Skip to main content

Advertisement

Log in

Comparative effectiveness and safety of 36 therapies or interventions for pregnancy outcomes with recurrent implantation failure: a systematic review and network meta-analysis

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effectiveness and safety of 36 different therapies for recurrent implantation failure (RIF) patients.

Methods

We searched PubMed, Embase, the Cochrane Library (CENTRAL), Web of Science, and China National Knowledge Internet (CNKI) from inception to August 24, 2022, with language in both English and Chinese. Randomized controlled trials (RCTs) and observational studies that provided data with one of pregnancy outcomes on RIF patients were included in the network meta-analysis (NMA). The odds ratios (OR) and 95% credible interval (CrI) on pregnancy outcomes were summarized by NMA with a random-effects model. We also analyzed data from only RCTs and compared whether the optimal treatment is the same for different failed embryo transfer attempts.

Results

The total of 29,906 RIF patients from 154 clinical studies (74 RCTs and 80 non-RCTs) were included in the NMA. In terms of implantation rate (IR), growth hormone (GH) (OR: 3.32, 95% CrI: 1.95–5.67) is the best treatment in all included studies; IVIG+PBMC (5.84, 2.44–14.1) is the best for clinical pregnancy rate (CPR); hyaluronic acid (HA) (12.9, 2.37–112.0) for live birth rate (LBR); and aspirin combined with glucocorticoids (0.208, 0.0494–0.777) for miscarriage rate (MR). The two-dimensional graphs showed that GH could maximize IR and CPR simultaneously; HA and GH could simultaneously increase IR and LBR to a large extent; HA could maximize IR and minimize MR.

Conclusion

IVIG+PBMC, GH, and embryo medium enriched with HA could significantly improve pregnancy outcomes in patients with RIF. It appears that combination therapy is a potential administration strategy.

Trial registration

This study has been registered on PROSPERO (CRD42022353423).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data are derived from published studies, and all raw data used in the study are available in the supplementary files.

Abbreviations

AECC:

autologous embryo-cumulus cells co-culture

AH:

assisted hatching

BET:

blastocyst-stage embryo transfer

cGMP:

cyclic guanosine monophosphate

CPR:

clinical pregnancy rate

CrI:

credible interval

EI:

endometrial injury

EPR:

ectopic pregnancy rate

ERA:

endometrial receptivity array

ET:

embryos transfers

GC:

glucocorticoids

G-CSF:

granulocyte-colony stimulating factor

GH:

growth hormone

HA:

hyaluronic acid

hCG:

human chorionic gonadotropin

HCQ:

hydroxychloroquine

HP:

hysteroscopy

ICSI:

intracytoplasmic sperm injection

IGF-1:

insulin-like growth factor 1

IL:

interleukin

IMSI:

intracytoplasmic morphologically selected sperm injection

IR:

implantation rate

ITGB3:

integrin beta 3

IUD:

intra uterine device

IVF:

in vitro fertilization

IVIG:

intravenous immunoglobulins

LBR:

live birth rate

LIF:

leukemia inhibitory factor

LIT:

lymphocyte immunotherapy

LMWH:

low molecular weight heparin

MR:

miscarriage rate

mTOR:

mechanistic target of rapamycin

NMA:

network meta-analysis

OR:

odds ratios

PBMC:

peripheral blood mononuclear cell

PGT-A:

preimplantation genetic testing aneuploidy

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

PRP:

platelet-rich plasma

RCT:

randomized controlled trials

r-hLIF:

recombinant human leukemia inhibitory factor

RIF:

recurrent implantation failure

ROBINS-I:

Risk of Bias in Non-Randomized Studies of Interventions

RSA:

recurrent spontaneous abortion

SET:

sequential embryo transfer

SUCRA:

surface under the cumulative ranking curve

TNF-α:

tumor necrosis factor-alpha

Tregs:

regulatory T cells

VEGF:

vascular endothelial growth factor

ZIFT:

zygote intrafallopian tube transfer

References

  1. Bashiri A, Halper KI, Orvieto R. Recurrent implantation failure-update overview on etiology, diagnosis, treatment and future directions. Reprod Biol Endocrinol. 2018;16:121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, et al. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28:14–38.

