Skip to main content
Log in

Comprehensive analysis of lncRNA-miRNA-mRNA ceRNA network and key genes in granulosa cells of patients with biochemical primary ovarian insufficiency

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Primary ovarian insufficiency (POI) is a common condition leading to the pathological decline of ovarian function in women of reproductive age, resulting in amenorrhea, hypogonadism, and infertility. Biochemical premature ovarian insufficiency (bPOI) is an intermediate stage in the pathogenesis of POI in which the fertility of patients has been reduced. Previous studies suggest that granulosa cells (GCs) play an essential role in the pathogenesis of POI, but their pathogenetic mechanisms remain unclear. To further explore the potential pathophysiological mechanisms of GCs in POI, we constructed a molecular long non-coding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network using GC expression data collected from biochemical premature ovarian failure (bPOI) patients in the GEO database. We discovered that the GCs of bPOI patients had differential expression of 131 mRNAs, 191 lncRNAs, and 28 miRNAs. By systematic network analysis, we identified six key genes, including SRSF1, PDIA5, NEURL1B, UNK, CELF2, and CFL2, and five hub miRNAs, namely hsa-miR-27a-3p, hsa-miR-24-3p, hsa-miR-22-3p, hsa-miR-129-5p, and hsa-miR-17-5p, and the results suggest that the expression of these key genes may be regulated by two hub miRNAs, hsa-miR-27a-3p and hsa-miR-17-5p. Additionally, a POI model in vitro was created to confirm the expression of a few important genes. In this study, we discovered a unique lncRNA-miRNA-mRNA network based on the ceRNA mechanism in bPOI for the first time, and we screened important associated molecules, providing a partial theoretical foundation to better understand the pathogenesis of POI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available in the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database (Accession Number: GSE135697, GSE100238).

References

  1. Jiao X, Ke H, Qin Y, Chen ZJ. Molecular genetics of premature ovarian insufficiency. Trends Endocrinol Metab. 2018;29:795–807.

    Article  PubMed  CAS  Google Scholar 

  2. Lew R. Natural history of ovarian function including assessment of ovarian reserve and premature ovarian failure. Best Pract Res Clin Obstet Gynaecol. 2019;55:2–13.

    Article  PubMed  Google Scholar 

  3. Huhtaniemi I, Hovatta O, La Marca A, Livera G, Monniaux D, Persani L, et al. Advances in the molecular pathophysiology, genetics, and treatment of primary ovarian insufficiency. Trends Endocrinol Metab. 2018;29:400–19.

    Article  PubMed  CAS  Google Scholar 

  4. Tu J, Chen Y, Li Z, Yang H, Chen H, Yu Z. Long non-coding RNAs in ovarian granulosa cells. J Ovarian Res. 2020;13:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Pankiewicz K, Laudański P, Issat T. The Role of Noncoding RNA in the Pathophysiology and Treatment of Premature Ovarian Insufficiency. Int J Mol Sci. 2021;22(17):9336. https://doi.org/10.3390/ijms22179336

  6. Veitia RA. Primary ovarian insufficiency, meiosis and DNA repair. Biomed J. 2020;43:115–23.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu P, Zhang X, Hu J, Cui L, Zhao S, Jiao X, et al. Dysregulated cytokine profile associated with biochemical premature ovarian insufficiency. Am J Reprod Immunol. 2020;84:e13292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang X, Zhang X, Dang Y, Li D, Lu G, Chan WY, et al. Long noncoding RNA HCP5 participates in premature ovarian insufficiency by transcriptionally regulating MSH5 and DNA damage repair via YB1. Nucleic Acids Res. 2020;48:4480–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol. 2020;235:8826–38.

    Article  PubMed  CAS  Google Scholar 

  10. Dahariya S, Paddibhatla I, Kumar S, Raghuwanshi S, Pallepati A, Gutti RK. Long non-coding RNA: classification, biogenesis and functions in blood cells. Mol Immunol. 2019;112:82–92.

