Skip to main content
Log in

The combination of dydrogesterone and micronized vaginal progesterone can render serum progesterone level measurements on the day of embryo transfer and rescue attempts unnecessary in an HRT FET cycle

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the role of serum progesterone (P4) on the day of embryo transfer (ET) when dydrogesterone (DYD) and micronized vaginal progesterone (MVP) are combined as luteal phase support (LPS) in a hormone replacement therapy (HRT) frozen ET (FET) cycles.

Methods

Retrospective study, including single euploid HRT FET cycles with DYD and MVP as LPS and P4 measurement on ET day. Initially, patients with P4 levels < 10 ng/ml increased MVP to 400 mg/day; this “rescue” was abandoned later.

Results

560 cycles of 507 couples were included. In 275 women, serum P4 level was < 10 ng/ml on the ET day. Among those with low P4 levels, MVP dose remained unchanged in 65 women (11.6%) and was increased in 210 women (37.5%). Women with P4 levels ≥ 10 ng/ml continued LPS without modification. Overall pregnancy rates in these groups were 61.5% (40/65), 54.8% (115/210), and 48.4% (138/285), respectively (p = n.s.). Association of serum P4 levels with ongoing pregnancy rates was analyzed in women without any additional MVP regardless of serum P4 levels (n = 350); multivariable analysis (adjusted for age, BMI, embryo quality (EQ)) did not show a significant association of serum P4 levels with OPR (OR 0.96, 95% CI 0.90–1.02; p = 0.185). Using inverse probability treatment weights, regression analysis in the weighted sample showed no significant association between P4 treatment groups and OP. Compared to fair EQ, the transfer of good EQ increased (OR 1.61, 95% CI 1.22–2.15; p = 0.001) and the transfer of a poor EQ decreased the odds of OP (OR 0.73, 95% CI 0.55–0.97; p = 0.029).

Conclusion

In HRT FET cycle, using LPS with 300 mg/day MVP and 30 mg/day DYD, it appears that serum P4 measurement and increase of MVP in patients with P4 < 10 ng/ml are not necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

  1. Shapiro BS, Garner FC, Aguirre M. The freeze-all cycle: a new paradigm shift in ART. In: Nagy ZP, Varghese AC, Agarwal A, editors. In vitro fertilization [Internet]. Cham: Springer International Publishing; 2019. p. 765–78. https://doi.org/10.1007/978-3-319-43011-9_63.

    Chapter  Google Scholar 

  2. European IVF Monitoring Consortium (EIM), for the European Society of Human Reproduction and Embryology (ESHRE), Wyns C, De Geyter C, Calhaz-Jorge C, Kupka MS, Motrenko T, et al. ART in Europe, 2018: results generated from European registries by ESHRE. Hum Reprod Open. 2022;2022:hoac022.

    Article  Google Scholar 

  3. Mumusoglu S, Polat M, Ozbek IY, Bozdag G, Papanikolaou EG, Esteves SC, et al. Preparation of the endometrium for frozen embryo transfer: a systematic review. Front Endocrinol. 2021;12:688237.

    Article  Google Scholar 

  4. Mackens S, Santos-Ribeiro S, Van De Vijver A, Racca A, Van Landuyt L, Tournaye H, et al. Frozen embryo transfer: a review on the optimal endometrial preparation and timing. Hum Reprod. 2017;32:2234–42.

    Article  CAS  PubMed  Google Scholar 

  5. von Versen-Höynck F, Schaub AM, Chi Y-Y, Chiu K-H, Liu J, Lingis M, et al. Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension. 2019;73:640–9.

    Article  Google Scholar 

  6. Pape J, Levy J, von Wolff M. Early pregnancy complications after frozen-thawed embryo transfer in different cycle regimens: a retrospective cohort study. Eur J Obstet Gynecol Reprod Biol. 2022;279:102–6.

