Advertisement

Journal of Archaeological Method and Theory

, Volume 20, Issue 4, pp 623–662 | Cite as

Thinking Through Networks: A Review of Formal Network Methods in Archaeology

  • Tom Brughmans
Article

Abstract

This review aims to expose the potential of formal network methods for archaeology by tracing the origins of the academic traditions, network models, and techniques that have been most influential to archaeologists. A brief discussion of graph theoretic applications in archaeology reveals how graph visualization and analysis was used since the 1960s in a very similar way to later network analysis applications, but did not seem to have influenced the more widespread adoption of network techniques over the past decade. These recent archaeological applications have been strongly influenced by two academic traditions, social network analysis and sociophysics. The most influential and promising techniques and models adopted from these traditions are critically discussed. This review reveals some general trends which are considered to be the result of two critical issues that will need to be addressed in future archaeological network analysis: (1) a general unawareness of the historicity and diversity of formal network methods both within and outside the archaeological discipline has resulted in a very limited methodological scope; (2) the adoption or development of network methods has very rarely been driven by specific archaeological research questions and is dominated by a few popular models and techniques, which has in some cases resulted in a routinized explanatory process. This review illustrates, however, the great potential of formal network methods for archaeology and argues that, if this potential is to be applied in a critical way, a broad multidisciplinary scope is necessary and specific archaeological research contexts should dominate applications.

Keywords

Complex networks Social networks Networks Graphs Archaeology 

Notes

Acknowledgments

I would like to thank Leif Isaksen, Claire Lemercier, Barbara Mills, Johannes Preiser-Kapeller, Iza Romanowska, John Terrell, and three anonymous reviewers for the many helpful comments on earlier versions of the text; members of the Networks Network Google Group for discussing many of the issues raised in this article; Simon Keay, Graeme Earl and Jeroen Poblome for developing original archaeological applications with me; and special thanks to Fiona Coward and Anna Collar for our collaborative efforts in trying to bring together the growing community of archaeologists interested in networks.

References

  1. Adamic, A. L., & Huberman, B. A. (2000a). Power-law distribution of the World Wide Web. Science, 287(5461), 2115.Google Scholar
  2. Adamic, A. L., & Huberman, B. A. (2000b). The nature of markets on the World Wide Web. Quarterly Journal of Electronic Commerce, 1, 5–12.Google Scholar
  3. Adams, J., Faust, K., & Lovasi, G. S. (2012). Capturing context: integrating spatial and social network analyses. Social Networks, 34(1), 1–5.Google Scholar
  4. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(January), 47–97.Google Scholar
  5. Albert, R., Jeong, H., & Barabàsi, A.-L. (1999). Internet: diameter of the World-Wide Web. Nature, 401, 130.Google Scholar
  6. Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–82.Google Scholar
  7. Allen, K. M. S. (1990). Modelling early historic trade in the eastern Great Lakes using geographic information systems. In K. M. S. Allen, S. Green, & E. Zubrow (Eds.), Interpreting space: GIS and archaeology (pp. 319–329). London: Taylor & Francis.Google Scholar
  8. Allen, P. M. (1997). Cities and regions as self-organizing systems. London: Gordon and Breach.Google Scholar
  9. Amaral, L. A. N., Scala, A., Barthélemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11149–11152.Google Scholar
  10. Anderson, P. W. (1972). More is different. Science, 177(4047), 393–396.Google Scholar
  11. Bak, P., Tang, C., & Weisenfeld, K. (1987). Self-organized-criticality: an explanation of 1/F noise. Physical Review Letters, 59, 381–384.Google Scholar
  12. Barabási, A.-L. (2002). Linked: the new science of networks. Cambridge: Perseus.Google Scholar
  13. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.Google Scholar
  14. Barabási, A.-L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614.Google Scholar
  15. Barnes, J. (1972). Social networks. Addison-Wesley Module in Anthropology, 26, 1–29.Google Scholar
  16. Barnes, J., & Harary, F. (1983). Graph theory in network analysis. Social Networks, 5(2), 235–244.Google Scholar
  17. Barthélemy, M. (2010). Spatial networks. arXiv:1010.0302v2, pp. 1–86.Google Scholar
