Journal of Archaeological Method and Theory

, Volume 18, Issue 1, pp 61–109 | Cite as

Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 2: The Chaco Halo, Mesa Verde, Pajarito Plateau/Bandelier, and Zuni Archaeological Regions

Article

Abstract

Chemical and nutrient analyses of 471 soil samples from 161 sites within four archaeological regions (Pajarito Plateau/Bandelier, Zuni, Mesa Verde, and the Chaco Halo) were combined with historical climate data in order to evaluate the agricultural productivity of each region. In addition, maize productivity and field-life calculations were performed using organic-nitrogen (N) values from the upper 50 cm of soil in each region and a range (1–3%/year) of N-mineralization rates. The end-member values of this range were assumed representative of dry and wet climate states. With respect to precipitation and heat, the Pajarito Plateau area has excellent agricultural potential; the agricultural potentials of the Zuni and Mesa Verde regions are good; and the agricultural potential of the Chaco Halo is poor. Calculations of N mineralization and field life indicate that Morfield Valley in Mesa Verde should be able to provide 10 bu/ac of maize for decades (without the addition of N) when organic N-mineralization rates exceed 2%. Productivity and field-life potential decrease in the following order: Zuni, Mesa Verde, Bandelier, Chaco Halo. The Chaco Halo is very unproductive; e.g., 10 bushels per acre can be achieved within the Halo only from soils having the highest organic N concentration (third quartile) and which undergo the highest rate (3%) of N mineralization.

Keywords

Southwest Maize agriculture Soil chemistry Nitrogen mineralization Chaco Halo Mesa Verde Zuni Bandelier 

Supplementary material

10816_2010_9083_MOESM1_ESM.xls (31 kb)
Supplementary Table 1Chemistry of soils from the western Dolores area (XLS 31 kb)
10816_2010_9083_MOESM2_ESM.xls (229 kb)
Supplementary Table 2Site, location, and chemical and physical data for soil samples from the four archaeological areas. (XLS 229 kb)

