Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thinking Through Networks: A Review of Formal Network Methods in Archaeology

Abstract

This review aims to expose the potential of formal network methods for archaeology by tracing the origins of the academic traditions, network models, and techniques that have been most influential to archaeologists. A brief discussion of graph theoretic applications in archaeology reveals how graph visualization and analysis was used since the 1960s in a very similar way to later network analysis applications, but did not seem to have influenced the more widespread adoption of network techniques over the past decade. These recent archaeological applications have been strongly influenced by two academic traditions, social network analysis and sociophysics. The most influential and promising techniques and models adopted from these traditions are critically discussed. This review reveals some general trends which are considered to be the result of two critical issues that will need to be addressed in future archaeological network analysis: (1) a general unawareness of the historicity and diversity of formal network methods both within and outside the archaeological discipline has resulted in a very limited methodological scope; (2) the adoption or development of network methods has very rarely been driven by specific archaeological research questions and is dominated by a few popular models and techniques, which has in some cases resulted in a routinized explanatory process. This review illustrates, however, the great potential of formal network methods for archaeology and argues that, if this potential is to be applied in a critical way, a broad multidisciplinary scope is necessary and specific archaeological research contexts should dominate applications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    http://igraph.sourceforge.net/doc/R/00Index.html. Accessed 5 March 2012.

  2. 2.

    http://nodexl.codeplex.com/. Accessed 5 March 2012.

  3. 3.

    http://www.esri.com/software/arcgis/extensions/networkanalyst/index.html. Accessed 5 March 2012

  4. 4.

    A shortest path (or geodesic path) in network terms is the shortest route over the network that runs from one vertex to another along the edges of the network, and the average shortest path length is the average of all shortest path scores between all possible pairs of vertices in the network (Newman, 2010, pp. 136–140; de Nooy et al. 2005, p. 127).

  5. 5.

    Network cohesion (usually called density) is the fraction of the maximum possible number of edges in the network that is actually present (Newman, 2010, p. 134; Wasserman and Faust, 1994, pp. 101–103).

  6. 6.

    The fragmentation curves represent the number of nodes that can be removed before the network falls apart in different components (unconnected parts of a network).

  7. 7.

    The degree of a node equals the number of nodes it is directly related to.

References

  1. Adamic, A. L., & Huberman, B. A. (2000a). Power-law distribution of the World Wide Web. Science, 287(5461), 2115.

  2. Adamic, A. L., & Huberman, B. A. (2000b). The nature of markets on the World Wide Web. Quarterly Journal of Electronic Commerce, 1, 5–12.

  3. Adams, J., Faust, K., & Lovasi, G. S. (2012). Capturing context: integrating spatial and social network analyses. Social Networks, 34(1), 1–5.

  4. Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(January), 47–97.

  5. Albert, R., Jeong, H., & Barabàsi, A.-L. (1999). Internet: diameter of the World-Wide Web. Nature, 401, 130.

  6. Albert, R., Jeong, H., & Barabási, A.-L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–82.

  7. Allen, K. M. S. (1990). Modelling early historic trade in the eastern Great Lakes using geographic information systems. In K. M. S. Allen, S. Green, & E. Zubrow (Eds.), Interpreting space: GIS and archaeology (pp. 319–329). London: Taylor & Francis.

  8. Allen, P. M. (1997). Cities and regions as self-organizing systems. London: Gordon and Breach.

  9. Amaral, L. A. N., Scala, A., Barthélemy, M., & Stanley, H. E. (2000). Classes of small-world networks. Proceedings of the National Academy of Sciences of the United States of America, 97(21), 11149–11152.

  10. Anderson, P. W. (1972). More is different. Science, 177(4047), 393–396.

  11. Bak, P., Tang, C., & Weisenfeld, K. (1987). Self-organized-criticality: an explanation of 1/F noise. Physical Review Letters, 59, 381–384.

  12. Barabási, A.-L. (2002). Linked: the new science of networks. Cambridge: Perseus.

  13. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

  14. Barabási, A.-L., Jeong, H., Neda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614.

  15. Barnes, J. (1972). Social networks. Addison-Wesley Module in Anthropology, 26, 1–29.

  16. Barnes, J., & Harary, F. (1983). Graph theory in network analysis. Social Networks, 5(2), 235–244.

  17. Barthélemy, M. (2010). Spatial networks. arXiv:1010.0302v2, pp. 1–86.

  18. Bascompte, J. (2009). Disentangling the web of life. Science, 325(5939), 416–9.

  19. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media.