  18. Bascompte, J. (2009). Disentangling the web of life. Science, 325(5939), 416–9.Google Scholar
  19. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.Google Scholar
  20. Bentley, R. A. (2003a). An introduction to complex systems. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 9–23). Salt Lake City: University of Utah Press.Google Scholar
  21. Bentley, R. A. (2003b). Scale-free network growth and social inequality. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 27–46). Salt Lake City: University of Utah Press.Google Scholar
  22. Bentley, R. A., & Maschner, H. D. G. (2003a). Complex systems and archaeology. Salt Lake City: University of Utah Press.Google Scholar
  23. Bentley, R. A., & Maschner, H. D. G. (2003b). Preface: considering complexity theory in archaeology. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 1–8). Salt Lake City: University of Utah Press.Google Scholar
  24. Bentley, R. A., & Maschner, H. D. G. (2007). Complexity theory. In R. A. Bentley & H. D. G. Maschner (Eds.), Handbook of archaeological theories (pp. 245–270). Lanham: AltaMira Press.Google Scholar
  25. Bentley, R. A., & Shennan, S. J. (2003). Cultural transmission and stochastic network growth. American Antiquity, 68(3), 459–485.Google Scholar
  26. Bentley, R. A., & Shennan, S. J. (2005). Random copying and cultural evolution. Science, 309, 877–878.Google Scholar
  27. Bentley, R. A., Lake, M., & Shennan, S. (2005). Specialisation and wealth inequality in a model of a clustered economic network. Journal of Archaeological Science, 32(9), 1346–1356.Google Scholar
  28. Bernardini, W. (2007). Jeddito yellow ware and Hopi social networks. Kiva, 72(3), 295–328.Google Scholar
  29. Bintliff, J. (2004). Time, structure, and agency: the Annales, emergent complexity, and archaeology. In J. Bintliff (Ed.), A companion to archaeology (pp. 174–194). Oxford: Blackwell.Google Scholar
  30. Boissevain, J. (1973). An exploration of two first-order zones. In J. Boissevain & J. Mitchell (Eds.), Network analysis: studies in human interaction. The Hague: Mouton.Google Scholar
  31. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120.Google Scholar
  32. Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.Google Scholar
  33. Borgatti, S. P., & Halgin, D. S. (2011). Analyzing affiliation networks. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 417–433). London: Sage.Google Scholar
  34. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet 6 for Windows: software for social network analysis, analytic technologies. Harvard University.Google Scholar
  35. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(April), 892–896.Google Scholar
  36. Bott, E. (1957). Family and social network. London: Tavistock.Google Scholar
  37. Bouchaud, J., & Mézard, M. (2000). Wealth condensation in a simple model of economy. Physica A: Statistical Mechanics and its Applications, 282(3–4), 536–545.Google Scholar
  38. Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surfaces. Oxford: Wiley.Google Scholar
  39. Branting, S. (2007). Using an urban street network and a PGIS-T approach to analyze ancient movement. In E. M. Clark & J. D. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA conference, Fargo, 2006 (pp. 87–96). Budapest.Google Scholar
  40. Breiger, R. L. (1981). The social class structure of occupational mobility. The American Journal of Sociology, 87, 578–611.Google Scholar
  41. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., & Wiener, J. (2000). Graph structure in the Web. Computer Networks, 33(1–6), 309–320.Google Scholar
  42. Broodbank, C. (2000). An island archaeology of the early Cyclades. Cambridge: Cambridge University Press.Google Scholar
  43. Brughmans, T. (2010). Connecting the dots: towards archaeological network analysis. Oxford Journal of Archaeology, 29(3), 277–303.Google Scholar
  44. Brughmans, T. (2012). Facebooking the past: a critical social network analysis approach for archaeology. In A. Chrysanthi, P. Flores, & C. Papadopoulos (Eds.), Thinking beyond the tool: archaeological computing and the interpretative process. British Archaeological Reports International Series. Oxford: Archaeopress.Google Scholar
  45. Brughmans, T., & Poblome, J. (2012). Pots in space: understanding Roman pottery distribution from confronting exploratory and geographical network analyses. In E. Barker, S. Bouzarovski, C. Pelling & L. Isaksen (Eds.), New worlds out of old texts: developing techniques for the spatial analysis of ancient narratives. Oxford: Oxford University Press (in press).Google Scholar
