Skip to main content
Log in

Focusing on the accumulation of chromatin/chromosomes around nucleoli and optimizing the timing of ICSI to facilitate the rescue in vitro maturation of denuded GV stage oocytes

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

This study aims to achieve the methodological improvement of rescue IVM by predicting germinal vesicle breakdown (GVBD) and optimizing the timing of ICSI.

Methods

Time lapse analysis was performed retrospectively to evaluated the relationship between the presence of AC around the nucleoli and GVBD. To find the optimal timing of ICSI, the time from the initiation of the first polar body extrusion to ICSI were measured, and the rates of fertilization at each point were calculated.

Results

The GVBD rate of GV stage oocytes with AC around the nucleoli was significantly higher than that of GV stage oocytes without AC. The GV stage oocytes required more time for nuclear maturation after polar body extrusion than MI oocytes, with GV stage oocytes taking 400–600 min from polar body extrusion to the optimal timing of ICSI, while the MI stage oocytes took 200–400 min. The GV stage oocytes resulted in the birth of healthy babies with the appropriate timing of ICSI.

Conclusion

It was found that GV stage oocytes with AC around nucleoli can initiate GVBD and reach the MII stage with a high rate, and that GV stage oocytes required more time than MI stage oocytes to reach the optimal timing of ICSI. Considering these factors, ART laboratories may employ immature GV stage oocytes in routine ART procedures rather than discarding them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Cha KY, Chian RC. Maturation in vitro of immature human oocytes for clinical use. Hum Reprod Update. 1998;4:103–20. https://doi.org/10.1093/humupd/4.2.103.

    Article  CAS  PubMed  Google Scholar 

  2. De Vos A, Van de Velde H, Joris H, Van Steirteghem A. In-vitro matured metaphase-I oocytes have a lower fertilization rate but similar embryo quality as mature metaphase-II oocytes after intracytoplasmic sperm injection. Hum Reprod. 1999;14:1859–63. https://doi.org/10.1093/humrep/14.7.1859.

    Article  PubMed  Google Scholar 

  3. Jee BC, Han SH, Moon JH, Suh CS, Kim SH. Influence of well defined protein source on in vitro maturation of human oocyte: human follicular fluid versus human serum albumin. Fertil Steril. 2008;89:348–52. https://doi.org/10.1016/j.fertnstert.2007.02.052.

    Article  PubMed  Google Scholar 

  4. Huddleston HG, Jackson KV, Doyle JO, Racowsky C. hMG increases the yield of mature oocytes and excellent-quality embryos in patients with a previous cycle having a high incidence of oocyte. Fertil Steril. 2009;92(3):946–9. https://doi.org/10.1016/j.fertnstert.2009.02.039.

    Article  CAS  PubMed  Google Scholar 

  5. Edirisinghe WR, Junk SM, Matson PL, Yovich JL. Birth from cryopreserved embryos following in-vitro maturation of oocytes and intracytoplasmic sperm injection. Hum Reprod. 1997;12(5):1056–8. https://doi.org/10.1093/humrep/12.5.1056.

    Article  CAS  PubMed  Google Scholar 

  6. Son W-Y, Lee S-Y, Lim J-H. Fertilization, cleavage and blastocyst development according to the maturation timing of oocytes in in vitro maturation cycles. Hum Reprod. 2005;20(11):3204–7. https://doi.org/10.1093/humrep/dei195.

    Article  CAS  PubMed  Google Scholar 

  7. Otsuki J, Momma Y, Takahashi K, Miyakura S, Nagai Y. Timed IVM followed by ICSI in a patient with immature ovarian oocytes. Reprod Biomed Online. 2006;13(1):101–3. https://doi.org/10.1016/s1472-6483(10)62022-6.

    Article  PubMed  Google Scholar 

  8. Nagy ZP, Cecile J, Liu J, Loccufier A, Devroey P, Steirteghem AV. Pregnancy and birth after intracytoplasmic sperm injection of in vitro matured germinal-vesicle stage oocytes: case report. Fertil Steril. 1996;65(5):1047–50. https://doi.org/10.1016/S0015-0282(16)58285-5.

    Article  CAS  PubMed  Google Scholar 

  9. Escrich L, Galiana Y, Grau N, Insua F, Soler N, Pellicer A, Escribá MJ. Do immature and mature sibling oocytes recovered from stimulated cycles have the same reproductive potential? Reprod Biomed Online. 2018;37(6):667–76. https://doi.org/10.1016/j.rbmo.2018.08.023.