  20. Bentley, R. A. (2003a). An introduction to complex systems. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 9–23). Salt Lake City: University of Utah Press.

  21. Bentley, R. A. (2003b). Scale-free network growth and social inequality. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 27–46). Salt Lake City: University of Utah Press.

  22. Bentley, R. A., & Maschner, H. D. G. (2003a). Complex systems and archaeology. Salt Lake City: University of Utah Press.

  23. Bentley, R. A., & Maschner, H. D. G. (2003b). Preface: considering complexity theory in archaeology. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 1–8). Salt Lake City: University of Utah Press.

  24. Bentley, R. A., & Maschner, H. D. G. (2007). Complexity theory. In R. A. Bentley & H. D. G. Maschner (Eds.), Handbook of archaeological theories (pp. 245–270). Lanham: AltaMira Press.

  25. Bentley, R. A., & Shennan, S. J. (2003). Cultural transmission and stochastic network growth. American Antiquity, 68(3), 459–485.

  26. Bentley, R. A., & Shennan, S. J. (2005). Random copying and cultural evolution. Science, 309, 877–878.

  27. Bentley, R. A., Lake, M., & Shennan, S. (2005). Specialisation and wealth inequality in a model of a clustered economic network. Journal of Archaeological Science, 32(9), 1346–1356.

  28. Bernardini, W. (2007). Jeddito yellow ware and Hopi social networks. Kiva, 72(3), 295–328.

  29. Bintliff, J. (2004). Time, structure, and agency: the Annales, emergent complexity, and archaeology. In J. Bintliff (Ed.), A companion to archaeology (pp. 174–194). Oxford: Blackwell.

  30. Boissevain, J. (1973). An exploration of two first-order zones. In J. Boissevain & J. Mitchell (Eds.), Network analysis: studies in human interaction. The Hague: Mouton.

  31. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120.

  32. Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

  33. Borgatti, S. P., & Halgin, D. S. (2011). Analyzing affiliation networks. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 417–433). London: Sage.

  34. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet 6 for Windows: software for social network analysis, analytic technologies. Harvard University.

  35. Borgatti, S. P., Mehra, A., Brass, D. J., & Labianca, G. (2009). Network analysis in the social sciences. Science, 323(April), 892–896.

  36. Bott, E. (1957). Family and social network. London: Tavistock.

  37. Bouchaud, J., & Mézard, M. (2000). Wealth condensation in a simple model of economy. Physica A: Statistical Mechanics and its Applications, 282(3–4), 536–545.

  38. Box, G. E. P., & Draper, N. R. (1987). Empirical model-building and response surfaces. Oxford: Wiley.

  39. Branting, S. (2007). Using an urban street network and a PGIS-T approach to analyze ancient movement. In E. M. Clark & J. D. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA conference, Fargo, 2006 (pp. 87–96). Budapest.

  40. Breiger, R. L. (1981). The social class structure of occupational mobility. The American Journal of Sociology, 87, 578–611.

  41. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., & Wiener, J. (2000). Graph structure in the Web. Computer Networks, 33(1–6), 309–320.

  42. Broodbank, C. (2000). An island archaeology of the early Cyclades. Cambridge: Cambridge University Press.

  43. Brughmans, T. (2010). Connecting the dots: towards archaeological network analysis. Oxford Journal of Archaeology, 29(3), 277–303.

  44. Brughmans, T. (2012). Facebooking the past: a critical social network analysis approach for archaeology. In A. Chrysanthi, P. Flores, & C. Papadopoulos (Eds.), Thinking beyond the tool: archaeological computing and the interpretative process. British Archaeological Reports International Series. Oxford: Archaeopress.

  45. Brughmans, T., & Poblome, J. (2012). Pots in space: understanding Roman pottery distribution from confronting exploratory and geographical network analyses. In E. Barker, S. Bouzarovski, C. Pelling & L. Isaksen (Eds.), New worlds out of old texts: developing techniques for the spatial analysis of ancient narratives. Oxford: Oxford University Press (in press).

  46. Brughmans, T., Keay, S., & Earl, G. (2012). Complex networks in archaeology: urban connectivity in Iron Age and Roman southern Spain. Leonardo, 45(3).

  47. Brusasco, P. (2004). Theory and practice in the study of Mesopotamian domestic space. Antiquity, 78, 142–157.

  48. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025–8.

  49. Burt, R. S. (2011). Neighbor networks: competitive advantage local and personal. Oxford: Oxford Univeristy Press.

  50. Butts, C. (2006). Exact bounds for degree centralization. Social Networks, 28(4), 283–296.

  51. Carlson, R. O. (1965). Adoption of educational innovations. University of Oregon, Eugene. Center for Advanced Study of Educational Administration.