    Article  CAS  PubMed  Google Scholar 

  3. Cimadomo D, Craciunas L, Vermeulen N, Vomstein K, Toth B. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists. Hum Reprod. 2021;36:305–17.

    Article  CAS  PubMed  Google Scholar 

  4. Polanski LT, Baumgarten MN, Quenby S, Brosens J, Campbell BK, Raine-Fenning NJ. What exactly do we mean by ‘recurrent implantation failure’? A systematic review and opinion. Reprod Biomed Online. 2014;28:409–23.

    Article  PubMed  Google Scholar 

  5. Cimadomo D, de Los SM, Griesinger G, Lainas G, Le Clef N, McLernon DJ, et al. ESHRE good practice recommendations on recurrent implantation failure. Hum Reprod Open. 2023;2023:hoad23.

    Google Scholar 

  6. Penzias AS. Recurrent IVF failure: other factors. Fertil Steril. 2012;97:1033–8.

    Article  PubMed  Google Scholar 

  7. Saxtorph MH, Hallager T, Persson G, Petersen KB, Eriksen JO, Larsen LG, et al. Assessing endometrial receptivity after recurrent implantation failure: a prospective controlled cohort study. Reprod Biomed Online. 2020;41:998–1006.

    Article  CAS  PubMed  Google Scholar 

  8. Simon A, Laufer N. Assessment and treatment of repeated implantation failure (RIF). J Assist Reprod Genet. 2012;29:1227–39.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang C, Guan D, Li R, Bing Z, Yang Y, Yang K. Comparative efficacies of different immunotherapy regimens in recurrent implantation failure: a systematic review and network meta-analysis. J Reprod Immunol. 2021;148:103429.

    Article  CAS  PubMed  Google Scholar 

  10. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011;64:1283–93.

    Article  PubMed  Google Scholar 

  12. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Valkenhoef G, Dias S, Ades AE, Welton NJ. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Res Synth Methods. 2016;7:80–93.

    Article  PubMed  Google Scholar 

  14. Cui N, Li AM, Luo ZY, Zhao ZM, Xu YM, Zhang J, et al. Effects of growth hormone on pregnancy rates of patients with thin endometrium. J Endocrinol Invest. 2019;42:27–35.

    Article  CAS  PubMed  Google Scholar 

  15. Huang QY, Rong MH, Lan AH, Lin XM, Lin XG, He RQ, et al. The impact of atosiban on pregnancy outcomes in women undergoing in vitro fertilization-embryo transfer: a meta-analysis. PLoS One. 2017;12:e175501.

    Google Scholar 

  16. Sher G, Fisch JD. Effect of vaginal sildenafil on the outcome of in vitro fertilization (IVF) after multiple IVF failures attributed to poor endometrial development. Fertil Steril. 2002;78:1073–6.

    Article  PubMed  Google Scholar 

  17. Abdolmohammadi-Vahid S, Pashazadeh F, Pourmoghaddam Z, Aghebati-Maleki L, Abdollahi-Fard S, Yousefi M. The effectiveness of IVIG therapy in pregnancy and live birth rate of women with recurrent implantation failure (RIF): a systematic review and meta-analysis. J Reprod Immunol. 2019;134-135:28–33.

    Article  CAS  PubMed  Google Scholar 

  18. Heilmann L, Schorsch M, Hahn T. CD3-CD56+CD16+ natural killer cells and improvement of pregnancy outcome in IVF/ICSI failure after additional IVIG-treatment. Am J Reprod Immunol. 2010;63:263–5.

    Article  CAS  PubMed  Google Scholar 

  19. Moraru M, Carbone J, Alecsandru D, Castillo-Rama M, Garcia-Segovia A, Gil J, et al. Intravenous immunoglobulin treatment increased live birth rate in a Spanish cohort of women with recurrent reproductive failure and expanded CD56(+) cells. Am J Reprod Immunol. 2012;68:75–84.

