Skip to main content
Log in

Oxygen concentration from days 1 to 3 after insemination affects the embryo culture quality, cumulative live birth rate, and perinatal outcomes

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

We aimed to compare embryo development, cumulative live birth rate (CLBR), and perinatal outcomes of embryos cultured in 20% and 5% oxygen from days 1 to 3 after insemination.

Methods

This retrospective study included patients who received in vitro fertilization (IVF) treatment between January 2015 and November 2019. Embryos of each patient were cultured at 20% or 5% oxygen from days 1–3 after insemination. The primary outcome was CLBR. Propensity score matching (PSM) was used to balance patients’ baseline data in both oxygen groups.

Results

In total, 31,566 patients were enrolled. After PSM, the rate of high-quality day 3 embryos was significantly lower in the 20% than in the 5% oxygen group (0.49 ± 0.33 vs 0.51 ± 0.33; adjusted β = −0.03; 95% confidence interval [CI], −0.03 to −0.02). The CLBR was significantly lower in the 20% than in the 5% oxygen group (58.6% vs. 62.4%; adjusted odds ratio = 0.85; 95% CI, 0.81–0.90). The birthweight and Z score of singletons were significantly higher in the 20% than in the 5% oxygen group (birthweight: 3.30 ± 0.50 vs. 3.28 ± 0.48; adjusted β = 0.022; 95% CI, 0.004–0.040; Z score: 0.26 ± 1.04 vs. 0.22 ± 1.01; adjusted β = 0.037; 95% CI, 0.001–0.074).

Conclusion

Culturing embryos at atmospheric oxygen concentrations from days 1 to 3 compromises embryo quality, reduces CLBR, and affects birthweight. The 5% oxygen concentration is more suitable for embryo culture in IVF laboratories to achieve successful outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):2–22. https://doi.org/10.1093/humupd/dmv034.

    Article  CAS  PubMed  Google Scholar 

  2. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99(2):673–9. https://doi.org/10.1530/jrf.0.0990673.

    Article  CAS  PubMed  Google Scholar 

  3. Edwards RG, Steptoe PC, Purdy JM. Fertilization and cleavage in vitro of preovulator human oocytes. Nature. 1970;227(5265):1307–9.

    Article  CAS  PubMed  Google Scholar 

  4. Edwards RG, Purdy JM, Steptoe PC, Walters DE. The growth of human preimplantation embryos in vitro. Am J Obstet Gynecol. 1981;141(4):408–16. https://doi.org/10.1016/0002-9378(81)90603-7.

    Article  CAS  PubMed  Google Scholar 

  5. Christianson MS, Zhao Y, Shoham G, Granot I, Safran A, Khafagy A, et al. Embryo catheter loading and embryo culture techniques: results of a worldwide Web-based survey. J Assist Reprod Genet. 2014;31(8):1029–36. https://doi.org/10.1007/s10815-014-0250-z.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15(Suppl 2):199–206. https://doi.org/10.1093/humrep/15.suppl_2.199.

    Article  PubMed  Google Scholar 

  7. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13(4):998–1002. https://doi.org/10.1093/humrep/13.4.998.

    Article  CAS  PubMed  Google Scholar 

  8. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99(3):738–44.e4.

  9. Peng H, Shi W, Zhang W, Xue X, Li N, Li W, et al. Better quality and more usable embryos obtained on day 3 cultured in 5% than 20% oxygen: a controlled and randomized study using the sibling oocytes. Reprod Sci. 2016;23(3):372–8. https://doi.org/10.1177/1933719115602761.

    Article  CAS  PubMed  Google Scholar 

  10. Peng ZF, Shi SL, Jin HX, Yao GD, Sun YP. Impact of oxygen concentrations on fertilization, cleavage, implantation, and pregnancy rates of in vitro generated human embryos. Int J Clin Exp Med. 2015;8(4):6179–85.

    PubMed  PubMed Central  Google Scholar 

  11. Gelo N, Kirinec G, Baldani DP, Vrcic H, Jezek D, Milosevic M, et al. Influence of human embryo cultivation in a classic CO2 incubator with 20% oxygen versus benchtop incubator with 5% oxygen on live births: the randomized prospective trial. Zygote. 2019;27(3):131–6. https://doi.org/10.1017/S0967199418000618.