  52. Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis. Cambridge: Cambridge University Press.

  53. Cho, A. (2009). Ourselves and our interactions: the ultimate physics problem? Science, 325(5939), 406–8.

  54. Chorley, R. J., & Haggett, P. (1967). Models in geography. London: Methuen.

  55. Chorley, R. J., & Haggett, P. (1970). Integrated models in geography. London: Methuen.

  56. Collar, A. C. F. (2007). Network theory and religious innovation. Mediterranean Historical Review, 22(1), 149–162.

  57. Collar, A. C. F. (2008). Networks and religious innovation in the Roman Empire. Unpublished PhD thesis, University of Exeter.

  58. Costa, L. D. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: a survey of measurements. Advances in Physics, 56(1), 167–242.

  59. Cowan, R., & Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control, 28(8), 1557–1575.

  60. Coward, F. (2010). Small worlds, material culture and ancient Near Eastern social networks. Proceedings of the British Academy, 158, 453–484.

  61. Coward, F. (2012). Grounding the net: social networks, material culture and geography in the Epipalaeolithic and Early Neolithic of the Near East (~21,000–6,000 cal BCE). In C. Knappett & R. Rivers (Eds.), New approaches in regional network analysis. Oxford: Oxford University Press (in press).

  62. Cutting, M. (2003). The use of spatial analysis to study prehistoric settlement architecture. Oxford Journal of Archaeology, 22, 1–21.

  63. Cutting, M. (2006). More than one way to study a building: approaches to prehistoric household and settlement space. Oxford Journal of Archaeology, 25, 225–246.

  64. de Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory social network analysis with Pajek. Cambridge: Cambridge University Press.

  65. de Sola Pool, I., & Kochen, M. (1978). Contacts and influence. Social Networks, 1, 1–48.

  66. Degenne, A., & Forsé, M. (1994). Les réseaux sociaux. Une approche structurale en sociologie. Paris.

  67. Doran, J. E., & Hodson, F. R. (1975). Mathematics and computers in archaeology. Cambridge: Harvard University Press.

  68. Earl, G., & Keay, S. (2007). Urban connectivity of Iberian and Roman towns in southern Spain: a network analysis approach. In J. T. Clark & E. M. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA conference, Fargo, 2006 (pp. 77–86). Budapest: Archaeolingua.

  69. Epstein, A. L. (1969). Gossip, norms and social network. In J. C. Mitchell (Ed.), Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester: Manchester University Press.

  70. Erdős, P., & Renyi, A. (1959). On random graphs. Publicationes Mathematicae, 6, 290–297.

  71. Erdős, P., & Renyi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

  72. Erdős, P., & Rényi, A. (1961). On the strength of connectedness of a random graph. Acta Mathematica Scientia Hungarica, 12, 261–267.

  73. Erickson, B. (1988). The relational basis of attitudes. In B. Wellman et al. (Eds.), Social structures: a network approach (pp. 99–121). Cambridge: Cambridge University Press.

  74. Evans, T., Knappett, C., & Rivers, R. (2009). Using statistical physics to understand relational space: a case study from Mediterranean prehistory. In D. Lane, D. Pumain, S. Van Der Leeuw, & G. West (Eds.), Complexity perspectives in innovation (pp. 451–479). Berlin: Springer.

  75. Everett, M. G., & Borgatti, S. P. (2005). Extending centrality. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 57–76). Cambridge: Cambridge University Press.

  76. Fairclough, G. (1992). Meaningful constructions—spatial and functional analysis of medieval buildings. Antiquity, 66, 348–366.

  77. Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topology. Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication (pp. 251–262). ACM.

  78. Faust, K. (2005). Using correspondence analysis for joint displays of affiliation networks. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 117–147). Cambridge: Cambridge University Press.

  79. Foster, S. M. (1989). Analysis of spatial patterns in buildings (access analysis) as an insight into social structure: examples from the Scottish Atlantic Iron Age. Antiquity, 63, 40–50.

  80. Frank, O. (2005). Network sampling and model fitting. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 31–56). Cambridge: Cambridge University Press.

  81. Frank, S. A. (2009). The common patterns of nature. Journal of Evolutionary Biology, 22(8), 1563–85.

  82. Freeman, L. C. (1979). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.

  83. Freeman, L. C. (2004). The development of social network analysis. Vancouver: Empirical Press.

  84. Freeman, L. C. (2005). Graphic techniques for exploring social network data. In P. K. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 248–268). Cambridge: Cambridge University Press.