  46. Brughmans, T., Keay, S., & Earl, G. (2012). Complex networks in archaeology: urban connectivity in Iron Age and Roman southern Spain. Leonardo, 45(3).Google Scholar
  47. Brusasco, P. (2004). Theory and practice in the study of Mesopotamian domestic space. Antiquity, 78, 142–157.Google Scholar
  48. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025–8.Google Scholar
  49. Burt, R. S. (2011). Neighbor networks: competitive advantage local and personal. Oxford: Oxford Univeristy Press.Google Scholar
  50. Butts, C. (2006). Exact bounds for degree centralization. Social Networks, 28(4), 283–296.Google Scholar
  51. Carlson, R. O. (1965). Adoption of educational innovations. University of Oregon, Eugene. Center for Advanced Study of Educational Administration.Google Scholar
  52. Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis. Cambridge: Cambridge University Press.Google Scholar
  53. Cho, A. (2009). Ourselves and our interactions: the ultimate physics problem? Science, 325(5939), 406–8.Google Scholar
  54. Chorley, R. J., & Haggett, P. (1967). Models in geography. London: Methuen.Google Scholar
  55. Chorley, R. J., & Haggett, P. (1970). Integrated models in geography. London: Methuen.Google Scholar
  56. Collar, A. C. F. (2007). Network theory and religious innovation. Mediterranean Historical Review, 22(1), 149–162.Google Scholar
  57. Collar, A. C. F. (2008). Networks and religious innovation in the Roman Empire. Unpublished PhD thesis, University of Exeter.Google Scholar
  58. Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: a survey of measurements. Advances in Physics, 56(1), 167–242.Google Scholar
  59. Cowan, R., & Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control, 28(8), 1557–1575.Google Scholar
  60. Coward, F. (2010). Small worlds, material culture and ancient Near Eastern social networks. Proceedings of the British Academy, 158, 453–484.Google Scholar
  61. Coward, F. (2012). Grounding the net: social networks, material culture and geography in the Epipalaeolithic and Early Neolithic of the Near East (~21,000–6,000 cal BCE). In C. Knappett & R. Rivers (Eds.), New approaches in regional network analysis. Oxford: Oxford University Press (in press).Google Scholar
  62. Cutting, M. (2003). The use of spatial analysis to study prehistoric settlement architecture. Oxford Journal of Archaeology, 22, 1–21.Google Scholar
  63. Cutting, M. (2006). More than one way to study a building: approaches to prehistoric household and settlement space. Oxford Journal of Archaeology, 25, 225–246.Google Scholar
  64. de Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.Google Scholar
  65. de Sola Pool, I., & Kochen, M. (1978). Contacts and influence. Social Networks, 1, 1–48.Google Scholar
  66. Degenne, A., & Forsé, M. (1994). Les réseaux sociaux. Une approche structurale en sociologie. Paris.Google Scholar
  67. Doran, J. E., & Hodson, F. R. (1975). Mathematics and computers in archaeology. Cambridge: Harvard University Press.Google Scholar
  68. Earl, G., & Keay, S. (2007). Urban connectivity of Iberian and Roman towns in southern Spain: a network analysis approach. In J. T. Clark & E. M. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA conference, Fargo, 2006 (pp. 77–86). Budapest: Archaeolingua.Google Scholar
  69. Epstein, A. L. (1969). Gossip, norms and social network. In J. C. Mitchell (Ed.), Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester: Manchester University Press.Google Scholar
  70. Erdős, P., & Renyi, A. (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.Google Scholar
  71. Erdős, P., & Renyi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.Google Scholar
  72. Erdős, P., & Rényi, A. (1961). On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungarica, 12, 261–267.Google Scholar
  73. Erickson, B. (1988). The relational basis of attitudes. In B. Wellman et al. (Eds.), Social structures: a network approach (pp. 99–121). Cambridge: Cambridge University Press.Google Scholar
  74. Evans, T., Knappett, C., & Rivers, R. (2009). Using statistical physics to understand relational space: a case study from Mediterranean prehistory. In D. Lane, D. Pumain, S. Van Der Leeuw, & G. West (Eds.), Complexity perspectives in innovation (pp. 451–479). Berlin: Springer.Google Scholar
  75. Everett, M. G., & Borgatti, S. P. (2005). Extending centrality. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 57–76). Cambridge: Cambridge University Press.Google Scholar
  76. Fairclough, G. (1992). Meaningful constructions—spatial and functional analysis of medieval buildings. Antiquity, 66, 348–366.Google Scholar