    Article  CAS  PubMed  Google Scholar 

  20. Qin Q, Chang H, Zhou S, Zhang S, Yuan D, Yu LL, et al. Intrauterine administration of peripheral blood mononuclear cells activated by human chorionic gonadotropin in patients with repeated implantation failure: a meta-analysis. J Reprod Immunol. 2021;145:103323.

    Article  CAS  PubMed  Google Scholar 

  21. Yu N, Yan W, Yin T, Wang Y, Guo Y, Zhou D, et al. HCG-activated human peripheral blood mononuclear cells (PBMC) promote trophoblast cell invasion. PLoS One. 2015;10:e125589.

    Google Scholar 

  22. Alves R, Grimalt R. A review of platelet-rich plasma: history, biology, mechanism of action, and classification. Skin Appendage Disord. 2018;4:18–24.

    Article  PubMed  Google Scholar 

  23. Amable PR, Carias RB, Teixeira MV, Da CPI, Correa DAR, Granjeiro JM, et al. Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther. 2013;4:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol. 2005;56:47–60.

    Article  PubMed  Google Scholar 

  25. Wang WJ, Hao CF, Yi-Lin YGJ, Bao SH, Qiu LH, et al. Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol. 2010;84:164–70.

    Article  CAS  PubMed  Google Scholar 

  26. Kopf H, de la Rosa GM, Howard OM, Chen X. Rapamycin inhibits differentiation of Th17 cells and promotes generation of FoxP3+ T regulatory cells. Int Immunopharmacol. 2007;7:1819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karres I, Kremer JP, Dietl I, Steckholzer U, Jochum M, Ertel W. Chloroquine inhibits proinflammatory cytokine release into human whole blood. Am J Physiol. 1998;274:R1058–64.

    CAS  PubMed  Google Scholar 

  28. Bygbjerg IC, Svenson M, Theander TG, Bendtzen K. Effect of antimalarial drugs on stimulation and interleukin 2 production of human lymphocytes. Int J Immunopharmacol. 1987;9:513–9.

    Article  CAS  PubMed  Google Scholar 

  29. van den Borne BE, Dijkmans BA, De Rooij HH, Le Cessie S, Verweij CL. Chloroquine and hydroxychloroquine equally affect tumor necrosis factor-alpha, interleukin 6, and interferon-gamma production by peripheral blood mononuclear cells. J Rheumatol. 1997;24:55–60.

    PubMed  Google Scholar 

  30. Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccharide-induced TNF-alpha gene expression by a nonlysosomotropic mechanism. J Immunol. 2000;165:1534–40.

    Article  CAS  PubMed  Google Scholar 

  31. Sadeghpour S, Ghasemnejad BM, Nazarian H, Ghasemnejad T, Nematollahi MH, Abroon S, et al. Effects of treatment with hydroxychloroquine on the modulation of Th17/Treg ratio and pregnancy outcomes in women with recurrent implantation failure: clinical trial. Immunopharmacol Immunotoxicol. 2020;42:632–42.

    Article  CAS  PubMed  Google Scholar 

  32. Chen JR, Cheng JG, Shatzer T, Sewell L, Hernandez L, Stewart CL. Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology. 2000;141:4365–72.

    Article  CAS  PubMed  Google Scholar 

  33. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature. 1992;359:76–9.

    Article  CAS  PubMed  Google Scholar 

  34. Binette JP, Ohishi H, Burgi W, Kimura A, Suyemitsu T, Seno N, et al. The content and distribution of glycosaminoglycans in the ejaculates of normal and vasectomized men. Andrologia. 1996;28:145–9.

    Article  CAS  PubMed  Google Scholar 

  35. Eppig JJ. FSH stimulates hyaluronic acid synthesis by oocyte-cumulus cell complexes from mouse preovulatory follicles. Nature. 1979;281:483–4.

    Article  CAS  PubMed  Google Scholar 

  36. Grimek HJ, Bellin ME, Ax RL. Characteristics of proteoglycans isolated from small and large bovine ovarian follicles. Biol Reprod. 1984;30:397–409.

    Article  CAS  PubMed  Google Scholar 

  37. Campbell S, Swann HR, Aplin JD, Seif MW, Kimber SJ, Elstein M. CD44 is expressed throughout pre-implantation human embryo development. Hum Reprod. 1995;10:425–30.