References

  1. Abdul-Jabbar, A. S., Sammin, J. W., Lugg, D. G., Kallsen, C. E., & Smeal, D. (1983). Water use by alfalfa, maize, and barley as influenced by available soil water. Agricultural Water Management, 6, 351–363.CrossRefGoogle Scholar
  2. Adams, D. K., & Comrie, A. C. (1997). The North American Monsoon. Bulletin of the American Meteorological Society, 78, 2197–2213.CrossRefGoogle Scholar
  3. Allen, R. G., Pruitt, W. O., Raes, D., Smith, M., & Pereira, L. S. (2005). Estimating evaporation from bares soil and the crop coefficient for the initial period using common soils information. Journal of Irrigation and Drainage Engineering, 131, 14–23.CrossRefGoogle Scholar
  4. Arrhenius, G., & Bonatti, E. (1965). The Mesa Verde loess. In Contributions of the Wetherill Mesa archaeological project (pp. 92–100). Salt Lake City: The University of Utah Press. Memoirs of the Society of American Archaeology no. 18.Google Scholar
  5. Barry, R. G. (1992). Mountain weather and climate. Cambridge: Cambridge University Press.Google Scholar
  6. Bellorado, B.A. (2007). Breaking down the models: reconstructing prehistoric subsistence agriculture in the Durango District of Southwestern Colorado. Unpublished M.A. dissertation. Department of Anthropology, Northern Arizona University, FlagstaffGoogle Scholar
  7. Benson, L.V. (2010). Factors controlling PreColumbian and early historic maize productivity in the American Southwest, Part 1: The southern Colorado Plateau and Rio Grande regions. Journal of Archaeological Method and Theory, XX, yy–pp.Google Scholar
  8. Benson, L. V., & Berry, M. S. (2009). Climate change and cultural response in the prehistoric American Southwest. Kiva, 75, 89–119.Google Scholar
  9. Benson, L. V., & White, J. W. C. (1994). Stable isotopes of oxygen and hydrogen in the Truckee River–Pyramid Lake surface-water system. 3. Sources of water vapor overlying Pyramid Lake. Limnology and Oceanography, 39, 1945–1958.CrossRefGoogle Scholar
  10. Berzsenyi, Z, & Lap, D.Q. (2004). Studies on the effect of plant density on maize growth using the Richards Function. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia.Google Scholar
  11. Bradfield, M. (1971). The changing pattern of Hopi agriculture. Royal Anthropological Institute Occasional Paper No. 30.Google Scholar
  12. Brown, G. M., Windes, T. C., & McKenna, P. J. (2008). Animas anamnesis: Aztec ruins or Anasazi capital? In P. F. Reed (Ed.), Chaco’s northern prodigies (pp. 231–250). Salt Lake City: The University of Utah Press.Google Scholar
  13. Decker, K.W., & Petersen, K.L. (1987). Sediment and chemical analyses of soil conservation service designated soils. In K.L. Petersen & J.D. Orcutt (Compilers), Dolores archaeological program: supporting studies: settlement and environment (pp. 133–143). Denver: United States Department of the Interior, Bureau of Reclamation Engineering and Research Center.Google Scholar
  14. Doolittle, W.E., & Neely, J.A. (2004). The Safford Valley grids. Tucson: Anthropological Papers of the University of Arizona No. 70.Google Scholar
  15. Fowler, A. P., & Stein, J. R. (1992). The Anasazi great house in space, time, and paradigm. In D. E. Doyel (Ed.), Anasazi regional organization and the Chaco System (pp. 101–123). Albuquerque: Maxwell Museum of Anthropology. Anthropological Papers No. 5.Google Scholar
  16. Friedman, R. A., Stein, J. R., & Blackhorse, T., Jr. (2003). A study of a pre-Columbian irrigation system at Newcomb, New Mexico. Journal of GIS in Archaeology, 1, 4–10.Google Scholar
  17. Gauthier, R., & Herhahn, C. (2005). Why would anyone want to farm here? In R. P. Powers (Ed.), The peopling of Bandelier (pp. 27–34). Santa Fe: School of American Research Press.Google Scholar
  18. Grissino-Mayer, H. D. (1996). A 2129-year reconstruction of precipitation for northwestern New Mexico, USA. In J. S. Dean, D. M. Meko, & T. W. Swetnam (Eds.), Tree-rings, environment and humanity (pp. 191–204). Tucson: The University of Arizona Press.Google Scholar
  19. Homburg, J.A. (2000). Anthropogenic Influences on American Indian Agricultural Soils of the Southwestern United States. Unpublished Ph.D. dissertation, Department of Agronomy, Iowa State University, Ames.Google Scholar