  85. Garfield, E. (1979). It’s a small world after all. In E. Garfield (Ed.), Essays of an information scientist (pp. 299–304). Philadelphia: ISI.

  86. Garfield, E., Irving, H. S., & Richard, J. T. (1964). The use of citation data in writing the history of science. Philadelphia: Institute for Scientific Information.

  87. Garnsey, E., & McGlade, J. (2006). Complexity and co-evolution: continuity and change in socio-economic systems. Cheltenham: Elgar.

  88. Gastner, M. T., & Newman, M. E. J. (2006). The spatial structure of networks. The European Physical Journal B, 49(2), 247–252.

  89. Golbeck, J., & Mutton, P. (2005). Spring-embedded graphs for semantic visualization. In V. Geroimenko & C. Chen (Eds.), Visualizing the semantic Web: XML-based Internet and information visualization (pp. 172–182). London: Springer.

  90. Graham, S. (2006a). Networks, agent-based models and the Antonine itineraries: implications for Roman archaeology. Journal of Mediterranean Archaeology, 19(1), 45–64.

  91. Graham, S. (2006b). EX FIGLINIS, the network dynamics of the Tiber valley brick industry in the hinterland of Rome, BAR international series 1486. Oxford: Archaeopress.

  92. Graham, S. (2009). The space between: the geography of social networks in the Tiber valley. In F. Coarelli & H. Patterson (Eds.), Mercator Placidissimus: the Tiber Valley in antiquity. New research in the upper and middle river valley. Rome: Edizioni Quasar.

  93. Grahame, M. (1997). Public and private in the Roman House: the spatial order of the Casa Del Fauno. In R. Laurence & A. Wallace-Hadrill (Eds.), Domestic space in the Roman world: Pompeii and beyond (Journal of Roman Archaeology, Supplementary Series, 22) (pp. 137–164). Portsmouth, Rhode Island.

  94. Granovetter, M. S. (1973). The strength of weak ties. The American Journal of Sociology, 78(5), 1360–1380.

  95. Granovetter, M. S. (1983). The strength of weak ties: a network theory revisited. Sociological Theory, 1(1), 201–233.

  96. Granovetter, M. (1985). Economic action and social structure: the problem of embeddedness. The American Journal of Sociology, 91(3), 481–510.

  97. Guardiola, X., Díaz-Guilera, A., Pérez, C., Arenas, A., & Llas, M. (2002). Modeling diffusion of innovations in a social network. Physical Review E, 66(2).

  98. Hage, P., & Harary, F. (1983). Structural models in anthropology. Cambridge: Cambridge University Press.

  99. Hage, P., & Harary, F. (1996). Island networks: communication, kinship and classification structures in Oceania. Cambridge: Cambridge University Press.

  100. Haggett, P. (1965). Locational analysis in human geography. London: Wiley.

  101. Haggett, P. (1970). Network models in geography. In R. J. Chorley & P. Haggett (Eds.), Integrated models in geography (pp. 609–668). London: Methuen.

  102. Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Arnold.

  103. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. CA: University of California Riverside.

  104. Harary, F., Norman, R. Z., & Cartwright, D. (1965). Structural models: an introduction to the theory of directed graphs. New York: Wiley.

  105. Hart, J. P., & Engelbrecht, W. (2012). Northern Iroquoian ethnic evolution: a social network analysis. Journal of Archaeological Method and Theory (in press).

  106. Hillier, B., & Hanson, J. (1984). The social logic of space. Cambridge: Cambridge University Press.

  107. Hiorns, R. W. (1971). Statistical studies in migration. In F. R. Hodson, D. G. Kendall, & P. Tăutu (Eds.), Mathematics in the archaeological and historical sciences. Proceedings of the Anglo-Romanian Conference, Mamaia 1970 (pp. 291–302). Edinburgh: Edinburgh University Press.

  108. Huberman, B. A., & Adamic, L. A. (1999). Growth dynamics of the World-Wide Web. Nature, 401, 131.

  109. Huisman, M., & van Duijn, M. A. J. (2005). Software for social network analysis. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 270–316). Cambridge: Cambridge University Press.

  110. Hummon, N. P., & Doreian, P. (1989). Connectivity in a citation network: the development of DNA theory. Social Networks, 11(1), 39–63.

