Skip to main content
Log in

Modeling-based prediction tools for preimplantation genetic testing of mitochondrial DNA diseases: estimating symptomatic thresholds, risk, and chance of success

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Preimplantation genetic testing (PGT) has become a reliable tool for preventing the germline transmission of mitochondrial DNA (mtDNA) variants. However, procedures are not standardized across mtDNA variants. In this study, we aim to estimate symptomatic thresholds, risk, and chance of success for PGT for mtDNA pathogenic variant carriers.

Methods

We performed a systematic analysis of heteroplasmy data including 455 individuals from 187 familial pedigrees with the common m.3243A>G, m.8344A>G, or m.8993T>G pathogenic variants. We applied binary logistic regression for estimating symptomatic thresholds of heteroplasmy, simplified Sewell-Wright formula and Kimura equations for predicting the risk of disease transmission, and binomial distribution for predicting minimum oocyte numbers.

Results

We estimated the symptomatic thresholds of m.8993T>G and m.8344A>G as 29.86% and 16.15%, respectively. We could not determine a threshold for m.3243A>G. We established models for mothers harboring common and rare mtDNA pathogenic variants to predict the risk of disease transmission and the number of oocytes required to produce an embryo with sufficiently low variant load. In addition, we provide a table allowing the prediction of transmission risk and the minimum required oocytes for PGT patients with different variant levels.

Conclusion

We have established models that can determine the symptomatic thresholds of common mtDNA pathogenic variants. We also constructed universal models applicable to nearly all mtDNA pathogenic variants which can predict risk and minimum numbers for PGT patients. These models have advanced our understanding of mtDNA disease pathogenesis and will enable more effective prevention of disease transmission using PGT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and the supplementary materials. All raw data is publicly available at Mendeley Data: Ji, Dongmei; Zhang, Ning; Zou, Weiwei; Zhang, Zhikang; Marley, Jordan; Liu, Zhuoli; Liang, Chunmei; Shen, Lingchao; Liu, Yajing; Liang, Dan; Su, Tianhong; Du, Yinan; Cao, Yunxia (2022), “Data of Modeling-based prediction tools for preimplantation genetic testing of mitochondrial DNA diseases,” Mendeley Data, V1, doi: 10.17632/ynx4mmhbxr.1 (https://data.mendeley.com/datasets/ynx4mmhbxr).

References

  1. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, et al. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gal A, Balicza P, Weaver D, Naghdi S, Joseph SK, Várnai P, et al. MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Mol Med. 2017;9(7):967–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alston CL, Rocha MC, Lax NZ, Turnbull DM, Taylor RW. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50.

    Article  CAS  PubMed  Google Scholar 

  5. Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol. 2016;79(2):190–203.

    Article  PubMed  Google Scholar 

  6. Craven L, Tang M-X, Gorman GS, De Sutter P, Heindryckx B. Novel reproductive technologies to prevent mitochondrial disease. Hum Reprod Update. 2017;23(5):501–19.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson IJ, Carling PJ, Alston CL, Floros VI, Pyle A, Hudson G, et al. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck. Hum Mol Genet. 2016;25(5):1031–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jacobs LJAM, de Wert G, Geraedts JPM, de Coo IFM, Smeets HJM. The transmission of OXPHOS disease and methods to prevent this. Hum Reprod Update. 2006;12(2):119–36.

    Article  CAS  PubMed  Google Scholar 

  9. Floros VI, Pyle A, Dietmann S, Wei W, Tang WCW, Irie N, et al. Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nat Cell Biol. 2018;20(2):144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sallevelt SCEH, Dreesen JCFM, Drüsedau M, Spierts S, Coonen E, van Tienen FHJ, et al. Preimplantation genetic diagnosis in mitochondrial DNA disorders: challenge and success. J Med Genet. 2013;50(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  11. Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42.

    Article  CAS  PubMed  Google Scholar 

  12. Sonney S, Leipzig J, Lott MT, Zhang S, Procaccio V, Wallace DC, et al. Predicting the pathogenicity of novel variants in mitochondrial tRNA with MitoTIP. PLoS Comput Biol. 2017;13(12):e1005867.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Preste R, Vitale O, Clima R, Gasparre G, Attimonelli M. HmtVar: a new resource for human mitochondrial variations and pathogenicity data. Nucleic Acids Res. 2019;47(D1):D1202–D10.