    Article  CAS  PubMed  Google Scholar 

  12. Nastri CO, Nobrega BN, Teixeira DM, Amorim J, Diniz LMM, Barbosa MWP, et al. Low versus atmospheric oxygen tension for embryo culture in assisted reproduction: a systematic review and meta-analysis. Fertil Steril. 2016;106(1):95–104.e17. https://doi.org/10.1016/j.fertnstert.2016.02.037.

    Article  CAS  PubMed  Google Scholar 

  13. McLernon DJ, Raja EA, Toner JP, Baker VL, Doody KJ, Seifer DB, et al. Predicting personalized cumulative live birth following in vitro fertilization. Fertil Steril. 2022;117(2):326–38. https://doi.org/10.1016/j.fertnstert.2021.09.015.

    Article  PubMed  Google Scholar 

  14. Van Montfoort APA, Arts E, Wijnandts L, Sluijmer A, Pelinck MJ, Land JA, et al. Reduced oxygen concentration during human IVF culture improves embryo utilization and cumulative pregnancy rates per cycle. Hum Reprod Open. 2020;2020(1):hoz036. https://doi.org/10.1093/hropen/hoz036.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rho GJ, S B, Kim DS, Son WJ, Cho SR, Kim JG, et al. Influence of in vitro oxygen concentrations on preimplantation embryo development, gene expression and production of Hanwoo calves following embryo transfer. Mol Reprod Dev. 2007;74(4):486–96. https://doi.org/10.1002/mrd.20502.

  16. Mantikou E, Jonker MJ, Wong KM, van Montfoort AP, de Jong M, Breit TM, et al. Factors affecting the gene expression of in vitro cultured human preimplantation embryos. Hum Reprod. 2016;31(2):298–311. https://doi.org/10.1093/humrep/dev306.

    Article  CAS  PubMed  Google Scholar 

  17. Li W, Goossens K, Van Poucke M, Forier K, Braeckmans K, Van Soom A, et al. High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reprod Fertil Dev. 2016;28(7):948–59. https://doi.org/10.1071/RD14133.

    Article  CAS  PubMed  Google Scholar 

  18. Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130(6):899–905.

    Article  CAS  PubMed  Google Scholar 

  19. Ma YY, Chen HW, Tzeng CR. Low oxygen tension increases mitochondrial membrane potential and enhances expression of antioxidant genes and implantation protein of mouse blastocyst cultured in vitro. J Ovarian Res. 2017;10(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rendon Abad M, Serra V, Gamiz P, de Los Santos JM, Remohi J, Navarro AT, et al. The influence of oxygen concentration during embryo culture on obstetric and neonatal outcomes: a secondary analysis of a randomized controlled trial. Hum Reprod. 2020;35(9):2017–25. https://doi.org/10.1093/humrep/deaa152.

    Article  PubMed  Google Scholar 

  21. Tan YQ, Tan K, Zhang SP, Gong F, Cheng DH, Xiong B, et al. Single-nucleotide polymorphism microarray-based preimplantation genetic diagnosis is likely to improve the clinical outcome for translocation carriers. Hum Reprod. 2013;28(9):2581–92. https://doi.org/10.1093/humrep/det271.

    Article  CAS  PubMed  Google Scholar 

  22. Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2(8):705–8. https://doi.org/10.1093/oxfordjournals.humrep.a136618.

    Article  CAS  PubMed  Google Scholar 

  23. Cimadomo D, Soscia D, Vaiarelli A, Maggiulli R, Capalbo A, Ubaldi FM, et al. Looking past the appearance: a comprehensive description of the clinical contribution of poor-quality blastocysts to increase live birth rates during cycles with aneuploidy testing. Hum Reprod. 2019;34(7):1206–14. https://doi.org/10.1093/humrep/dez078.