  111. Hunt, T.L. (1988). Graph theoretic network models for Lapita exchange: a trial application. In Kirch, P. V. and Hunt, T. L. eds., Archaeology of the Lapita cultural complex: a critical review. Thomas Burke Memorial Washington State Museum Research Reports no. 5, Seattle, pp. 135–155.

  112. Irwin, G. (1978). Pots and entrepots: a study of settlement, trade and the development of economic specialization in Papuan prehistory. World Archaeology, 9(3), 299–319.

  113. Irwin-Williams, C. (1977). A network model for the analysis of Prehistoric trade. In T. K. Earle & J. Ericson (Eds.), Exchange systems in Prehistory (pp. 141–151). New York: Academic.

  114. Isaksen, L. (2007). Network analysis of transport vectors in Roman Baetica. In J. T. Clark & E. M. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA Conference, Fargo, 2006 (pp. 76–87). Budapest: Archaeolingua.

  115. Isaksen, L. (2008). The application of network analysis to ancient transport geography: a case study of Roman Baetica. Digital Medievalist 4. Retrieved 19 March 2012 from http://www.digitalmedievalist.org/journal/4/isaksen/. Accessed 16 April 2012.

  116. Janssen, M. A. (2005). Review: complex systems and archaeology: empirical and theoretical applications. American Journal of Archaeology, 109(3), 568–569.

  117. Jenkins, D. (2001). A network analysis of Inka roads, administrative centers, and storage facilities. Ethnohistory, 48(4), 655.

  118. Jiménez, D., & Chapman, D. (2002). An application of proximity graphs in archaeological spatial analysis. In D. Wheatley, G. Earl, & S. Poppy (Eds.), Contemporary themes in archaeological computing (pp. 90–99). Oxford: Oxbow Books.

  119. Jin, E. M., Girvan, M., & Newman, M. E. J. (2001). Structure of growing social networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 64(4 Pt 2), 046132.

  120. Johnson, J. C. (1994). Anthropological contributions to the study of social networks: a review. In S. Wasserman & J. Galaskiewicz (Eds.), Advances in social network analysis (pp. 113–151). London: Sage.

  121. Kapferer, B. (1969). Norms and the manipulation of relationships in a work context. In J. C. Mitchell (Ed.), Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester: Manchester University Press.

  122. Kendall, D. (1969). Incidence matrices, interval graphs and seriation in archeology. Pacific Journal of Mathematics, 28(3), 565–570.

  123. Kendall, D. G. (1971a). Seriation from abundance matrices. In F. R. Hodson, D. G. Kendall, & P. Tăutu (Eds.), Mathematics in the archaeological and historical sciences. Proceedings of the Anglo-Romanian Conference, Mamaia 1970 (pp. 215–252). Edinburgh: Edinburgh University Press.

  124. Kendall, D. G. (1971b). Maps from marriages: an application of non-metric multi-dimensional scaling to parish register data. In F. R. Hodson, D. G. Kendall, & P. Tăutu (Eds.), Mathematics in the archaeological and historical sciences. Proceedings of the Anglo-Romanian Conference, Mamaia 1970 (pp. 303–318). Edinburgh: Edinburgh University Press.

  125. Kleinberg, J. M. (2000). Navigation in a small world. Nature, 406(August), 845.

  126. Knappett, C. (2011). An archaeology of interaction. Network perspectives on material culture and society. Oxford: Oxford University Press.

  127. Knappett, C., Evans, T., & Rivers, R. (2008). Modelling maritime interaction in the Aegean Bronze Age. Antiquity, 82(318), 1009–1024.

  128. Knappett, C., Evans, T., & Rivers, R. (2011). The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network. Antiquity, 85(329), 1008–1023.

  129. Knox, H., Savage, M., & Harvey, P. (2006). Social networks and the study of relations: networks as method, metaphor and form. Economy and Society, 35(1), 113–140.

  130. Kohler, T. A. (2012). Complex systems and archaeology. In I. Hodder (Ed.), Archaeological theory today II. Cambridge: Polity Press.

  131. Korte, C., & Milgram, S. (1970). Acquaintance networks between racial groups—application of the small world method. Journal of Personality and Social Psychology, 15(2), 101.

  132. Krempel, L. (2005). Visualisierung komplexer Strukturen: Grundlagen der Darstellung mehrdimensionaler Netzwerke. Frankfurt: Campus Verlag.

  133. Lane, D., Van der Leeuw, S. E., Pumain, D., & West, G. (2009). Complexity perspectives in innovation and social change. Dordrecht: Springer.