    Article  PubMed  CAS  Google Scholar 

  11. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109:2093–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172:393–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hu H, Jia Q, Xi J, Zhou B, Li Z. Integrated analysis of lncRNA, miRNA and mRNA reveals novel insights into the fertility regulation of large white sows. BMC Genomics. 2020;21:636.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Ren GL, Zhu J, Li J, Meng XM. Noncoding RNAs in acute kidney injury. J Cell Physiol. 2019;234:2266–76.

    Article  PubMed  CAS  Google Scholar 

  15. Niu ZS, Wang WH, Dong XN, Tian LM. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol. 2020;26:4240–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Panni S, Lovering RC, Porras P, Orchard S. Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194417.

    Article  PubMed  CAS  Google Scholar 

  17. Caponnetto A, Battaglia R, Ferrara C, Vento ME, Borzì P, Paradiso M, et al. Down-regulation of long non-coding RNAs in reproductive aging and analysis of the lncRNA-miRNA-mRNA networks in human cumulus cells. J Assist Reprod Genet. 2022;39:919–31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen H, Cheng S, Xiong W, Tan X. The lncRNA-miRNA-mRNA ceRNA network in mural granulosa cells of patients with polycystic ovary syndrome: an analysis of Gene Expression Omnibus data. Ann Transl Med. 2021;9:1156.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 2001;142:437–45.

    Article  PubMed  CAS  Google Scholar 

  21. Wu Y, Ma C, Zhao H, Zhou Y, Chen Z, Wang L. Alleviation of endoplasmic reticulum stress protects against cisplatin-induced ovarian damage. Reprod Biol Endocrinol. 2018;16:85.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Webber L, Davies M, Anderson R, Bartlett J, Braat D, Cartwright B, et al. ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31:926–37.

    Article  PubMed  CAS  Google Scholar 

  23. Laven JS. Primary ovarian insufficiency. Semin Reprod Med. 2016;34:230–4.

    Article  PubMed  Google Scholar 

  24. Dang Y, Wang X, Hao Y, Zhang X, Zhao S, Ma J, et al. MicroRNA-379-5p is associate with biochemical premature ovarian insufficiency through PARP1 and XRCC6. Cell Death Dis. 2018;9:106.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509:1–10.

    Article  PubMed  CAS  Google Scholar 

  26. Bouckenheimer J, Fauque P, Lecellier CH, Bruno C, Commes T, Lemaître JM, et al. Differential long non-coding RNA expression profiles in human oocytes and cumulus cells. Sci Rep. 2018;8:2202.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guo Y, Sun J, Lai D. Role of microRNAs in premature ovarian insufficiency. Reprod Biol Endocrinol. 2017;15:38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li D, Wang X, Li G, Dang Y, Zhao S, Qin Y. LncRNA ZNF674-AS1 regulates granulosa cell glycolysis and proliferation by interacting with ALDOA. Cell Death Discov. 2021;7:107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Malmuthuge N, Guan LL. Noncoding RNAs: regulatory molecules of host-microbiome crosstalk. Trends Microbiol. 2021;29:713–24.

    Article  PubMed  CAS  Google Scholar 

  30. Rinn JL, Chang HY. Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem. 2020;89:283–308.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang H, Lu B. The Roles of ceRNAs-mediated autophagy in cancer chemoresistance and metastasis. Cancers (Basel). 2020;12(10):2926. https://doi.org/10.3390/cancers12102926

  32. Liao J, Wang J, Liu Y, Li J, Duan L. Transcriptome sequencing of lncRNA, miRNA, mRNA and interaction network constructing in coronary heart disease. BMC Med Genomics. 2019;12:124.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qi X, Lin Y, Chen J, Shen B. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief Bioinform. 2020;21:441–57.