    Article  PubMed  Google Scholar 

  24. Duffy JMN, Bhattacharya S, Bhattacharya S, Bofill M, Collura B, Curtis C, et al. Standardizing definitions and reporting guidelines for the infertility core outcome set: an international consensus development study. Fertil Steril. 2021;115(1):201–12. https://doi.org/10.1016/j.fertnstert.2020.11.013.

    Article  CAS  PubMed  Google Scholar 

  25. Dai L, Deng C, Li Y, Zhu J, Zhang Y. Birth Weight Reference Percentiles for Chinese. PLoS One. 2014;9(8):e104779.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Garrido MM, Kelley AS, Paris J, Roza K, Meier DE, Morrison RS, et al. Methods for constructing and assessing propensity scores. Health Serv Res. 2014;49(5):1701–20. https://doi.org/10.1111/1475-6773.12182.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score matching. J Econ Surv. 2008;22(1):31–72.

  28. Hade EM, Lu B. Bias associated with using the estimated propensity score as a regression covariate. Stat Med. 2014;33(1):74–87. https://doi.org/10.1002/sim.5884.

    Article  PubMed  Google Scholar 

  29. Abadie A, Imbens GW. Matching on the estimated propensity score. Econometrica. 2016;84(2):781–807. https://doi.org/10.3982/ecta11293.

  30. De L, Gámiz P, Albert C, Galán A, Viloria T, Pérez S, et al. Reduced oxygen tension improves embryo quality but not clinical pregnancy rates: a randomized clinical study into ovum donation cycles. Fertil Steril. 2013;100(2):402–7.

    Article  Google Scholar 

  31. Bagheri D, Kazemi P, Sarmadi F, Shamsara M, Hashemi E, Daliri Joupari M, et al. Low oxygen tension promotes invasive ability and embryo implantation rate. Reprod Biol. 2018;18(3):295–300. https://doi.org/10.1016/j.repbio.2018.05.003.

    Article  PubMed  Google Scholar 

  32. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril. 2013;99(3):738–44 e4. https://doi.org/10.1016/j.fertnstert.2012.11.028.

    Article  PubMed  Google Scholar 

  33. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod BioMed Online. 2010;21(3):402–10.

    Article  CAS  PubMed  Google Scholar 

  34. Ufer C, Wang CC. The roles of glutathione peroxidases during embryo development. Front Mol Neurosci. 2011;4:12. https://doi.org/10.3389/fnmol.2011.00012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod BioMed Online. 2010;21(3):402–10. https://doi.org/10.1016/j.rbmo.2010.04.028.

    Article  CAS  PubMed  Google Scholar 

  36. Chi HJ, Koo JJ, Choi SY, Jeong HJ, Roh SI. Fragmentation of embryos is associated with both necrosis and apoptosis. Fertil Steril. 2011;96(1):187–92. https://doi.org/10.1016/j.fertnstert.2011.04.020.

    Article  PubMed  Google Scholar 

  37. Bedaiwy MA, Falcone T, Mohamed MS, Aleem AA, Sharma RK, Worley SE, et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004;82(3):593–600. https://doi.org/10.1016/j.fertnstert.2004.02.121.

    Article  CAS  PubMed  Google Scholar 

  38. Bertolini M, Mason JB, Beam SW, Carneiro GF, Sween ML, Kominek DJ, et al. Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology. 2002;58(5):973–94. https://doi.org/10.1016/s0093-691x(02)00935-4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all staff members of the IVF group at the Reproductive and Genetic Hospital of CITIC-Xiangya.

Author information

Authors and Affiliations

Authors

Contributions

LC and SM were in charge of the conception, design, and drafting of the article. MX, FG, and CL contributed to data acquisition. SZ and GL were in charge of advice on the experimental design and revising the results. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Shuoping Zhang or Ge Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Table S1. Clinical and perinatal outcomes of the first transfer cycle between 20% and 5% oxygen groups. (XLSX 12 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ma, S., Xie, M. et al. Oxygen concentration from days 1 to 3 after insemination affects the embryo culture quality, cumulative live birth rate, and perinatal outcomes. J Assist Reprod Genet 40, 2609–2618 (2023). https://doi.org/10.1007/s10815-023-02943-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02943-4

Keywords

Navigation