  134. Laumann, E. O., Marsden, P. V., & Prensky, D. (1992). The boundary specification problem in network analysis. In L. C. Freeman, D. White, & A. Romney (Eds.), Research methods in social network analysis (pp. 61–87). Fairfax: George Mason University Press.

  135. Lemercier, C. (2012). Formal network methods in history: why and how? Österreichische Zeitschrift für Geschichtswissenschaften, 1.

  136. Liljeros, F., Edling, C. R., Amaral, L. A., Stanley, H. E., & Aberg, Y. (2001). The web of human sexual contacts. Nature, 411(6840), 907–908.

  137. Malkin, I. (2011). A small Greek world: networks in the Ancient Mediterranean. Oxford: Oxford University Press.

  138. Maoz, Z. (2011). Networks of nations. The evolution, structures, and impact of international networks, 1816–2001. Cambridge: Cambridge University Press.

  139. Markovsky, B., Willer, D., & Patton, T. (1988). Power relations in exchange networks. American Sociological Review, 53(2), 220–236.

  140. Marsden, P. V. (2002). Egocentric and sociocentric measures of network centrality. Social Networks, 24(4), 407–422.

  141. Marsden, P. V. (2005). Recent developments in network measurement. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 8–30). Cambridge: Cambridge University Press.

  142. Maschner, H. D. G., & Bentley, R. A. (2003). The power law of rank and household on the North Pacific. In R. A. Bentley & H. D. G. Maschner (Eds.), Complex systems and archaeology (pp. 47–60). Salt Lake City: University of Utah Press.

  143. McGlade, J. (2005). Systems and simulacra: modeling, simulation, and archaeological interpretation. In H. D. G. Maschner & C. Chippindale (Eds.), Handbook of archaeological methods (pp. 554–602). Lanham: AltaMira Press.

  144. Michael, J. H., & Massey, J. G. (1997). Modelling the communication network in a sawmill. Forest Products Journal, 47, 25–30.

  145. Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–67.

  146. Milgram, S. (1992). The individual in a social world: essays and experiments (2nd ed.). New York: McGraw-Hill.

  147. Mills, B. J., Roberts, J. M. Jr., Clark, J. J., Haas, W. R. Jr., Peeples, M. A., & Borck, L. (2012). The dynamics of social networks in the Late Prehispanic U.S. southwest. In C. Knappett & R. Rivers (Eds.), New approaches in regional network analysis. Oxford: Oxford University Press (in press).

  148. Mitchell, J. D. (1969). Social networks in urban situations: analyses of personal relationships in Central African towns. Manchester: Manchester University Press.

  149. Mitchell, J. C. (1974). Social networks. Annual Review of Anthropology, 3, 279–299.

  150. Mitchell, M. (2009). Complexity: a guided tour. New York: Oxford University Press.

  151. Mizoguchi, K. (2009). Nodes and edges: a network approach to hierarchisation and state formation in Japan. Journal of Anthropological Archaeology, 28(1), 14–26.

  152. Moreno, J. L. (1934). Who shall survive? Washington, DC: Nervous and Mental Disease Publishing Company.

  153. Moreno, J. L. (1946). Sociogram and sociomatrix: a note to the paper by Forsyth and Katz. Sociometry, 9, 348–349.

  154. Moreno, J. L. (1960). The sociometry reader. Glencoe: The Free Press.

  155. Moreno, J. L., & Jennings, H. H. (1938). Statistics of social configurations. Sociometry, 1, 342–374.

  156. Munson, J. L., & Macri, M. J. (2009). Sociopolitical network interactions: a case study of the Classic Maya. Journal of Anthropological Archaeology, 28(4), 424–438.

  157. Newman, M. E. J. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 1–8.

  158. Newman, M. (2003a). Ego-centered networks and the ripple effect. Social Networks, 25(1), 83–95.

  159. Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review, 45, 167–256.

  160. Newman, M. E. J. (2010). Networks: an introduction. Oxford: Oxford Univeristy Press.

  161. Newman, M. E. J., & Park, J. (2003). Why social networks are different from other types of networks. Physical Review E, 68(3), 1–8.

  162. Orton, C. (1980). Mathematics in archaeology. London: Collins.

  163. Orton, C. (2000). Sampling in archaeology. Cambridge: Cambridge University Press.

  164. Osa, M. (2003). Solidarity and contention: networks of Polish opposition. Minneapolis: University of Minnesota Press.

  165. Peeples, M. A. (2011). Identity and social transformation in the Prehispanic Cibola world: A.D. 1150–1325. Unpublished PhD thesis, Arizona State University.