    Article  PubMed  Google Scholar 

  14. Rajasimha HK, Chinnery PF, Samuels DC. Selection against pathogenic mtDNA mutations in a stem cell population leads to the loss of the 3243A-->G mutation in blood. Am J Hum Genet. 2008;82(2):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Burr SP, Chinnery PF. The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem. 2018;62(3):225–34.

    Article  PubMed  Google Scholar 

  16. van den Ameele J, Li AYZ, Ma H, Chinnery PF. Mitochondrial heteroplasmy beyond the oocyte bottleneck. Semin Cell Dev Biol. 2020;97:156–66.

    Article  PubMed  Google Scholar 

  17. Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain. 1997;120(Pt 10):1713–21.

    Article  PubMed  Google Scholar 

  18. Rahman S, Poulton J, Marchington D, Suomalainen A. Decrease of 3243 A-->G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum Genet. 2001;68(1):238–40.

    Article  CAS  PubMed  Google Scholar 

  19. Johnston IG. Varied mechanisms and models for the varying mitochondrial bottleneck. Front Cell Dev Biol. 2019;7:294.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wonnapinij P, Chinnery PF, Samuels DC. The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. Am J Hum Genet. 2008;83(5):582–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wonnapinij P, Chinnery PF, Samuels DC. Previous estimates of mitochondrial DNA mutation level variance did not account for sampling error: comparing the mtDNA genetic bottleneck in mice and humans. Am J Hum Genet. 2010;86(4):540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown DT, Samuels DC, Michael EM, Turnbull DM, Chinnery PF. Random genetic drift determines the level of mutant mtDNA in human primary oocytes. Am J Hum Genet. 2001;68(2):533–6.

    Article  CAS  PubMed  Google Scholar 

  23. Hellebrekers DMEI, Wolfe R, Hendrickx ATM, de Coo IFM, de Die CE, Geraedts JPM, et al. PGD and heteroplasmic mitochondrial DNA point mutations: a systematic review estimating the chance of healthy offspring. Hum Reprod Update. 2012;18(4):341–9.

    Article  CAS  PubMed  Google Scholar 

  24. Samuels DC, Wonnapinij P, Chinnery PF. Preventing the transmission of pathogenic mitochondrial DNA mutations: can we achieve long-term benefits from germ-line gene transfer? Hum Reprod. 2013;28(3):554–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Smeets HJM, Sallevelt SCEH, Dreesen JCFM, de Die-Smulders CEM, de Coo IFM. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis. Ann N Y Acad Sci. 2015;1350:29–36.

    Article  CAS  PubMed  Google Scholar 

  26. Dahl HH, Thorburn DR, White SL. Towards reliable prenatal diagnosis of mtDNA point mutations: studies of nt8993 mutations in oocytes, fetal tissues, children and adults. Hum Reprod. 2000;15(Suppl 2):246–55.

    Article  PubMed  Google Scholar 

  27. White SL, Collins VR, Wolfe R, Cleary MA, Shanske S, DiMauro S, et al. Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet. 1999;65(2):474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van de Glind G, de Vries M, Rodenburg R, Hol F, Smeitink J, Morava E. Resting muscle pain as the first clinical symptom in children carrying the MTTK A8344G mutation. Eur J Paediatr Neurol. 2007;11(4):243–6.

    Article  PubMed  Google Scholar 

  29. Li D, Liang C, Zhang T, Marley JL, Zou W, Lian M, et al. Pathogenic mitochondrial DNA 3243A>G mutation: from genetics to phenotype. Front Genet. 2022;13:951185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poulton J, Finsterer J, Yu-Wai-Man P. Genetic counselling for maternally inherited mitochondrial disorders. Mol Diagn Ther. 2017;21(4):419–29.

    Article  PubMed  Google Scholar 

  31. Damian MS, Seibel P, Schachenmayr W, Reichmann H, Dorndorf W. VACTERL with the mitochondrial np 3243 point mutation. Am J Med Genet. 1996 Apr 24;62(4):398–403.

    Article  CAS  PubMed  Google Scholar 

  32. Hammans SR, Sweeney MG, Hanna MG, Brockington M, Morgan-Hughes JA, Harding AE. The mitochondrial DNA transfer RNALeu(UUR) A-->G(3243) mutation. A clinical and genetic study. Brain. 1995;118(Pt 3):721–34.