    Article  PubMed  Google Scholar 

  7. Roelens C, Blockeel C. Impact of different endometrial preparation protocols before frozen embryo transfer on pregnancy outcomes: a review. Fertil Steril. 2022;118:820–7.

    Article  PubMed  Google Scholar 

  8. Melado Vidales L, Lawrenz B, Vitorino RL, Patel R, Ruiz FJ, Marques LM, et al. Clinical and laboratory parameters associated with cycle outcomes in patients undergoing euploid frozen blastocyst transfer. Reprod BioMed Online. 2023;46:917–25.

    Article  PubMed  Google Scholar 

  9. Ruiz-Alonso M, Valbuena D, Gomez C, Cuzzi J, Simon C. Endometrial receptivity analysis (ERA): data versus opinions. Hum Reprod Open. 2021;2021:hoab011.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Díaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martínez-Conejero JA, Alamá P, et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99:508–17.

    Article  PubMed  Google Scholar 

  11. González-Foruria I, Gaggiotti-Marre S, Álvarez M, Martínez F, García S, Rodríguez I, et al. Factors associated with serum progesterone concentrations the day before cryopreserved embryo transfer in artificial cycles. Reprod BioMed Online. 2020;40:797–804.

    Article  PubMed  Google Scholar 

  12. Lawrenz B, Fatemi HM. Are serum progesterone measurements truly representative for the identification of an adequate luteal phase in hormonal replacement therapy frozen embryo transfers? Hum Reprod. 2022;37:639–43.

    Article  CAS  PubMed  Google Scholar 

  13. Labarta E, Mariani G, Holtmann N, Celada P, Remohí J, Bosch E. Low serum progesterone on the day of embryo transfer is associated with a diminished ongoing pregnancy rate in oocyte donation cycles after artificial endometrial preparation: a prospective study. Hum Reprod. 2017;32:2437–42.

    Article  CAS  PubMed  Google Scholar 

  14. Alsbjerg B, Thomsen L, Elbaek HO, Laursen R, Povlsen BB, Haahr T, et al. Progesterone levels on pregnancy test day after hormone replacement therapy-cryopreserved embryo transfer cycles and related reproductive outcomes. Reprod BioMed Online. 2018;37:641–7.

    Article  CAS  PubMed  Google Scholar 

  15. Gao H, Ye J, Ye H, Hong Q, Sun L, Chen Q. Strengthened luteal phase support for patients with low serum progesterone on the day of frozen embryo transfer in artificial endometrial preparation cycles: a large-sample retrospective trial. Reprod Biol Endocrinol. 2021;19:60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Álvarez M, Gaggiotti-Marre S, Martínez F, Coll L, García S, González-Foruria I, et al. Individualised luteal phase support in artificially prepared frozen embryo transfer cycles based on serum progesterone levels: a prospective cohort study. Hum Reprod. 2021;36:1552–60.

    Article  PubMed  Google Scholar 

  17. du Boulet B, Ranisavljevic N, Mollevi C, Bringer-Deutsch S, Brouillet S, Anahory T. Individualized luteal phase support based on serum progesterone levels in frozen-thawed embryo transfer cycles maximizes reproductive outcomes in a cohort undergoing preimplantation genetic testing. Front Endocrinol. 2022;13:1051857.

    Article  Google Scholar 

  18. Labarta E, Mariani G, Rodríguez-Varela C, Bosch E. Individualized luteal phase support normalizes live birth rate in women with low progesterone levels on the day of embryo transfer in artificial endometrial preparation cycles. Fertil Steril. 2022;117:96–103.

    Article  CAS  PubMed  Google Scholar 

  19. Ozcan P, Cetin C, Okten B, Tanoglu FB, Taha HS, Pasin O, et al. The importance of serum progesterone concentration at embryo transfer day and effect of rescue additional progesterone during programmed artificial frozen embryo transfer cycles. Reprod BioMed Online. 2022;45:785–92.