  166. Peregrine, P. (1991). A graph-theoretic approach to the evolution of Cahokia. American Antiquity, 56(1), 66–75.

  167. Phillips, S. C. (2011). Networked glass: lithic raw material consumption and social networks in the Kuril islands, Far Eastern Russia. Unpublished PhD thesis, University of Washington, Seattle.

  168. Pitts, F. R. (1965). A graph theoretic approach to historical geography. The Professional Geographer, 17(5), 15–20.

  169. Pitts, F. (1979). The medieval river trade network of Russia revisited. Social Networks, 1(3), 285–292.

  170. Pouncett, J., & Lock, G. (2007). A vector-based approach to the integration of geophysical and test-pitting data: phasing the South Cadbury Environs Project. In E. M. Clark & J. T. Hagenmeister (Eds.), Digital discovery: exploring new frontiers in human heritage. Proceedings of the 34th CAA Conference, Fargo, 2006 (pp. 97–106). Budapest: Archaeolingua.

  171. Riche, N. (2008). Exploring social networks with matrix-based representations.

  172. Rihll, T. E., & Wilson, A. G. (1987). Spatial interaction and structural models in historical analysis: some possibilities and an example. Histoire and Mesure, 2, 5–32.

  173. Rihll, T. E., & Wilson, A. G. (1991). Modelling settlement structures in ancient Greece: new approaches to the polis. In J. Rich & A. Wallace-Hadrill (Eds.), City and country in the ancient world (pp. 59–96). London: Routledge.

  174. Riles, A. (2001). The network inside out. Ann Arbor: University of Michigan Press.

  175. Roberts, S. G. B., Dunbar, R. I. M., Pollet, T. V., & Kuppens, T. (2009). Exploring variation in active network size: constraints and ego characteristics. Social Networks, 31(2), 138–146.

  176. Rogers, E. M. (1979). Network analysis of the diffusion of innovations. In P. W. Holland & S. Leinhardt (Eds.), Perspectives on social network research (pp. 137–164). New York: Academic.

  177. Rogers, E. M. (1995). Diffusion of innovations (4th ed.). New York: The Free Press.

  178. Rothman, M. (1987). Graph theory and the interpretation of regional survey data. Paléorient, 13(2), 73–91.

  179. Ruffini, G. R. (2008). Social networks in Byzantine Egypt. Cambridge: Cambridge University Press.

  180. Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31, 581–603.

  181. Santley, R. S. (1991). The structure of the Aztec transport network. In C. D. Trombold (Ed.), Acient road networks and settlement hierarchies in the New World (pp. 198–210). Cambridge: Cambridge University Press.

  182. Schich, M., & Coscia, M. (2011). Exploring co-occurrence on a meso and global level using network analysis and rule mining. Proceedings of the ninth workshop on mining and Learning with Graphs (MLG’11). San Diego: ACM.

  183. Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., & White, D. R. (2009). Economic networks: the new challenges. Science, 325(5939), 422–5.

  184. Scott, J. (1991). Social network analysis: a handbook. London: Sage.

  185. Scott, J. (2011). Social physics and social networks. In J. Scott & P. J. Carrington (Eds.), The SAGE handbook of social network analysis (pp. 55–66). London: Sage.

  186. Scott, J., & Carrington, P. J. (2011). The SAGE handbook of social network analysis. London: Sage.

  187. Shalizi, C. (2011). Power law distributions, 1/f noise, long-memory time series. Retrieved from http://cscs.umich.edu/~crshalizi/notebooks/power-laws.html. Accessed 16 April 2012.

  188. Shuchat, A. (1984). Matrix and network models in archaeology. Mathematics Magazine, 57(1), 3–14.

  189. Sindbæk, S. M. (2007a). Networks and nodal points: the emergence of towns in Early Viking Age Scandinavia. Antiquity, 81(311), 119–132.

  190. Sindbæk, S. M. (2007b). The small world of the Vikings: networks in early medieval communication and exchange. Norwegian Archaeological Review, 40, 59–74.

  191. Smith, D. A., & White, D. R. (1992). Structure and dynamics of the global economy: network analysis of international trade 1965–1980. Social Forces, 70(4), 857–893.

  192. Smoot, M., Ono, K., Ruscheinski, J., Wang, P.-L., & Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27(3), 431–432.

  193. Snijders, T. A. B. (2005). Models for longitudinal network data. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 215–247). Cambridge: Cambridge University Press.

  194. Snyder, D., & Kick, E. L. (1979). Structural position in the world system and economic growth, 1955–1970: a multiple-network analysis of transnational interactions. The American Journal of Sociology, 84(5), 1096–1126.

