Skip to main content
Log in

A report of two homozygous TERB1 protein-truncating variants in two unrelated women with primary infertility

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the genetic etiology of patients with female infertility.

Methods

Whole Exome Sequencing was performed on genomic DNA extracted from the patient’s blood. Exome data were filtered for damaging rare biallelic variants in genes with possible roles in reproduction. Sanger sequencing was used to validate the selected variants and segregate them in family members.

Results

A novel homozygous likely pathogenic variant, c.626G>A, p.Trp209*, was identified in the TERB1 gene of the patient. Additionally, we report a second homozygous pathogenic TERB1 variant, c.1703C>G, p.Ser568*, in an infertile woman whose azoospermic brother was previously described to be homozygous for her variant.

Conclusions

Here, we report for the first time two homozygous likely pathogenic and pathogenic TERB1 variants, c.626G>A, p.Trp209* and c.1703C>G, p.Ser568*, respectively, in two unrelated women with primary infertility. TERB1 is known to play an essential role in homologous chromosome movement, synapsis, and recombination during the meiotic prophase I and has an established role in male infertility in humans. Our data add TERB1 to the shortlist of Meiosis I genes associated with human infertility in both sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tamrakar SR, Bastakoti R. Determinants of Infertility in Couples. J Nepal Health Res Counc. 2019;17(1):85–89. Published 2019 Apr 28. https://doi.org/10.33314/jnhrc.1827

  2. Sang Q, Ray PF, Wang L. Understanding the genetics of human infertility. Science (New York, N.Y.). 2023;380(6641):158–163. https://doi-org.proxy3.library.mcgill.ca/https://doi.org/10.1126/science.adf7760

  3. DavariTanha F, Mohseni M, Ghajarzadeh M. Sexual function in women with primary and secondary infertility in comparison with controls. Int J Impot Res. 2014;26(4):132–4. https://doi.org/10.1038/ijir.2013.51.

    Article  CAS  Google Scholar 

  4. Carson SA, Kallen AN. Diagnosis and Management of Infertility: A review. JAMA. 2021;326(1):65–76. https://doi.org/10.1001/jama.2021.4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leaver RB. Male infertility: an overview of causes and treatment options. Br J Nurs. 2016;25(18):S35–40. https://doi.org/10.12968/bjon.2016.25.18.S35.

    Article  PubMed  Google Scholar 

  6. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–384. https://doi-org.proxy3.library.mcgill.ca/https://doi.org/10.1038/s41585-018-0003-3

  7. National Health Service. LH and FSH (Gonadotrophins). NHS Gloucestershire Hospitals. 2023. Retrieved December 3, 2023 from https://www.gloshospitals.nhs.uk/our-services/services-we-offer/pathology/tests-and-investigations/lh-and-fsh-gonadotrophins/.

  8. Dayal M, Sagar S, Chaurasia A, Singh U. Anti-mullerian hormone: A new marker of ovarian function. J Obstet Gynaecol India. 2014;64(2):130–3. https://doi.org/10.1007/s13224-013-0482-3.

    Article  CAS  PubMed  Google Scholar 

  9. Salas-Huetos A, Tüttelmann F, Wyrwoll MJ, et al. Disruption of human meiotic telomere complex genes TERB1, TERB2 and MAJIN in men with non-obstructive azoospermia [published correction appears in Hum Genet. 2020 Dec 30;:]. Hum Genet. 2021;140(1):217–227. https://doi.org/10.1007/s00439-020-02236-1.

  10. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Picard Toolkit. Broad Institute, GitHub Repository. Broad Institute. 2019. https://broadinstitute.github.io/picard/.

  12. Nguyen NMP, Ge ZJ, Reddy R, Fahiminiya S, Sauthier P, Bagga R, Sahin FI, Mahadevan S, Osmond M, Breguet M, Rahimi K, Lapensee L, Hovanes K, Srinivasan R, Van den Veyver IB, Sahoo T, Ao A, Majewski J, Taketo T, Slim R. Causative mutations and mechanism of androgenetic hydatidiform moles. Am J Hum Genet. 2018;103(5):740–751. https://doi-org.proxy3.library.mcgill.ca/https://doi.org/10.1016/j.ajhg.2018.10.007.

  13. Karczewski KJ, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886–94. https://doi.org/10.1093/nar/gky1016.

    Article  CAS  PubMed  Google Scholar 

  15. Kopanos C, Tsiolkas V, Kouris A, et al. VarSome: The human genomic variant search engine. Bioinformatics. 2019;35(11):1978–80. https://doi.org/10.1093/bioinformatics/bty897.

    Article  CAS  PubMed  Google Scholar 

  16. Tavtigian SV, Harrison SM, Boucher KM, Biesecker LG. Fitting a naturally scaled point system to the ACMG/AMP variant classification guidelines. Hum Mutat. 2020;41(10):1734–7. https://doi.org/10.1002/humu.24088.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Jack AM. Leunissen: Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35:W71-W74. https://doi.org/10.1093/nar/gkm306

  18. Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R, Bagga R, Kircheisen R, Ao A, Ratti B, Hanash S, Rouleau GA, Slim R. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–2. https://doi.org/10.1038/ng1740.

    Article  CAS  PubMed  Google Scholar 

  19. Hu Z, Yau C, Ahmed AA (2016) masonmd: Making sense of nonsense-mediated decay. https://github.com/zhiyhu/masonmd?tab=readme-ov-file. doi: 10.5281/zenodo.546698.

  20. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2. https://doi.org/10.1038/nmeth.2890.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Tu Z, Watanabe Y, Shibuya H. Distinct TERB1 domains regulate different protein interactions in meiotic telomere movement. Cell Rep. 2017;21(7):1715–26. https://doi.org/10.1016/j.celrep.2017.10.061.

