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials, 23(12), 2577–2585.Google Scholar
  116. Sandgathe, D. M., Dibble, H. L., Goldberg, P., McPherron, S. P., Turq, A., & Niven, L. (2011). On the role of fire in Neanderthal adaptations in Western Europe: Evidence from Pech de l’Azé IV and Roc de Marsal, France. PaleoAnthropology, 2011, 216–242.Google Scholar
  117. Schiegl, S., & Conard, N. J. (2006). The Middle Stone Age sediments at Sibudu: Results from FTIR spectroscopy and microscopic analyses. Southern African Humanities, 18(1), 149–172.Google Scholar
  118. Schiegl, S., Lev-Yadun, S., Bar-Yosef, O., Goresy, A. E., & Weiner, S. (1994). Siliceous aggregates from prehistoric wood ash: A major component of sediments in Kebara and Hayonim caves (Israel). Israel Journal of Earth Sciences, 43(3–4), 257–278.Google Scholar
  119. Schiegl, S., Goldberg, P., Bar-Yosef, O., & Weiner, S. (1996). Ash deposits in Hayonim and Kebara Caves, Israel: Macroscopic, microscopic and mineralogical observations, and their archaeological implications. Journal of Archaeological Science, 23, 763–781.Google Scholar
  120. Schiegl, S., Goldberg, P., Pfretzschner, H.-U., & Conard, N. J. (2003). Paleolithic burnt bone horizons from the Swabian Jura: Distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18(5), 541–565.Google Scholar
  121. Shahack-Gross, R., & Ayalon, A. (2012). Stable carbon and oxygen isotopic compositions of wood ash: an experimental study with archaeological implications. Journal of Archaeological Science. doi: 10.1016/j.jas.2012.06.036.
  122. Shahack-Gross, R., & Finkelstein, I. (2008). Subsistence practices in an arid environment: A geoarchaeological investigation in an Iron Age site, the Negev Highlands, Israel. Journal of Archaeological Science, 35(4), 965–982.Google Scholar
  123. Shahack-Gross, R., Bar-Yosef, O., & Weiner, S. (1997). Black-coloured bones in Hayonim Cave, Israel: Differentiating between burning and oxide staining. Journal of Archaeological Science, 24(5), 439–446.Google Scholar
  124. Shahack-Gross, R., Marshall, F., Ryan, K., & Weiner, S. (2004). Reconstruction of spatial organization in abandoned Maasai settlements: Implications for site structure in the Pastoral Neolithic of East Africa. Journal of Archaeological Science, 31(10), 1395–1411.Google Scholar
  125. Shahack-Gross, R., Ayalon, A., Goldberg, P., Goren, Y., Ofek, B., Rabinovich, R., et al. (2008). Formation processes of cemented features in karstic cave sites revealed using stable oxygen and carbon isotopic analyses: A case study at middle paleolithic Amud Cave, Israel. Geoarchaeology, 23(1), 43–62.Google Scholar
  126. Sherwood, S. C. (2001). The geoarchaeology of Dust Cave: A late Paleoindian through middle Archaic site in the western middle Tennessee River valley. Unpublished dissertation, The University of Tennessee, Knoxville.Google Scholar
  127. Sherwood, S. (2008). Increasing the resolution of cave archaeology: Micromorphology and the classification of burned deposits at dust cave. In D. Dye (Ed.), Cave archaeology in the Eastern Woodlands: Papers in honor of Patty Jo Watson. Knoxville: University of Tennessee Press.Google Scholar
  128. Sherwood, S. C., & Chapman, J. (2005). The identification and potential significance of early Holocene prepared clay surfaces: Examples from Dust Cave and Icehouse Bottom. Southeastern Archaeology, 24(1), 70–82.Google Scholar
  129. Sherwood, S. C., Driskell, B. N., Randall, A. R., & Meeks, S. (2004). Chronology and stratigraphy at Dust Cave, Alabama. American Antiquity, 69(3), 533–554.Google Scholar
  130. Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science, 11(4), 307–325.Google Scholar
  131. Simms, S. R. (1988). The archaeological structure of a Bedouin camp. Journal of Archaeological Science, 15(2), 197–211.Google Scholar
  132. Simpson, I. A., Vésteinsson, O., Adderley, W. P., & McGovern, T. H. (2003). Fuel resource utilization in landscapes of settlement. Journal of Archaeological Science, 30, 1401–1420.Google Scholar
  133. Speth, J. D. (2006). Housekeeping, Neandertal-style: Hearth placement and midden formation in Kebara Cave (Israel). In E. Hovers & S. L. Kuhn (Eds.), Transitions before the transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 171–188). New York: Springer.Google Scholar
  134. Speth, J. D., Meignen, L., Bar-Yosef, O., & Goldberg, P. (2012). Spatial organization of Middle Paleolithic occupation X in Kebara Cave (Israel): Concentrations of animal bones. Quaternary International, 247, 85–102.Google Scholar
  135. Squires, K. E., Thompson, T. J. U., Islam, M., & Chamberlain, A. (2011). The application of histomorphometry and Fourier transform infrared spectroscopy to the analysis of early Anglo-Saxon burned bone. Journal of Archaeological Science, 38, 2399–2409.Google Scholar
  136. Stevenson, M. G. (1985). The formation of artifact assemblages at workshop/habitation sites: Models from Peace Point in Northern Alberta. American Antiquity, 50(1), 63–81.Google Scholar
  137. Stevenson, M. G. (1991). Beyond the formation of hearth-associated artifact assemblages. In E. M. Kroll & T. D. Price (Eds.), The interpretation of archaeological spatial patterning (pp. 269–299). New York: Plenum.Google Scholar
  138. Stewart, B. A., Dewar, G. I., Morley, M. W., Inglis, R. H., Wheeler, M., Jacobs, Z., et al. (2012). Afromontane foragers of the Late Pleistocene: Site formation, chronology and occupational pulsing at Melikane Rockshelter, Lesotho. Quaternary International. doi: 10.1016/j.quaint.2011.11.028.