  77. Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topology. Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication (pp. 251–262). ACM.Google Scholar
  78. Faust, K. (2005). Using correspondence analysis for joint displays of affiliation networks. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 117–147). Cambridge: Cambridge University Press.Google Scholar
  79. Foster, S. M. (1989). Analysis of spatial patterns in buildings (access analysis) as an insight into social structure: examples from the Scottish Atlantic Iron Age. Antiquity, 63, 40–50.Google Scholar
  80. Frank, O. (2005). Network sampling and model fitting. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 31–56). Cambridge: Cambridge University Press.Google Scholar
  81. Frank, S. A. (2009). The common patterns of nature. Journal of Evolutionary Biology, 22(8), 1563–85.Google Scholar
  82. Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.Google Scholar
  83. Freeman, L. C. (2004). The development of social network analysis. Vancouver: Empirical Press.Google Scholar
  84. Freeman, L. C. (2005). Graphic techniques for exploring social network data. In P. K. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 248–268). Cambridge: Cambridge University Press.Google Scholar
  85. Garfield, E. (1979). It’s a small world after all. In E. Garfield (Ed.), Essays of an information scientist (pp. 299–304). Philadelphia: ISI.Google Scholar
  86. Garfield, E., Irving, H. S., & Richard, J. T. (1964). The use of citation data in writing the history of science. Philadelphia: Institute for Scientific Information.Google Scholar
  87. Garnsey, E., & McGlade, J. (2006). Complexity and co-evolution: continuity and change in socio-economic systems. Cheltenham: Elgar.Google Scholar
  88. Gastner, M. T., & Newman, M. E. J. (2006). The spatial structure of networks. The European Physical Journal B, 49(2), 247–252.Google Scholar
  89. Golbeck, J., & Mutton, P. (2005). Spring-embedded graphs for semantic visualization. In V. Geroimenko & C. Chen (Eds.), Visualizing the semantic Web: XML-based Internet and information visualization (pp. 172–182). London: Springer.Google Scholar
  90. Graham, S. (2006a). Networks, agent-based models and the Antonine itineraries: implications for Roman archaeology. Journal of Mediterranean Archaeology, 19(1), 45–64.Google Scholar
  91. Graham, S. (2006b). EX FIGLINIS, the network dynamics of the Tiber valley brick industry in the hinterland of Rome, BAR international series 1486. Oxford: Archaeopress.Google Scholar
  92. Graham, S. (2009). The space between: the geography of social networks in the Tiber valley. In F. Coarelli & H. Patterson (Eds.), Mercator Placidissimus: the Tiber Valley in antiquity. New research in the upper and middle river valley. Rome: Edizioni Quasar.Google Scholar
  93. Grahame, M. (1997). Public and private in the Roman House: the spatial order of the Casa Del Fauno. In R. Laurence & A. Wallace-Hadrill (Eds.), Domestic space in the Roman world: Pompeii and beyond (Journal of Roman Archaeology, Supplementary Series, 22) (pp. 137–164). Portsmouth, Rhode Island.Google Scholar
  94. Granovetter, M. S. (1973). The strength of weak ties. The American Journal of Sociology, 78(5), 1360–1380.Google Scholar
  95. Granovetter, M. S. (1983). The strength of weak ties: a network theory revisited. Sociological Theory, 1(1), 201–233.Google Scholar
  96. Granovetter, M. (1985). Economic action and social structure: the problem of embeddedness. The American Journal of Sociology, 91(3), 481–510.Google Scholar
  97. Guardiola, X., Díaz-Guilera, A., Pérez, C., Arenas, A., & Llas, M. (2002). Modeling diffusion of innovations in a social network. Physical Review E, 66(2).Google Scholar
  98. Hage, P., & Harary, F. (1983). Structural models in anthropology. Cambridge: Cambridge University Press.Google Scholar
  99. Hage, P., & Harary, F. (1996). Island networks: communication, kinship and classification structures in Oceania. Cambridge: Cambridge University Press.Google Scholar
  100. Haggett, P. (1965). Locational analysis in human geography. London: Wiley.Google Scholar
  101. Haggett, P. (1970). Network models in geography. In R. J. Chorley & P. Haggett (Eds.), Integrated models in geography (pp. 609–668). London: Methuen.Google Scholar
  102. Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Arnold.Google Scholar
  103. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. CA: University of California Riverside.Google Scholar
  104. Harary, F., Norman, R. Z., & Cartwright, D. (1965). Structural models: an introduction to the theory of directed graphs. New York: Wiley.Google Scholar