    Article  CAS  PubMed  Google Scholar 

  10. Vlaisavljević V, Kovac V, Sajko MC. Impact of insulin resistance on the developmental potential of immature oocytes retrieved from human chorionic gonadotropin-primed women with polycystic ovary syndrome undergoing in vitro maturation. Fertil Steril. 2009;91(3):957–9. https://doi.org/10.1016/j.fertnstert.2007.12.062.

    Article  CAS  PubMed  Google Scholar 

  11. Tannus S, Hatirnaz S, Tan J, Ata B, Tan SL, Hatirnaz E, Kenat-Pektas M, Dahan MH. Predictive factors for live birth after in vitro maturation of oocytes in women with polycystic ovary syndrome. Arch Gynecol Obstet. 2018;297(1):199–204. https://doi.org/10.1007/s00404-017-4561-z.

    Article  PubMed  Google Scholar 

  12. Madkour A, Bouamoud N, Kaarouch I, Louanjli N, Saadani B, Assou S, Aboulmaouahib S, Sefrioui O, Amzazi S, Copin H, Benkhalifa M. Follicular fluid and supernatant from cultured cumulus-granulosa cells improve in vitro maturation in patients with polycystic ovarian syndrome. Fertil Steril. 2018;110(4):710–9. https://doi.org/10.1016/j.fertnstert.2018.04.038.

    Article  PubMed  Google Scholar 

  13. Le Du A, Kadoch IJ, Bourcigaux N, Doumerc S, Bourrier M-C, Chevalier N, Fanchin R, Chian R-C, Tachdjian G, Frydman R, Frydman N. In vitro oocyte maturation for the treatment of infertility associated with polycystic ovarian syndrome: the French experience. Hum Reprod. 2005;20(2):420–4. https://doi.org/10.1093/humrep/deh603.

    Article  PubMed  Google Scholar 

  14. Sánchez F, Lolicato F, Romero S, De Vos M, Van Ranst H, Verheyen G, Anckaert E, Smitz JEJ. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum Reprod. 2017;32(10):2056–68. https://doi.org/10.1093/humrep/dex262.

    Article  CAS  PubMed  Google Scholar 

  15. Ranganath A, Appaneravanda LC, Gerstl B, Math NT, Menon J, Gunasheela D. A Study to Find Optimal Intra-cytoplasmic Sperm Injection Timing of Oocytes Matured from Germinal Vesicle in in Vitro Maturation Cycles Using a Time Lapse System. Hum Reprod. 2021;14(4):415–21. https://doi.org/10.4103/jhrs.jhrs_130_21.

    Article  Google Scholar 

  16. Kim B-K, Lee S-C, Kim K-J, Han C-H, Kim J-H. In vitro maturation, fertilization, and development of human germinal vesicle oocytes collected from stimulated cycles. Fertil Steril. 2000;74(6):1153–8. https://doi.org/10.1016/s0015-0282(00)01617-4.

    Article  CAS  PubMed  Google Scholar 

  17. De Vos M, Grynberg M, Ho TM, Yuan Y, Albertini DF, Gilchrist RB. Perspectives on the development and future of oocyte IVM in clinical practice. J Assist Reprod Genet. 2021;38(6):1265–80. https://doi.org/10.1007/s10815-021-02263-5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jie H, Zhao M, Alqawasmeh OAM, Chan CPS, Lee TL, Li T, Chan DYL. In vitro rescue immature oocytes - a literature review. Fertil Steril. 2021;1–20. https://www.tandfonline.com/doi/full/10.1080/14647273.2021.1876932. Accessed 16 June 2023

  19. Jones GM, Cram DS, Song B, Magli MC, Gianaroli L, Lacham-Kaplan O, Findlay JK, Jenkin G, Trounson AO. Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod. 2008;23:1138–44. https://doi.org/10.1093/humrep/den085.

    Article  CAS  PubMed  Google Scholar 

  20. Otsuki J, Nagai Y. A phase of chromosome aggregation during meiosis in human oocytes. Reprod Biomed Online. 2007;15(2):191–7. https://doi.org/10.1016/s1472-6483(10)60708-0.