    Article  CAS  PubMed  Google Scholar 

  22. Kherraf ZE, Cazin C, Bouker A, et al. Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. Am J Hum Genet. 2022;109(3):508–17. https://doi.org/10.1016/j.ajhg.2022.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krausz C, Riera-Escamilla A, Moreno-Mendoza D, et al. Genetic dissection of spermatogenic arrest through exome analysis: clinical implications for the management of azoospermic men. Genet Med. 2020;22(12):1956–66. https://doi.org/10.1038/s41436-020-0907-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Alhathal N, Maddirevula S, Coskun S, et al. A genomics approach to male infertility. Genet Med. 2020;22(12):1967–75. https://doi.org/10.1038/s41436-020-0916-0.

    Article  CAS  PubMed  Google Scholar 

  25. Shibuya H, Ishiguro K, Watanabe Y. The TRF1-binding protein TERB1 promotes chromosome movement and telomere rigidity in meiosis. Nat Cell Biol. 2014;16(2):145–56. https://doi.org/10.1038/ncb2896.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Chen Y, Chen J, et al. The meiotic TERB1-TERB2-MAJIN complex tethers telomeres to the nuclear envelope. Nat Commun. 2019;10(1):564. Published 2019 Feb 4. https://doi.org/10.1038/s41467-019-08437-1

  27. Dunce JM, Milburn AE, Gurusaran M, et al. Structural basis of meiotic telomere attachment to the nuclear envelope by MAJIN-TERB2-TERB1. Nat Commun. 2018;9(1):5355. Published 2018 Dec 17. https://doi.org/10.1038/s41467-018-07794-7.

  28. Spindler MC, Redolfi J, Helmprobst F, Kollmannsberger P, Stigloher C, Benavente R. Electron tomography of mouse LINC complexes at meiotic telomere attachment sites with and without microtubules. Commun Biol. 2019;2:376. Published 2019 Oct 14. https://doi.org/10.1038/s42003-019-0621-1

  29. Harmak H, Charoute H, Redouane S, Filali OA, Barakat A, Rouba H. Computational analysis of the potential impact of MTC complex missenses SNPs associated with male infertility. Biomed Res Int. 2022;2022:1664825. https://doi.org/10.1155/2022/1664825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell. 2007;12(6):863–72. https://doi.org/10.1016/j.devcel.2007.03.018.

    Article  CAS  PubMed  Google Scholar 

  31. Horn HF, Kim DI, Wright GD, et al. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. J Cell Biol. 2013;202(7):1023–39. https://doi.org/10.1083/jcb.201304004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Meng Q, Shao B, Zhao D, et al. Loss of SUN1 function in spermatocytes disrupts the attachment of telomeres to the nuclear envelope and contributes to non-obstructive azoospermia in humans. Hum Genet. 2023;142(4):531–41. https://doi.org/10.1007/s00439-022-02515-z.

    Article  CAS  PubMed  Google Scholar 

  33. Wu H, Zhang X, Hua R, et al. Homozygous missense mutation in CCDC155 disrupts the transmembrane distribution of CCDC155 and SUN1, resulting in non-obstructive azoospermia and premature ovarian insufficiency in humans. Hum Genet. 2022;141(11):1795–809. https://doi.org/10.1007/s00439-022-02459-4.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Q, Tao C, Gao S, et al. Homozygous variant in KASH5 causes premature ovarian insufficiency by disordered meiotic homologous pairing. J Clin Endocrinol Metab. 2022;107(9):2589–97. https://doi.org/10.1210/clinem/dgac368.

    Article  PubMed  Google Scholar 

  35. Hou X, Zeb A, Dil S, et al. A homozygous KASH5 frameshift mutation causes diminished ovarian reserve, recurrent miscarriage, and non-obstructive azoospermia in humans. Front Endocrinol (Lausanne). 2023;14:1128362. Published 2023 Feb 14. https://doi.org/10.3389/fendo.2023.1128362.

  36. Hua R, Liu M. Sexual dimorphism in mouse meiosis. Front Cell Dev Biol. 2021;9:670599. Published 2021 May 10. https://doi.org/10.3389/fcell.2021.670599.

  37. Handel MA, Eppig JJ. Sexual dimorphism in the regulation of mammalian meiosis. Curr Top Dev Biol. 1998;37:333–58. https://doi.org/10.1016/s0070-2153(08)60179-9.

    Article  CAS  PubMed  Google Scholar 

  38. Hunt PA, Hassold TJ. Sex matters in meiosis. Science. 2002;296(5576):2181–3. https://doi.org/10.1126/science.1071907.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their relatives for participating in this study, Christina Burhöi for her technical support, Dr. Sophie A. Koser for contacting the study participants, and Mohamed Ramadan for providing his consultation. We acknowledge the use of the Centre d’expertise et de services Génome Québec. This work was supported by the Canadian Institute of Health Research (PJT—180509, OGB – 177939, and PJT—155998). ZY was supported by Mitacs Accelerate (Ref. IT31962). ML was supported by the Research Institute of the McGill University Health Centre Desjardins Studentship, McGill University Faculty of Medicine Internal Studentship, and Travel Funding Support from Réseau Québécois en Reproduction and the Department of Human Genetics of McGill University. CF and FT were supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) sponsored Clinical Research Unit ‘Male Germ Cells’ (CRU326, project number 329621271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Slim.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcin, Z., Liang, M., Abdelrazek, I. et al. A report of two homozygous TERB1 protein-truncating variants in two unrelated women with primary infertility. J Assist Reprod Genet 41, 751–756 (2024). https://doi.org/10.1007/s10815-024-03031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-024-03031-x

Keywords

Navigation