  105. Hart, J. P., & Engelbrecht, W. (2012). Northern Iroquoian ethnic evolution: a social network analysis. Journal of Archaeological Method and Theory (in press).Google Scholar
  106. Hillier, B., & Hanson, J. (1984). The social logic of space. Cambridge: Cambridge University Press.Google Scholar
  107. Hiorns, R. W. (1971). Statistical studies in migration. In F. R. Hodson, D. G. Kendall, & P. Tăutu (Eds.), Mathematics in the archaeological and historical sciences. Proceedings of the Anglo-Romanian Conference, Mamaia 1970 (pp. 291–302). Edinburgh: Edinburgh University Press.Google Scholar
  108. Huberman, B. A., & Adamic, L. A. (1999). Growth dynamics of the World-Wide Web. Nature, 401, 131.Google Scholar
  109. Huisman, M., & van Duijn, M. A. J. (2005). Software for social network analysis. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 270–316). Cambridge: Cambridge University Press.Google Scholar
  110. Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: the development of DNA theory. Social Networks, 11(1), 39–63.Google Scholar
  111. Hunt, T.L. (1988). Graph theoretic network models for Lapita exchange: a trial application. In Kirch, P. V. and Hunt, T. L. eds., Archaeology of the Lapita cultural complex: a critical review. Thomas Burke Memorial Washington State Museum Research Reports no. 5, Seattle, pp. 135–155.Google Scholar
  112. Irwin, G. (1978). Pots and entrepots: a study of settlement, trade and the development of economic specialization in Papuan prehistory. World Archaeology, 9(3), 299–319.Google Scholar
  113. Irwin-Williams, C. (1977). A network model for the analysis of Prehistoric trade. In T. K. Earle & J. Ericson (Eds.), Exchange systems in Prehistory (pp. 141–151). New York: Academic.Google Scholar
  114. Isaksen, L. (2007). Network analysis of transport vectors in Roman Baetica. In J. T. Clark & E. M. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA Conference, Fargo, 2006 (pp. 76–87). Budapest: Archaeolingua.Google Scholar
  115. Isaksen, L. (2008). The application of network analysis to ancient transport geography: a case study of Roman Baetica. Digital Medievalist 4. Retrieved 19 March 2012 from http://www.digitalmedievalist.org/journal/4/isaksen/. Accessed 16 April 2012.
  116. Janssen, M. A. (2005). Review: complex systems and archaeology: empirical and theoretical applications. American Journal of Archaeology, 109(3), 568–569.Google Scholar
  117. Jenkins, D. (2001). A network analysis of Inka roads, administrative centers, and storage facilities. Ethnohistory, 48(4), 655.Google Scholar
  118. Jiménez, D., & Chapman, D. (2002). An application of proximity graphs in archaeological spatial analysis. In D. Wheatley, G. Earl, & S. Poppy (Eds.), Contemporary themes in archaeological computing (pp. 90–99). Oxford: Oxbow Books.Google Scholar
  119. Jin, E. M., Girvan, M., & Newman, M. E. J. (2001). Structure of growing social networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 64(4 Pt 2), 046132.Google Scholar
  120. Johnson, J. C. (1994). Anthropological contributions to the study of social networks: a review. In S. Wasserman & J. Galaskiewicz (Eds.), Advances in social network analysis (pp. 113–151). London: Sage.Google Scholar
  121. Kapferer, B. (1969). Norms and the manipulation of relationships in a work context. In J. C. Mitchell (Ed.), Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester: Manchester University Press.Google Scholar
  122. Kendall, D. (1969). Incidence matrices, interval graphs and seriation in archeology. Pacific Journal of Mathematics, 28(3), 565–570.Google Scholar
  123. Kendall, D. G. (1971a). Seriation from abundance matrices. In F. R. Hodson, D. G. Kendall, & P. Tăutu (Eds.), Mathematics in the archaeological and historical sciences. Proceedings of the Anglo-Romanian Conference, Mamaia 1970 (pp. 215–252). Edinburgh: Edinburgh University Press.Google Scholar
  124. Kendall, D. G. (1971b). Maps from marriages: an application of non-metric multi-dimensional scaling to parish register data. In F. R. Hodson, D. G. Kendall, & P. Tăutu (Eds.), Mathematics in the archaeological and historical sciences. Proceedings of the Anglo-Romanian Conference, Mamaia 1970 (pp. 303–318). Edinburgh: Edinburgh University Press.Google Scholar
  125. Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406(August), 845.Google Scholar
  126. Knappett, C. (2011). An archaeology of interaction. Network perspectives on material culture and society. Oxford: Oxford University Press.Google Scholar
  127. Knappett, C., Evans, T., & Rivers, R. (2008). Modelling maritime interaction in the Aegean Bronze Age. Antiquity, 82(318), 1009–1024.Google Scholar