  20. Homburg, J. A., Sandor, J. A., & Norton, J. B. (2005). Anthropogenic influences on Zuni agricultural soils. Geoarchaeology, 20, 661–693CrossRefGoogle Scholar
  21. Jalota, S. K., & Prihar, S. S. (1986). Effects of atmospheric evaporativity, soil type, and redistribution time on evaporation from bare soil. Australian Journal of Soil Research, 24, 357–366.CrossRefGoogle Scholar
  22. Judd, N. M. (1954). The material culture of Pueblo Bonito. Washington D.C.: The Smithsonian Institution.Google Scholar
  23. Judge, W. J. (1989). Chaco Canyon–San Juan basin. In L. S. Cordell & G. J. Gumerman (Eds.), Dynamics of Southwest prehistory (pp. 209–262). Washington D.C.: Smithsonian Institution Press.Google Scholar
  24. Kintigh, K. W., Glowacki, D. M., & Huntley, D. L. (2004). Long-term settlement history and the emergence of towns in the Zuni area. American Antiquity, 69, 432–456.CrossRefGoogle Scholar
  25. Latshaw, J. W., & Miller, E. C. (1924). Elemental composition of the corn plant. Journal of Agricultural Research, 27, 845–861.Google Scholar
  26. Lekson, S. H., & Cameron, C. M. (1995). The abandonment of Chaco Canyon, the Mesa Verde migrations, and the reorganization of the Pueblo world. Journal of Anthropological Archaeology, 14, 184–202.CrossRefGoogle Scholar
  27. Lipe, W. D. (2010). Lost in transit: the central Mesa Verde archaeological complex. In T. A. Kohler, M. D. Varien, & A. Wright (Eds.), Time of peril, time of change: explaining thirteenth-century Pueblo migration (pp. 270–297). Tucson: University of Arizona Press.Google Scholar
  28. Mahoney, N. M., & Kantner, J. (2000). Chacoan archaeology and great house communities. In J. Kantner & N. M. Mahoney (Eds.), Great house communities across the Chacoan landscape (pp. 1–15). Tucson: The University of Arizona Press.Google Scholar
  29. Marshall, M. P., Stein, J. R., Loose, R. W., & Novotny, J. E. (1979). Anasazi communities of the San Juan Basin. Albuquerque: Public Service Company of New Mexico, and Santa Fe: New Mexico Historic Preservation Bureau.Google Scholar
  30. Meko, D. M., & Baisan, C. H. (2001). Pilot study of latewood-width of conifers as an indicator of variability of summer rainfall in the North American Monsoon region. International Journal of Climatology, 21, 697–708.CrossRefGoogle Scholar
  31. Meko, D. M., Woodhouse, C. A., Baisan, C. A., Knight, T., Lukas, J. J., Hughes, M. K., & Salzer, M. W. (2007). Medieval drought in the upper Colorado River Basin. Geophysical Research Letters, 34, L10705.Google Scholar
  32. Muenchrath, D. A., Kuratomi, M., Sandor, J. A., & Homburg, J. A. (2002). Observational study of maize production in semiarid New Mexico. Journal of Ethnobiology, 22, 1–33.Google Scholar
  33. Nordenskiold, G. (1893). The cliff dwellers of Mesa Verde, southwestern Colorado. Glorieta, NM: Rio Grande Press, reprinted 1979.Google Scholar
  34. Norton, E. R., & Silvertooth, J. C. (1998). Field determination of permanent wilting point. In J. C. Silvertooth (Ed.), Cotton, a college of agriculture report series P-112 (pp. 230–237). Tucson: University of Arizona College of Agriculture and Life Sciences, Cooperative Extension Publication No. AZ1006.Google Scholar
  35. Norton, J. B., Sandor, J. A., & White, C. S. (2003). Hillslope soils and organic matter dynamics within a Native American agroecosystems on the Colorado Plateau. Soil Science Society of America Journal, 67, 225–234.CrossRefGoogle Scholar
  36. Norton, J. B., Sandor, J. A., & White, C. S. (2007a). Runoff and sediments from Hillslope soils within a Native American agroecosystem. Soil Science Society of America Journal, 71, 476–483.CrossRefGoogle Scholar
  37. Norton, J. B., Sandor, J. A., White, C. S., & Laahty, V. (2007b). Organic matter transformations through arroyos and alluvial fan soils within a Native American agroecosystem. Soil Science Society of America Journal, 71, 829–835.CrossRefGoogle Scholar
  38. Orcutt, J. D. (1991). Environmental variability and settlement changes on the Pajarito Plateau, New Mexico. American Antiquity, 56, 315–332.CrossRefGoogle Scholar