    Article  CAS  PubMed  Google Scholar 

  38. Carson DD, Dutt A, Tang JP. Glycoconjugate synthesis during early pregnancy: hyaluronate synthesis and function. Dev Biol. 1987;120:228–35.

    Article  CAS  PubMed  Google Scholar 

  39. San MS, Soto-Suazo M, Zorn TM. Distribution of versican and hyaluronan in the mouse uterus during decidualization. Braz J Med Biol Res. 2003;36:1067–71.

    Article  Google Scholar 

  40. Friedler S, Schachter M, Strassburger D, Esther K, Ron ER, Raziel A. A randomized clinical trial comparing recombinant hyaluronan/recombinant albumin versus human tubal fluid for cleavage stage embryo transfer in patients with multiple IVF-embryo transfer failure. Hum Reprod. 2007;22:2444–8.

    Article  CAS  PubMed  Google Scholar 

  41. DeMeestere I, Barlow P, Leroy F. Hardening of zona pellucida of mouse oocytes and embryos in vivo and in vitro. Int J Fertil Womens Med. 1997;42:219–22.

    CAS  PubMed  Google Scholar 

  42. Carroll J, Depypere H, Matthews CD. Freeze-thaw-induced changes of the zona pellucida explains decreased rates of fertilization in frozen-thawed mouse oocytes. J Reprod Fertil. 1990;90:547–53.

    Article  CAS  PubMed  Google Scholar 

  43. Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17:454–66.

    Article  CAS  PubMed  Google Scholar 

  44. Mirkin S, Arslan M, Churikov D, Corica A, Diaz JI, Williams S, et al. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod. 2005;20:2104–17.

    Article  CAS  PubMed  Google Scholar 

  45. Almog B, Shalom-Paz E, Dufort D, Tulandi T. Promoting implantation by local injury to the endometrium. Fertil Steril. 2010;94:2026–9.

    Article  PubMed  Google Scholar 

  46. Zhou L, Li R, Wang R, Huang HX, Zhong K. Local injury to the endometrium in controlled ovarian hyperstimulation cycles improves implantation rates. Fertil Steril. 2008;89:1166–76.

    Article  PubMed  Google Scholar 

  47. Mao X, Zhang J, Chen Q, Kuang Y, Zhang S. Short-term copper intrauterine device placement improves the implantation and pregnancy rates in women with repeated implantation failure. Fertil Steril. 2017;108:55–61.

    Article  CAS  PubMed  Google Scholar 

  48. Loutradis D, Drakakis P, Dallianidis K, Bletsa SR, Milingos S, Doumplis N, et al. A double embryo transfer on days 2 and 4 or 5 improves pregnancy outcome in patients with good embryos but repeated failures in IVF or ICSI. Clin Exp Obstet Gynecol. 2004;31:63–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the RIF patients participated in the included studies and all researchers.

Funding

This study was supported by Major Clinical Research Projects of the Second Affiliated Hospital, Air Force Medical University (2021LCYJ004), and was also supported by National Natural Science Foundation of China (82204152). The funders had no influence on the data collection, analyses or conclusions of the study, and the views expressed in the study were from all the authors themselves and not related to the funders. All authors declared that there were no conflicts of interests in the study.

Author information

Authors and Affiliations

Authors

Contributions

XHW and YNH conceived and designed the study. YNH, RNT, and HKY selected articles and extracted the data. RNT, YNH, HM, and WWW analyzed the data. YNH, RNT, HBJ, HM, and HKY wrote the manuscript. JD, LW, SQC, and XHW contributed to the writing of final version of the manuscript. All authors agreed and reviewed the final version of the manuscript.

Corresponding author

Correspondence to Xiaohong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 49080 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Tang, R., Yu, H. et al. Comparative effectiveness and safety of 36 therapies or interventions for pregnancy outcomes with recurrent implantation failure: a systematic review and network meta-analysis. J Assist Reprod Genet 40, 2343–2356 (2023). https://doi.org/10.1007/s10815-023-02923-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02923-8

Keywords

Navigation