    Article  CAS  PubMed  Google Scholar 

  20. Labarta E, Sebastian-Leon P, Devesa-Peiro A, Celada P, Vidal C, Giles J, et al. Analysis of serum and endometrial progesterone in determining endometrial receptivity. Hum Reprod. 2021;36(11):2861–2870. https://doi.org/10.1093/humrep/deab184.

  21. Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34:3661–79.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stürmer T, Rothman KJ, Avorn J, Glynn RJ. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution—a simulation study. Am J Epidemiol. 2010;172:843–54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Funk MJ, Westreich D, Wiesen C, Stürmer T, Brookhart MA, Davidian M. Doubly robust estimation of causal effects. Am J Epidemiol. 2011;173:761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. IVF worldwide survery luteal phase support. Available from: https://ivf-worldwide.com/survey/progesterone-support-in-ivf/progesteron-support-in-ivf-results.html. Accessed 04 Nov 2023.

  25. Bulletti C, de Ziegler D, Flamigni C, Giacomucci E, Polli V, Bolelli G, et al. Targeted drug delivery in gynaecology: the first uterine pass effect. Hum Reprod. 1997;12:1073–9.

    Article  CAS  PubMed  Google Scholar 

  26. Nillius SJ, Johansson ED. Plasma levels of progesterone after vaginal, rectal, or intramuscular administration of progesterone. Am J Obstet Gynecol. 1971;110:470–7.

    Article  CAS  PubMed  Google Scholar 

  27. Cometti B. Pharmaceutical and clinical development of a novel progesterone formulation. Acta Obstet Gynecol Scand. 2015;94(Suppl 161):28–37.

    Article  CAS  PubMed  Google Scholar 

  28. Neumann K, Depenbusch M, Schultze-Mosgau A, Griesinger G. Characterization of early pregnancy placental progesterone production by use of dydrogesterone in programmed frozen-thawed embryo transfer cycles. Reprod BioMed Online. 2020;40:743–51.

    Article  CAS  PubMed  Google Scholar 

  29. Patton PE, Lim JY, Hickok LR, Kettel LM, Larson JM, Pau KYF. Precision of progesterone measurements with the use of automated immunoassay analyzers and the impact on clinical decisions for in vitro fertilization. Fertil Steril. 2014;101:1629–36.

    Article  CAS  PubMed  Google Scholar 

  30. Lawrenz B, Sibal J, Garrido N, Abu E, Jean A, Melado L, et al. Inter-assay variation and reproducibility of progesterone measurements during ovarian stimulation for IVF. PLoS One. 2018;13:e0206098.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Labarta E, Mariani G, Paolelli S, Rodriguez-Varela C, Vidal C, Giles J, et al. Impact of low serum progesterone levels on the day of embryo transfer on pregnancy outcome: a prospective cohort study in artificial cycles with vaginal progesterone. Hum Reprod. 2021;36:683–92.

    Article  CAS  PubMed  Google Scholar 

  32. Alsbjerg B, Labarta E, Humaidan P. Serum progesterone levels on day of embryo transfer in frozen embryo transfer cycles—the truth lies in the detail. J Assist Reprod Genet. 2020;37:2045–6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Melo P, Chung Y, Pickering O, Price MJ, Fishel S, Khairy M, et al. Serum luteal phase progesterone in women undergoing frozen embryo transfer in assisted conception: a systematic review and meta-analysis. Fertil Steril. 2021;116(6):1534–56.