    Article  PubMed  Google Scholar 

  33. Olsson C, Zethelius B, Lagerström-Fermér M, Asplund J, Berne C, Landegren U. Level of heteroplasmy for the mitochondrial mutation A3243G correlates with age at onset of diabetes and deafness. Hum Mutat. 1998;12(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M, et al. MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol. 1992;31(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  35. Pickett SJ, Blain A, Ng YS, Wilson IJ, Taylor RW, McFarland R, et al. Mitochondrial donation - which women could benefit? N Engl J Med. 2019;380(20):1971–2.

    Article  PubMed  Google Scholar 

  36. Monnot S, Gigarel N, Samuels DC, Burlet P, Hesters L, Frydman N, et al. Segregation of mtDNA throughout human embryofetal development: m.3243A>G as a model system. Hum Mutat. 2011;32(1):116–25.

    Article  CAS  PubMed  Google Scholar 

  37. Otten ABC, Sallevelt SCEH, Carling PJ, Dreesen JCFM, Drüsedau M, Spierts S, et al. Mutation-specific effects in germline transmission of pathogenic mtDNA variants. Hum Reprod. 2018;33(7):1331–41.

    Article  CAS  PubMed  Google Scholar 

  38. Dyer C. UK is set to allow mitochondrial donation after MPs vote in favour. BMJ. 2015;350:h657.

    Article  PubMed  Google Scholar 

  39. Dziadek MA, Sue CM. Mitochondrial donation: is Australia ready? Med J Aust. 2022;216(3):118–21.

    Article  PubMed  Google Scholar 

  40. Wise J. First baby born in the UK using mitochondrial donation therapy. BMJ. 2023;381:1091.

    Article  PubMed  Google Scholar 

  41. Gorman GS, McFarland R, Stewart J, Feeney C, Turnbull DM. Mitochondrial donation: from test tube to clinic. Lancet. 2018;392(10154):1191–2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yuzhou Gao, Haoyu He, Yang Yang, Yuechen Wang, Pei Hong, Chongwu Xu, and Xuefeng Tian for collecting the data and helpful discussion.

Funding

The National Natural Science Foundation of China (Grant No: U20A20350 to Y.C., Grant No: 81971455 to D.J., Grant No: 82202043 to T.S., Grant No: 81871216 to Y.C., and Grant No: 31701162 to Y.D.), the National Key Research and Development Program of China (Grant No: 2021YFC2700901 to Y.D., D.J., W.Z., and D.L.), Shanghai Science and Technology Innovation Action Plan-Shanghai Sailing Program funded by Science and Technology Commission of Shanghai Municipality (Grant No: 22YF1431600 to T.S.), and the National College Students’ Innovation and Entrepreneurship Training Program (Grant No: 202210366004 to D.J. and N.Z.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, D.J., N.Z., and W.Z.; data curation, D.J., N.Z., W.Z., Z.Z, J.L.M., Z.L., and C.L.; formal analysis, D.J., N.Z., W.Z., Z.Z, J.L.M., Z.L., C.L., L.S., Y.L., and D.L.; funding acquisition, D.J., N.Z., T.S., Y.D., and Y.C.; investigation, D.J., N.Z., W.Z., Z.Z, J.L.M., Z.L., C.L., L.S., Y.L., and D.L.; methodology, D.J., N.Z., W.Z., T.S., Y.D., and Y.C.; project administration, T.S., Y.D., and Y.C.; resources, T.S., Y.D., and Y.C.; software, D.J., N.Z., and W.Z.; supervision, T.S., Y.D., and Y.C.; validation, D.J., N.Z., W.Z., T.S., Y.D., and Y.C.; visualization, D.J., N.Z., W.Z., L.S., Y.L., and D.L., writing—original draft, D.J., N.Z., and W.Z.; writing—review and editing, J.L.M., T.S., Y.D., and Y.C. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Tianhong Su, Yinan Du or Yunxia Cao.

Ethics declarations

Ethics approval

The study was approved by the Ethics Committee of the First Affiliated Hospital of Anhui Medical University (PJ2020-08-15).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 1106 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, D., Zhang, N., Zou, W. et al. Modeling-based prediction tools for preimplantation genetic testing of mitochondrial DNA diseases: estimating symptomatic thresholds, risk, and chance of success. J Assist Reprod Genet 40, 2185–2196 (2023). https://doi.org/10.1007/s10815-023-02880-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02880-2

Keywords

Navigation