  139. Stiner, M., Kuhn, S., Weiner, S., & Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 22, 223–237.Google Scholar
  140. Stiner, M. C., Barkai, R., & Gopher, A. (2011). Hearth-side socioeconomics, hunting and paleocology during the late Lower Paleolithic at Qesem Cave, Israel. Journal of Human Evolution, 60(2), 213–233.Google Scholar
  141. Surovell, T. A., & Stiner, M. C. (2001). Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. Journal of Archaeological Science, 28(6), 633–642.Google Scholar
  142. Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology. Berlin: Gebrüder Bornträger.Google Scholar
  143. Théry, I., Gril, J., Vernet, J. L., Meignen, L., & Maury, J. (1996). Coal used for fuel at two prehistoric sites in southern France: Les Canalettes (Mousterian) and Les Usclades (Mesolithic). Journal of Archaeological Science, 23(4), 509–512.Google Scholar
  144. Théry-Parisot, I. (2002). Fuel management (bone and wood) during the Lower Aurignacian in the Pataud Rock Shelter (Lower Palaeolithic, Les Eyzies de Tayac, Dordogne, France). Contribution of experimentation. Journal of Archaeological Science, 29(12), 1415–1421.Google Scholar
  145. Théry-Parisot, I., Costamagno, S., Brugal, J. P., Fosse, P., & Guilbert, R. (2005). The use of bone as fuel during the Palaeolithic, experimental study of bone combustible properties. In J. Mulville & A. K. Outram (Eds.), The zooarchaeology of fats, oils, milk and dairying. Oxford: Oxbow Books.Google Scholar
  146. Théry-Parisot, I., Chabal, L., & Chrzavzez, J. (2010). Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 142–153.Google Scholar
  147. Thompson, T. J. U., Gauthier, M., & Islam, M. (2009). The application of a new method of Fourier transform infrared spectroscopy to the analysis of burned bone. Journal of Archaeological Science, 36, 910–914.Google Scholar
  148. Tsartsidou, G., Lev-Yadun, L., Albert, R. M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on quantitative modern reference collections from Greece. Journal of Archaeological Science, 34(8), 1262–1275.Google Scholar
  149. Tsatskin, A., & Nadel, D. (2003). Formation processes at the Ohalo II submerged prehistoric campsite, Israel, inferred from soil micromorphology and magnetic susceptibility studies. Geoarchaeology, 18(4), 409–432.Google Scholar
  150. Ulery, A. L., Graham, R. C., & Amrhein, C. (1993). Wood-ash composition and soil pH following intense burning. Soil Science, 156(5), 358–364.Google Scholar
  151. Vallverdu, J. (2002). Micromorfología de las facies sedimentarias de la colección de referencia de la Sierra de Atapuerca y del nivel J del AbricRomaní. Implicaciones geoarqueológicas y paleoetnográficas. Unpublished dissertation, Universitat Rovira i Virgili, Tarragona.Google Scholar
  152. Vallverdú, J., Alluué, E., Bischoff, J. L., Cáceres, I., Carbonell, E., Cebria, A., et al. (2005). Short human occupations in the Middle Palaeolithic level I of the Abric Romaní rock-shelter (Capellades, Barcelona, Spain). Journal of Human Evolution, 48(2), 157–174.Google Scholar
  153. Vallverdú, J., Alonso, S., Bargalló, A., Bartrolí, R., Campeny, G., Carrancho, Á., et al. (2012). Combustion structures of archaeological level O and Mousterian activity areas with use of fire at the Abric Romaní rockshelter (NE Iberian Peninsula). Quaternary International, 247, 313–324.Google Scholar
  154. Vallverdú, J., Vaquero, M., Cáceres, I., Allué, E., Rosell, J., Saladié, P., et al. (2010). Sleeping activity area within the site structure of Archaic human groups: Evidence from Abric Romaní Level N combustion activity areas. Current Anthropology, 51(1), 137–145.Google Scholar
  155. van der Veen, M. (2007). Formation processes of desiccated and carbonized plant remains—The identification of routine practice. Journal of Archaeological Science, 34, 968–990.Google Scholar
  156. Vandiver, P. B., Soffer, O., Klima, B., & Svoboda, J. I. (1989). The origins of ceramic technology at Dolni Vestonice, Czechoslovakia. Science, 246(4933), 1002–1008.Google Scholar