    Article  CAS  PubMed  Google Scholar 

  34. Melo P, Wood S, Petsas G, Chung Y, Easter C, Price MJ, et al. The effect of frozen embryo transfer regimen on the association between serum progesterone and live birth: a multicentre prospective cohort study (ProFET). Hum Reprod Open. 2022;2022:hoac054.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shekhar B, Mittal S, Majumdar G, Tiwari N, Majumdar A. Low serum progesterone on day of transfer adversely impacts ongoing pregnancy rates in hormonally prepared single blastocyst frozen embryo transfer cycles. Eur J Obstet Gynecol Reprod Biol. 2023;289:55–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mackens S, Pais F, Drakopoulos P, Amghizar S, Roelens C, Van Landuyt L, et al. Individualized luteal phase support using additional oral dydrogesterone in artificially prepared frozen embryo transfer cycles: is it beneficial? Reprod BioMed Online. 2023;46:939–45.

    Article  PubMed  Google Scholar 

  37. Yarali H, Mumusoglu S, Polat M, Erden M, Ozbek IY, Esteves SC, et al. Comparison of the efficacy of subcutaneous versus vaginal progesterone using a rescue protocol in vitrified blastocyst transfer cycles. Reprod BioMed Online. 2023;47:103233.

    Article  CAS  PubMed  Google Scholar 

  38. Tournaye H, Sukhikh GT, Kahler E, Griesinger G. A Phase III randomized controlled trial comparing the efficacy, safety and tolerability of oral dydrogesterone versus micronized vaginal progesterone for luteal support in in vitro fertilization. Hum Reprod. 2017;32:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Griesinger G, Blockeel C, Sukhikh GT, Patki A, Dhorepatil B, Yang D-Z, et al. Oral dydrogesterone versus intravaginal micronized progesterone gel for luteal phase support in IVF: a randomized clinical trial. Hum Reprod. 2018; https://doi.org/10.1093/humrep/dey306/5125950.

  40. Griesinger G, Blockeel C, Kahler E, Pexman-Fieth C, Olofsson JI, Driessen S, et al. Dydrogesterone as an oral alternative to vaginal progesterone for IVF luteal phase support: a systematic review and individual participant data meta-analysis. PLoS One. 2020;15:e0241044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Henry A, Santulli P, Bourdon M, Treluyer JM, Chouchana L. O-150 Birth defects reporting and the use of oral dydrogesterone in assisted reproductive technology: a global pharmacovigilance study. Hum Reprod. 2023;38:dead093.177.

    Article  Google Scholar 

  42. Vuong LN, Pham TD, Le KTQ, Ly TT, Le HL, Nguyen DTN, et al. Micronized progesterone plus dydrogesterone versus micronized progesterone alone for luteal phase support in frozen-thawed cycles (MIDRONE): a prospective cohort study. Hum Reprod. 2021;36:1821–31.

    Article  CAS  PubMed  Google Scholar 

  43. de Macedo LCGM, Cavagna Neto M, Dzik A, Rocha A, do R, Lima SMRR. Oral dydrogesterone in frozen-thawed embryo transfer cycles. Rev Assoc Med Bras. 1992;2022(68):100–5.

    Google Scholar 

  44. Pabuccu E, Kovanci E, Israfilova G, Tulek F, Demirel C, Pabuccu R. Oral, vaginal or intramuscular progesterone in programmed frozen embryo transfer cycles: a pilot randomized controlled trial. Reprod Biomed Online. 2022;45:1145–51.

    Article  CAS  PubMed  Google Scholar 

  45. Neumann K, Masuch A, Vonthein R, Depenbusch M, Schultze-Mosgau A, Eggersmann TK, et al. Dydrogesterone and 20α-dihydrodydrogesterone plasma levels on day of embryo transfer and clinical outcome in an anovulatory programmed frozen-thawed embryo transfer cycle: a prospective cohort study. Hum Reprod. 2022;37:1183–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lawrenz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawrenz, B., Kalafat, E., Ata, B. et al. The combination of dydrogesterone and micronized vaginal progesterone can render serum progesterone level measurements on the day of embryo transfer and rescue attempts unnecessary in an HRT FET cycle. J Assist Reprod Genet 41, 885–892 (2024). https://doi.org/10.1007/s10815-024-03049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03049-1

Keywords

Navigation