  195. Sporns, O. (2002). Network analysis, complexity, and brain function. Complexity, 8(1), 56–60.

  196. Sporns, O., Tononi, G., & Edelman, G. M. (2000). Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10(2), 127–41.

  197. Stumpf, M. P. H., Wiuf, C., & May, R. M. (2005). Subnets of scale-free networks are not scale-free: sampling properties of networks. Proceedings of the National Academy of Sciences of the United States of America, 102(12), 4221–4224.

  198. Swanson, S. (2003). Documenting prehistoric communication networks: a case study in the Paquimé polity. American Antiquity, 68(4), 753–767.

  199. Terrell, J. E. (1976). Island biogeography and man in Melanesia. Archaeology and Physical Anthropology in Oceania, 11(1), 1–17.

  200. Terrell, J. E. (1977a). Human biogeography in the Solomon Islands. Fieldiana Anthropology, 68(1), 1–47.

  201. Terrell, J. E. (1977b). Geographic systems and human diversity in the North Solomons. World Archaeology, 9(1), 62–81.

  202. Terrell, J. E. (2010a). Language and material culture on the Sepik Coast of Papua New Guinea: using social network analysis to simulate, graph, identify, and analyze social and cultural boundaries between communities. The Journal of Island and Coastal Archaeology, 5(1), 3–32.

  203. Terrell, J. E. (2010b). Social network analysis of the genetic structure of Pacific islanders. Annals of Human Genetics, 74(3), 211–232.

  204. Turcotte, D. L. (1999). Self-organized criticality. Reports on Progress in Physics, 62, 1377–1430.

  205. Valente, T. W. (1995). Network models of the diffusion of innovations. Creskill: Hampton Press.

  206. Valente, T. W. (2005). Network models and methods for studying the diffusion of innovations. In P. J. Carrington, J. Scott, & S. Wasserman (Eds.), Models and methods in social network analysis (pp. 98–116). Cambridge: Cambridge University Press.

  207. Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge: Cambridge University Press.

  208. Watts, D. J. (2003). Six degrees: the science of a connected age. London: Vintage.

  209. Watts, D. J. (2004). The “new” science of networks. Annual Review of Sociology, 30(1), 243–270.

  210. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–2.

  211. Watts, D. J., Dodds, P. S., & Newman, M. E. J. (2002). Identity and search in social networks. Science, 296(5571), 1302–5.

  212. West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284(5420), 1677–1679.

  213. White, H. C. (1981). Where do markets come from? The American Journal of Sociology, 87, 517–547.

  214. White, J. G., Southgate, E., Thompson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode C. elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314, 1–340.

  215. Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/. Accessed 16 April 2012.

  216. Wilensky, U. (2005). NetLogo preferential attachment model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. Accessed 16 April 2012.

  217. Wolfe, A. (1978). The rise of network thinking in anthropology. Social Networks, 1, 53–64.

  218. Wolfe, A. W. (2011). Anthropologist view of social network analysis and data mining. SOCNET, 1, 3–19.

  219. Zhuang, E., Chen, G., & Feng, G. (2011). A network model of knowledge accumulation through diffusion and upgrade. Physica A: Statistical Mechanics and its Applications, 390(13), 2582–2592.

  220. Zubrow, E. B. W. (1990). Modelling and prediction with geographic information systems: a demographic example from prehistoric and historic New York. In K. M. S. Allen, S. Green, & E. Zubrow (Eds.), Interpreting space: GIS and archaeology (pp. 307–318). London: Taylor & Francis.

Download references

Acknowledgments

I would like to thank Leif Isaksen, Claire Lemercier, Barbara Mills, Johannes Preiser-Kapeller, Iza Romanowska, John Terrell, and three anonymous reviewers for the many helpful comments on earlier versions of the text; members of the Networks Network Google Group for discussing many of the issues raised in this article; Simon Keay, Graeme Earl and Jeroen Poblome for developing original archaeological applications with me; and special thanks to Fiona Coward and Anna Collar for our collaborative efforts in trying to bring together the growing community of archaeologists interested in networks.

Author information

Correspondence to Tom Brughmans.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brughmans, T. Thinking Through Networks: A Review of Formal Network Methods in Archaeology. J Archaeol Method Theory 20, 623–662 (2013). https://doi.org/10.1007/s10816-012-9133-8

Download citation

Keywords

  • Complex networks
  • Social networks
  • Networks
  • Graphs
  • Archaeology