  157. Vaquero, M., & Pastó, I. (2001). The definition of spatial units in Middle Palaeolithic Sites: The hearth-related assemblages. Journal of Archaeological Science, 28(11), 1209–1220.Google Scholar
  158. Villagran, X. S., Giannini, P. C. F., & DeBlasis, P. (2009). Archaeofacies analysis: Using depositional attributes to identify anthropic processes of deposition in a monumental shell mound of Santa Catarina State, southern Brazil. Geoarchaeology, 24(3), 311–335.Google Scholar
  159. Villagran, X., Balbo, A., Madella, M., Vila, A., & Estevez, J. (2011a). Stratigraphic and spatial variability in shell middens: Microfacies identification at the ethnohistoric site Tunel VII (Tierra del Fuego, Argentina). Archaeological and Anthropological Sciences, 3(4), 357–378.Google Scholar
  160. Villagran, X. S., Balbo, A. L., Madella, M., Vila, A., & Estevez, J. (2011b). Experimental micromorphology in Tierra del Fuego (Argentina): Building a reference collection for the study of shell middens in cold climates. Journal of Archaeological Science, 38(3), 588–604.Google Scholar
  161. Wadley, L. (2010). Cemented ash as a receptacle or work surface for ochre powder production at Sibudu, South Africa, 58,000 years ago. Journal of Archaeological Science, 37(10), 2397–2406.Google Scholar
  162. Wadley, L. (2012). Some combustion features at Sibudu, South Africa, between 65,000 and 58,000 years ago. Quaternary International, 247, 341–349.Google Scholar
  163. Wadley, L., Sievers, C., Bamford, M., Goldberg, P., Berna, F., & Miller, C. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334, 1388–1391.Google Scholar
  164. Wattez, J. (1988). Contribution à la conaissance des foyers préhistoriques par l’étude des cendres. Bulletin de la Société Prehistorique de France, 85(10–12), 353–366.Google Scholar
  165. Wattez, J. (1992). Dynamique de formation des structures de combustion de la fin du Paléolitique au Néolitique moyen. Unpublished dissertation, Université de Paris I, Paris.Google Scholar
  166. Wattez, J. (1994). Micromorphologie des foyers d’Etoilles, de Pincevent et de Verberie: Le milieu naturel et son exploitation. In Y. Taborin (Ed.), Environments et Habitats Magdaleniens dans le Centre du Bassin Parisien (pp. 120–127). Documents d’Archéologie Française 43, Paris.Google Scholar
  167. Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge: Cambridge University Press.Google Scholar
  168. Weiner, S., Goldberg, P., & Bar-Yosef, O. (1993). Bone preservation in Kebara cave, Israel using on-site Fourier transform infrared spectrometry. Journal of Archaeological Science, 20, 613–627.Google Scholar
  169. Weiner, S., Xu, Q., Goldberg, P., Liu, J., & Bar-Yosef, O. (1998). Evidence for the use of fire at Zhoukoudian, China. Science, 281(5374), 251–253.Google Scholar
  170. Weiner, S., Goldberg, P., & Bar-Yosef, O. (2002). Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. Journal of Archaeological Science, 29, 1289–1308.Google Scholar
  171. Wrangham, R. W. (2007). The cooking enigma. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 308–323). Oxford: Oxford University Press.Google Scholar
  172. Wrangham, R. W. (2010). Catching fire: How cooking made us human. New York: Basic Books.Google Scholar
  173. Wrangham, R., & Carmody, R. (2010). Human adaptation to the control of fire. Evolutionary Anthropology: Issues, News, and Reviews, 19(5), 187–199.Google Scholar
  174. Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40(5), 567–594.Google Scholar
  175. Yellen, J. (1977). Archaeological approaches to the present. New York: Academic.Google Scholar
  176. Zerboni, A. (2011). Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase sites in central Sudan. Geoarchaeology, 26(3), 365–391.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Tübingen Senckenberg Center for Human Evolution and PaleoecologyTübingenGermany
  2. 2.INA—Institute for Archaeological SciencesEberhard Karls Universität TübingenTübingenGermany
  3. 3.Department of AnthropologyUniversity of ArizonaTucsonUSA

Personalised recommendations