  128. Knappett, C., Evans, T., & Rivers, R. (2011). The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network. Antiquity, 85(329), 1008–1023.Google Scholar
  129. Knox, H., Savage, M., & Harvey, P. (2006). Social networks and the study of relations: networks as method, metaphor and form. Economy and Society, 35(1), 113–140.Google Scholar
  130. Kohler, T. A. (2012). Complex systems and archaeology. In I. Hodder (Ed.), Archaeological theory today II. Cambridge: Polity Press.Google Scholar
  131. Korte, C., & Milgram, S. (1970). Acquaintance networks between racial groups—application of the small world method. Journal of Personality and Social Psychology, 15(2), 101.Google Scholar
  132. Krempel, L. (2005). Visualisierung komplexer Strukturen: Grundlagen der Darstellung mehrdimensionaler Netzwerke. Frankfurt: Campus Verlag.Google Scholar
  133. Lane, D., Van der Leeuw, S. E., Pumain, D., & West, G. (2009). Complexity perspectives in innovation and social change. Dordrecht: Springer.Google Scholar
  134. Laumann, E. O., Marsden, P. V., & Prensky, D. (1992). The boundary specification problem in network analysis. In L. C. Freeman, D. White, & A. Romney (Eds.), Research methods in social network analysis (pp. 61–87). Fairfax: George Mason University Press.Google Scholar
  135. Lemercier, C. (2012). Formal network methods in history: why and how? Österreichische Zeitschrift für Geschichtswissenschaften, 1.Google Scholar
  136. Liljeros, F., Edling, C. R., Amaral, L. A., Stanley, H. E., & Aberg, Y. (2001). The web of human sexual contacts. Nature, 411(6840), 907–908.Google Scholar
  137. Malkin, I. (2011). A small Greek world: networks in the Ancient Mediterranean. Oxford: Oxford University Press.Google Scholar
  138. Maoz, Z. (2011). Networks of nations. The evolution, structures, and impact of international networks, 1816–2001. Cambridge: Cambridge University Press.Google Scholar
  139. Markovsky, B., Willer, D., & Patton, T. (1988). Power relations in exchange networks. American Sociological Review, 53(2), 220–236.Google Scholar
  140. Marsden, P. V. (2002). Egocentric and sociocentric measures of network centrality. Social Networks, 24(4), 407–422.Google Scholar
  141. Marsden, P. V. (2005). Recent developments in network measurement. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 8–30). Cambridge: Cambridge University Press.Google Scholar
  142. Maschner, H. D. G., & Bentley, R. A. (2003). The power law of rank and household on the North Pacific. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 47–60). Salt Lake City: University of Utah Press.Google Scholar
  143. McGlade, J. (2005). Systems and simulacra: modeling, simulation, and archaeological interpretation. In H. D. G. Maschner & C. Chippindale (Eds.), Handbook of archaeological methods (pp. 554–602). Lanham: AltaMira Press.Google Scholar
  144. Michael, J. H., & Massey, J. G. (1997). Modelling the communication network in a sawmill. Forest Products Journal, 47, 25–30.Google Scholar
  145. Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.Google Scholar
  146. Milgram, S. (1992). The individual in a social world: essays and experiments (2nd ed.). New York: McGraw-Hill.Google Scholar
  147. Mills, B. J., Roberts, J. M. Jr., Clark, J. J., Haas, W. R. Jr., Peeples, M. A., & Borck, L. (2012). The dynamics of social networks in the Late Prehispanic U.S. southwest. In C. Knappett & R. Rivers (Eds.), New approaches in regional network analysis. Oxford: Oxford University Press (in press).Google Scholar
  148. Mitchell, J. D. (1969). Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester: Manchester University Press.Google Scholar
  149. Mitchell, J. C. (1974). Social networks. Annual Review of Anthropology, 3, 279–299.Google Scholar
  150. Mitchell, M. (2009). Complexity: a guided tour. New York: Oxford University Press.Google Scholar
  151. Mizoguchi, K. (2009). Nodes and edges: a network approach to hierarchisation and state formation in Japan. Journal of Anthropological Archaeology, 28(1), 14–26.Google Scholar
  152. Moreno, J. L. (1934). Who shall survive? Washington, DC: Nervous and Mental Disease Publishing Company.Google Scholar
  153. Moreno, J. L. (1946). Sociogram and sociomatrix: a note to the paper by Forsyth and Katz. Sociometry, 9, 348–349.Google Scholar
  154. Moreno, J. L. (1960). The sociometry reader. Glencoe: The Free Press.Google Scholar
  155. Moreno, J. L., & Jennings, H. H. (1938). Statistics of social configurations. Sociometry, 1, 342–374.Google Scholar
  156. Munson, J. L., & Macri, M. J. (2009). Sociopolitical network interactions: a case study of the Classic Maya. Journal of Anthropological Archaeology, 28(4), 424–438.Google Scholar