    Article  PubMed  CAS  Google Scholar 

  34. Liu H, Gong Z, Li K, Zhang Q, Xu Z, Xu Y. SRPK1/2 and PP1α exert opposite functions by modulating SRSF1-guided MKNK2 alternative splicing in colon adenocarcinoma. J Exp Clin Cancer Res. 2021;40:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wang H, Zhang Y, Zhang J, Du X, Li Q, Pan Z. circSLC41A1 resists porcine granulosa cell apoptosis and follicular atresia by promoting SRSF1 through miR-9820-5p sponging. Int J Mol Sci. 2022;23(3):1509. https://doi.org/10.3390/ijms23031509

  36. Zhang H, He J, Dai Z, Wang Z, Liang X, He F, et al. PDIA5 is correlated with immune infiltration and predicts poor prognosis in gliomas. Front Immunol. 2021;12:628966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Casali PG, Blay JY, Abecassis N, Bajpai J, Bauer S, Biagini R, et al. Gastrointestinal stromal tumours: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:20–33.

    Article  PubMed  CAS  Google Scholar 

  38. Yeung YT, Fan S, Lu B, Yin S, Yang S, Nie W, et al. CELF2 suppresses non-small cell lung carcinoma growth by inhibiting the PREX2-PTEN interaction. Carcinogenesis. 2020;41:377–89.

    Article  PubMed  CAS  Google Scholar 

  39. Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA, et al. LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis. 2020;11:676.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Piqué L, Martinez de Paz A, Piñeyro D, Martínez-Cardús A, Castro de Moura M, Llinàs-Arias P, et al. Epigenetic inactivation of the splicing RNA-binding protein CELF2 in human breast cancer. Oncogene. 2019;38:7106–12.

    Article  PubMed  Google Scholar 

  41. Liu J, Liu Z, Zhang X, Yan Y, Shao S, Yao D, et al. Aberrant methylation and microRNA-target regulation are associated with downregulated NEURL1B: a diagnostic and prognostic target in colon cancer. Cancer Cell Int. 2020;20:342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Vollrath B, Pudney J, Asa S, Leder P, Fitzgerald K. Isolation of a murine homologue of the Drosophila neuralized gene, a gene required for axonemal integrity in spermatozoa and terminal maturation of the mammary gland. Mol Cell Biol. 2001;21:7481–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nguyen MT, Min KH, Lee W. Palmitic acid-induced miR-429-3p impairs myoblast differentiation by downregulating CFL2. Int J Mol Sci. 2021;22(20):10972. https://doi.org/10.3390/ijms222010972

  44. Nguyen MT, Lee W. Role of MiR-325-3p in the regulation of CFL2 and myogenic differentiation of C2C12 myoblasts. Cells. 2021;10(10):2725. https://doi.org/10.3390/cells10102725

  45. Fattori F, Fiorillo C, Rodolico C, Tasca G, Verardo M, Bellacchio E, et al. Expanding the histopathological spectrum of CFL2-related myopathies. Clin Genet. 2018;93:1234–9.

    Article  PubMed  CAS  Google Scholar 

  46. Dang Y, Zhao S, Qin Y, Han T, Li W, Chen ZJ. MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with premature ovarian failure. Fertil Steril. 2015;103:802–807.e801.

    Article  PubMed  CAS  Google Scholar 

  47. Ding C, Zhu L, Shen H, Lu J, Zou Q, Huang C, et al. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7. Stem Cells. 2020;38:1137–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, and Tongji University. The results published here are in whole or partly based on data obtained from the Gene expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).

Funding

This project was supported by the National Nature Science Foundation of China (NO. 31900522).

Author information

Authors and Affiliations

Authors

Contributions

BL and LL contributed equally to this work. BL and LL contributed to the idea of the manuscript, completed the experiment, analyzed the data, and wrote this manuscript. BL and LL completed the revision of the manuscript. ZS, CW, JZ, and LW helped interpret the data. ZC and SL conceived the study. All authors read and approved the manuscript. BL and LL contributed equally to this work.

Corresponding authors

Correspondence to Shupeng Liu or Zhongping Cheng.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Written informed consent was obtained from all participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 54 kb)

ESM 2

(XLSX 127 kb)

ESM 3

(XLSX 814 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Liu, L., Sulaiman, Z. et al. Comprehensive analysis of lncRNA-miRNA-mRNA ceRNA network and key genes in granulosa cells of patients with biochemical primary ovarian insufficiency. J Assist Reprod Genet 41, 15–29 (2024). https://doi.org/10.1007/s10815-023-02937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02937-2

Keywords

Navigation