  39. Ortman, S. G. (2010). Evidence of a Mesa Verde homeland for the Tewa Pueblos. In T. A. Kohler, M. D. Varien, & A. Wright (Eds.), Time of peril, time of change: explaining thirteenth-century Pueblo migration (pp. 233–269). Tucson: University of Arizona Press.Google Scholar
  40. Petersen, K.L. (1986). Climate reconstruction for the Dolores Project area. In D.A. Breternitz, C.K. Robinson, & G.T. Gross (Compilers), Dolores archaeological program: final synthetic report (pp. 311–331). Denver: United States Department of the Interior, Bureau of Reclamation Engineering and Research Center.Google Scholar
  41. Petersen, K.L. (1987). Tree-ring transfer functions for estimating corn production. In K.L. Petersen & J.D. Orcutt (Compilers), Dolores archaeological program: supporting studies: settlement and environment (pp. 217–231). Denver: United States Department of the Interior, Bureau of Reclamation Engineering and Research Center.Google Scholar
  42. Richards, F. J. (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290–300.CrossRefGoogle Scholar
  43. Rohn, A. H. (1963). Prehistoric soil and water conservation on Chapin Mesa, southwestern Colorado. American Antiquity, 28, 441–455.CrossRefGoogle Scholar
  44. Rose, M.R., Dean, J.S., & Robinson, W.J. (1981). The past climate of Arroyo Hondo, New Mexico, reconstructed from tree rings. Arroyo Hondo Archaeological Series 4. Santa Fe: School of American Research Press.Google Scholar
  45. Sandor, J. A., Norton, J. B., Homburg, J. A., Muenchrath, D. A., White, C. S., Williams, S. E., et al. (2007). Biogeochemical studies of a Native American runoff agroecosystem. Geoarchaeology, 22, 359–386.CrossRefGoogle Scholar
  46. Singh, P., & Singh, V. P. (2001). Snow and glacier hydrology. Dordrecht: Kluwer.Google Scholar
  47. Stahle, D. W., Cook, E. R., Cleaveland, M. K., Therrell, M. D., Meko, D. M., Grissino-Mayer, H. D., et al. (2000). Tree-ring data document 16th century megadrought over North America. EOS Transactions of the American Geophysical Union, 81, 121–125.CrossRefGoogle Scholar
  48. Stewart, G.R. (1940). Conservation in Pueblo agriculture. Scientific Monthly, 56, 201–220, 329–340.Google Scholar
  49. Stewart, G. R., & Donnelly. (1943). Soil and water economy in the Pueblo Southwest: I. Field studies at Mesa Verde and northern Arizona. The Scientific Monthly, 56, 31–44.Google Scholar
  50. Taiz, L., & Zeiger, E. (2002). Plant physiology. Sunderland: Sinauer Associates.Google Scholar
  51. USA Climate Archive, 2009. Online @ http://www.wrcc.dri.edu/summary/sodusa.html.
  52. Varien, M. D., Lipe, W. D., Adler, M. A., Thompson, I. M., & Bradley, B. A. (1996). Southwestern Colorado and Southeastern Utah settlement patterns: AD 1100–1300. In M. A. Adler (Ed.), The Prehistoric Pueblo world, AD 1150–1350 (pp. 86–113). Tucson: University of Arizona Press.Google Scholar
  53. Vivian, R. G. (1992). Chacoan water use and managerial decision making. In D. E. Doyel (Ed.), Anasazi regional organization and the Chaco system. Anthropological papers No. 5 (pp. 45–57). Albuquerque: Maxwell Museum of Anthropology, University of New Mexico.Google Scholar
  54. Weaver, J. E. (1926). Root development of field crops. London: McGraw-Hill.Google Scholar
  55. West, A. J. (1962). Snow evaporation from a forested watershed in the central Sierra Nevada. Journal of Forestry, 60, 481–484.Google Scholar
  56. Western Regional Climate Center, 2009. Online @ http://www.wrcc.dri.edu/.
  57. Wilshusen, R. H., & Van Dyke, R. M. (2006). Chaco’s beginnings. In S. H. Lekson (Ed.), The archeology of Chaco Canyon: an eleventh century Pueblo Regional Center (pp. 211–259). Santa Fe: School of American Research Press.Google Scholar
  58. Windes, T. C., & Bacha, E. (2008). Sighting along the grain: differential wood use at the Salmon Ruin. In P. F. Reed (Ed.), Chaco’s northern prodigies (pp. 113–139). Salt Lake City: The University of Utah Press.Google Scholar
  59. Wycoff, D. G. (1977). Secondary forest succession following abandonment of Mesa Verde. Kiva, 42, 215–232.Google Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  1. 1.National Research ProgramU.S. Geological SurveyBoulderUSA

Personalised recommendations