  157. Newman, M. E. J. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 1–8.Google Scholar
  158. Newman, M. (2003a). Ego-centered networks and the ripple effect. Social Networks, 25(1), 83–95.Google Scholar
  159. Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review, 45, 167–256.Google Scholar
  160. Newman, M. E. J. (2010). Networks: an introduction. Oxford: Oxford Univeristy Press.Google Scholar
  161. Newman, M. E. J., & Park, J. (2003). Why social networks are different from other types of networks. Physical Review E, 68(3), 1–8.Google Scholar
  162. Orton, C. (1980). Mathematics in archaeology. London: Collins.Google Scholar
  163. Orton, C. (2000). Sampling in archaeology. Cambridge: Cambridge University Press.Google Scholar
  164. Osa, M. (2003). Solidarity and contention: networks of Polish opposition. Minneapolis: University of Minnesota Press.Google Scholar
  165. Peeples, M. A. (2011). Identity and social transformation in the Prehispanic Cibola world: A.D. 1150–1325. Unpublished PhD thesis, Arizona State University.Google Scholar
  166. Peregrine, P. (1991). A graph-theoretic approach to the evolution of Cahokia. American Antiquity, 56(1), 66–75.Google Scholar
  167. Phillips, S. C. (2011). Networked glass: lithic raw material consumption and social networks in the Kuril islands, Far Eastern Russia. Unpublished PhD thesis, University of Washington, Seattle.Google Scholar
  168. Pitts, F. R. (1965). A graph theoretic approach to historical geography. The Professional Geographer, 17(5), 15–20.Google Scholar
  169. Pitts, F. (1979). The medieval river trade network of Russia revisited. Social Networks, 1(3), 285–292.Google Scholar
  170. Pouncett, J., & Lock, G. (2007). A vector-based approach to the integration of geophysical and test-pitting data: phasing the South Cadbury Environs Project. In E. M. Clark & J. T. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA Conference, Fargo, 2006 (pp. 97–106). Budapest: Archaeolingua.Google Scholar
  171. Riche, N. (2008). Exploring social networks with matrix-based representations.Google Scholar
  172. Rihll, T. E., & Wilson, A. G. (1987). Spatial interaction and structural models in historical analysis: some possibilities and an example. Histoire and Mesure, 2, 5–32.Google Scholar
  173. Rihll, T. E., & Wilson, A. G. (1991). Modelling settlement structures in ancient Greece: new approaches to the polis. In J. Rich & A. Wallace-Hadrill (Eds.), City and country in the ancient world (pp. 59–96). London: Routledge.Google Scholar
  174. Riles, A. (2001). The network inside out. Ann Arbor: University of Michigan Press.Google Scholar
  175. Roberts, S. G. B., Dunbar, R. I. M., Pollet, T. V., & Kuppens, T. (2009). Exploring variation in active network size: constraints and ego characteristics. Social Networks, 31(2), 138–146.Google Scholar
  176. Rogers, E. M. (1979). Network analysis of the diffusion of innovations. In P. W. Holland & S. Leinhardt (Eds.), Perspectives on social network research (pp. 137–164). New York: Academic.Google Scholar
  177. Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.Google Scholar
  178. Rothman, M. (1987). Graph theory and the interpretation of regional survey data. Paléorient, 13(2), 73–91.Google Scholar
  179. Ruffini, G. R. (2008). Social networks in Byzantine Egypt. Cambridge: Cambridge University Press.Google Scholar
  180. Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31, 581–603.Google Scholar
  181. Santley, R. S. (1991). The structure of the Aztec transport network. In C. D. Trombold (Ed.), Acient road networks and settlement hierarchies in the New World (pp. 198–210). Cambridge: Cambridge University Press.Google Scholar
  182. Schich, M., & Coscia, M. (2011). Exploring co-occurrence on a meso and global level using network analysis and rule mining. Proceedings of the ninth workshop on mining and Learning with Graphs (MLG’11). San Diego: ACM.Google Scholar
  183. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic networks: the new challenges. Science, 325(5939), 422–5.Google Scholar
  184. Scott, J. (1991). Social network analysis: a handbook. London: Sage.Google Scholar
  185. Scott, J. (2011). Social physics and social networks. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 55–66). London: Sage.Google Scholar
  186. Scott, J., & Carrington, P. J. (2011). The SAGE handbook of social network analysis. London: Sage.Google Scholar
  187. Shalizi, C. (2011). Power law distributions, 1/f noise, long-memory time series. Retrieved from http://cscs.umich.edu/~crshalizi/notebooks/power-laws.html. Accessed 16 April 2012.