    Article  PubMed  Google Scholar 

  21. Holubcova Z, Blayney M, Elder K, Schuh M. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143–7. https://doi.org/10.1126/science.aaa9529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Harasimov K, Uraji J, Mönnich EU, Holubcová Z, Elder K, Blayney M, Schuh M. Actin-driven chromosome clustering facilitates fast and complete chromosome capture in mammalian oocytes. Nat Cell Biol. 2023;25(3):439–52. https://doi.org/10.1038/s41556-022-01082-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salimov D, Lopata A, Nagai Y, Lisovskaya T, Portnov I, Miwa A, Otuki J. In human oocytes the aggregation of chromosomes around the nucleolus is associated with the initiation and completion of metiotic maturation. abstract of ASRM. 2014. https://www.fertstert.org/article/S0015-0282(14)01033-4. Accessed 2 May 2023

  24. Parfenov V, Potchukalina G, Dudina L, Kostyuchek D, Gruzova M. Human antral follicles: oocyte nucleus and the karyosphere formation (electron microscopic and autoradiographic data). Gamete Res. 1989;22(2):219–31. https://doi.org/10.1002/mrd.1120220209.

    Article  CAS  PubMed  Google Scholar 

  25. Mattson BA, Albertini DE. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev. 1990;25(4):374–83. https://doi.org/10.1002/mrd.1080250411.

    Article  CAS  PubMed  Google Scholar 

  26. Debey P, Szöllösi MS, Szöllösi D, Vautier D, Girousse A, Besombes D. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol Reprod Dev. 1993;36(1):59–74. https://doi.org/10.1002/mrd.1080360110.

    Article  CAS  PubMed  Google Scholar 

  27. Zuccotti M, Piccinelli A, Giorgi Rossi P, Garagna S, Redi CA. Chromatin organization during mouse oocyte growth. Mol Reprod Dev. 1995;41(4):479–85. https://doi.org/10.1002/mrd.1080410410.

    Article  CAS  PubMed  Google Scholar 

  28. Zuccotti M, Giorgi Rossi P, Martinez A, Garagna S, Forabosco A, Redi CA. Meiotic and developmental competence of mouse antral oocytes. Biol Reprod. 1998;58(3):700–4. https://doi.org/10.1095/biolreprod58.3.700.

    Article  CAS  PubMed  Google Scholar 

  29. Christians E, Boiani M, Garagna S, Dessy C, Redi CA, Renard JP, Zuccotti M. Gene expression and chromatin organization during mouse oocyte growth. Dev Biol. 1999;207(1):76–85. https://doi.org/10.1006/dbio.1998.9157.

    Article  CAS  PubMed  Google Scholar 

  30. Montag M, Schimming T, van der Ven H. Spindle imaging in human oocytes: the impact of the meiotic cell cycle. Reprod Biomed Online. 2006;12(4):442–6. https://doi.org/10.1016/s1472-6483(10)61996-7.

    Article  PubMed  Google Scholar 

  31. Yang Q, Zhu L, Wang M, Huang Bo, Li Z, Juan Hu, Xi Q, Liu J, Jin L. Analysis of maturation dynamics and developmental competence of in vitro matured oocytes under time-lapse monitoring. Reprod Biol Endocrinol. 2021;19(1):183. https://doi.org/10.1186/s12958-021-00868-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nogueira D, Staessen C, Van de Velde H, Van Steirteghem A. Nuclear status and cytogenetics of embryos derived from in vitro-matured oocytes. Fertil Steril. 2000;74:295–8. https://doi.org/10.1016/s0015-0282(00)00642-7.

    Article  CAS  PubMed  Google Scholar 

  33. Conti M, Franciosi F. Acquisition of oocyte competence to develop as an embryo: integrated nuclear and cytoplasmic events. Hum Reprod Update. 2018;24(3):245–66. https://doi.org/10.1093/humupd/dmx040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the lab members of assisted reproductive technology unit of Okayama University for the productive discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception after designed by Junko Otsuki. Material preparation, data collection and analysis were performed by Hayato Asama, Daigaku Kamibayashi, Atsuko Hashizume and Yasuhito Michikura. The first draft of the manuscript was written by Hayato Asama and Junko Otsuki and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junko Otsuki.

Ethics declarations

Ethics approval

This study was approved by the Okayama University Institutional Review Board (approval no. K2205-011).

Conflict of interest

All of the authors declare that they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asama, H., Kamibayashi, D., Hashizume, A. et al. Focusing on the accumulation of chromatin/chromosomes around nucleoli and optimizing the timing of ICSI to facilitate the rescue in vitro maturation of denuded GV stage oocytes. J Assist Reprod Genet 40, 2557–2564 (2023). https://doi.org/10.1007/s10815-023-02921-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02921-w

Keywords

Navigation