  188. Shuchat, A. (1984). Matrix and network models in archaeology. Mathematics Magazine, 57(1), 3–14.Google Scholar
  189. Sindbæk, S. M. (2007a). Networks and nodal points: the emergence of towns in Early Viking Age Scandinavia. Antiquity, 81(311), 119–132.Google Scholar
  190. Sindbæk, S. M. (2007b). The small world of the Vikings: networks in early medieval communication and exchange. Norwegian Archaeological Review, 40, 59–74.Google Scholar
  191. Smith, D. A., & White, D. R. (1992). Structure and dynamics of the global economy: network analysis of international trade 1965–1980. Social Forces, 70(4), 857–893.Google Scholar
  192. Smoot, M., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431–432.Google Scholar
  193. Snijders, T. A. B. (2005). Models for longitudinal network data. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 215–247). Cambridge: Cambridge University Press.Google Scholar
  194. Snyder, D., & Kick, E. L. (1979). Structural position in the world system and economic growth, 1955–1970: a multiple-network analysis of transnational interactions. The American Journal of Sociology, 84(5), 1096–1126.Google Scholar
  195. Sporns, O. (2002). Network analysis, complexity, and brain function. Complexity, 8(1), 56–60.Google Scholar
  196. Sporns, O., Tononi, G., & Edelman, G. M. (2000). Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10(2), 127–41.Google Scholar
  197. Stumpf, M. P. H., Wiuf, C., & May, R. M. (2005). Subnets of scale-free networks are not scale-free: sampling properties of networks. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4221–4224.Google Scholar
  198. Swanson, S. (2003). Documenting prehistoric communication networks: a case study in the Paquimé polity. American Antiquity, 68(4), 753–767.Google Scholar
  199. Terrell, J. E. (1976). Island biogeography and man in Melanesia. Archaeology and Physical Anthropology in Oceania, 11(1), 1–17.Google Scholar
  200. Terrell, J. E. (1977a). Human biogeography in the Solomon Islands. Fieldiana Anthropology, 68(1), 1–47.Google Scholar
  201. Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology, 9(1), 62–81.Google Scholar
  202. Terrell, J. E. (2010a). Language and material culture on the Sepik Coast of Papua New Guinea: using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. The Journal of Island and Coastal Archaeology, 5(1), 3–32.Google Scholar
  203. Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific islanders. Annals of Human Genetics, 74(3), 211–232.Google Scholar
  204. Turcotte, D. L. (1999). Self-organized criticality. Reports on Progress in Physics, 62, 1377–1430.Google Scholar
  205. Valente, T. W. (1995). Network models of the diffusion of innovations. Creskill: Hampton Press.Google Scholar
  206. Valente, T. W. (2005). Network models and methods for studying the diffusion of innovations. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 98–116). Cambridge: Cambridge University Press.Google Scholar
  207. Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press.Google Scholar
  208. Watts, D. J. (2003). Six degrees: the science of a connected age. London: Vintage.Google Scholar
  209. Watts, D. J. (2004). The “new” science of networks. Annual Review of Sociology, 30(1), 243–270.Google Scholar
  210. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–2.Google Scholar
  211. Watts, D. J., Dodds, P. S., & Newman, M. E. J. (2002). Identity and search in social networks. Science, 296(5571), 1302–5.Google Scholar
  212. West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284(5420), 1677–1679.Google Scholar
  213. White, H. C. (1981). Where do markets come from? The American Journal of Sociology, 87, 517–547.Google Scholar
  214. White, J. G., Southgate, E., Thompson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode C. elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314, 1–340.Google Scholar
  215. Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/. Accessed 16 April 2012.
  216. Wilensky, U. (2005). NetLogo preferential attachment model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. Accessed 16 April 2012.
  217. Wolfe, A. (1978). The rise of network thinking in anthropology. Social Networks, 1, 53–64.Google Scholar
  218. Wolfe, A. W. (2011). Anthropologist view of social network analysis and data mining. SOCNET, 1, 3–19.Google Scholar
  219. Zhuang, E., Chen, G., & Feng, G. (2011). A network model of knowledge accumulation through diffusion and upgrade. Physica A: Statistical Mechanics and its Applications, 390(13), 2582–2592.Google Scholar
  220. Zubrow, E. B. W. (1990). Modelling and prediction with geographic information systems: a demographic example from prehistoric and historic New York. In K. M. S. Allen, S. Green, & E. Zubrow (Eds.), Interpreting space: GIS and archaeology (pp. 307–318). London: Taylor & Francis.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Archaeological Computing Research Group, Department of ArchaeologyUniversity of SouthamptonSouthamptonUK

Personalised recommendations