Skip to main content

Advertisement

Log in

Loss of PMFBP1 Disturbs Mouse Spermatogenesis by Downregulating HDAC3 Expression

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Polyamine modulating factor 1 binding protein (PMFBP1) acts as a scaffold protein for the maintenance of sperm structure. The aim of this study was further to identify the new role and molecular mechanism of PMFBP1 during mouse spermatogenesis.

Methods and Results

We identified a profile of proteins interacting with PMFBP1 by immunoprecipitation combined with mass spectrometry and demonstrated that class I histone deacetylases, particularly HDAC3 and chaperonin-containing TCP1 subunit 3 (CCT3), were potential interaction partners of PMFBP1 based on network analysis of protein-protein interactions and co-immunoprecipitation. Immunoblotting and immunochemistry assays showed that loss of Pmfbp1 would result in a decline in HDACs and change the proteomic profile of mouse testis, in which differently expressed proteins are associated with spermatogenesis and assembly of flagella, which was proved by proteomic analysis of testis tissue obtained from Pmfbp1−/− mice. After integrating with transcriptome data for Hdac3−/− and Sox30−/− round sperm obtained from a public database, RT-qPCR confirmed ring finger protein 151 (Rnf151) and ring finger protein 133 (Rnf133) were key downstream response factors of the Pmfbp1-Hdac axis affecting mouse spermatogenesis.

Conclusion

Taken together, this study indicates a previously unidentified molecular mechanism of PMFBP1 in spermatogenesis whereby PMFBP1 interacts with CCT3, affecting the expression of HDAC3, followed by the downregulation of RNF151 and RNF133, resulting in an abnormal phenotype of sperm beyond the headless sperm tails. These findings not only advance our understanding of the function of Pmfbp1 in mouse spermatogenesis but also provide a typical case for multi-omics analysis used in the functional annotation of specific genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available in the main text or the supporting information materials.

References

  1. Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis. 2019;10:541.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sharma S, Hanukoglu A, Hanukoglu I. Localization of epithelial sodium channel (ENaC) and CFTR in the germinal epithelium of the testis, Sertoli cells, and spermatozoa. J Mol Histol. 2018;49:195–208.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu F, Liu C, Wang F, Yang X, Zhang J, Wu H, Zhang Z, He X, Zhang Z, Zhou P, et al. Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am J Hum Genet. 2018;103:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mazaheri Moghaddam M, Mazaheri Moghaddam M, Hamzeiy H, Baghbanzadeh A, Pashazadeh F, Sakhinia E. Genetic basis of acephalic spermatozoa syndrome, and intracytoplasmic sperm injection outcomes in infertile men: a systematic scoping review. J Assist Reprod Genet. 2021;38:573–86.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Liu C, Wu B, Li L, Li W, Yuan L. The missing linker between SUN5 and PMFBP1 in sperm head-tail coupling apparatus. Nat Commun. 2021;12:4926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nie H, Tang Y, Zhang X, Tan Y, Qin W. Novel mutations of PMFBP1 in a man with acephalic spermatozoa defects. Mol Genet Genomic Med. 2022;10:e2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sha YW, Wang X, Xu X, Ding L, Liu WS, Li P, Su ZY, Chen J, Mei LB, Zheng LK, et al. Biallelic mutations in PMFBP1 cause acephalic spermatozoa. Clin Genet. 2019;95:277–86.

    Article  CAS  PubMed  Google Scholar 

  8. Deng TQ, Xie YL, Pu JB, Xuan J, Li XM. Compound heterozygous mutations in PMFBP1 cause acephalic spermatozoa syndrome: a case report. World J Clin Cases. 2022;10:12761–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang D, Xu J, Chen K, Liu Y, Yang X, Tang L, Luo X, Liu Z, Li M, Walters JR, et al. BmPMFBP1 regulates the development of eupyrene sperm in the silkworm. Bombyx mori. PLoS Genet. 2022;18:e1010131.

    CAS  PubMed  Google Scholar 

  10. Liu G, Xing X, Zhang H, Zhu W, Lin G, Lu G, Li W. Patients with acephalic spermatozoa syndrome linked to novel TSGA10/PMFBP1 variants have favorable pregnancy outcomes from intracytoplasmic sperm injection. Clin Genet. 2021;100:334–9.

    Article  CAS  PubMed  Google Scholar 

  11. Lu M, Kong S, Xiang M, Wang Y, Zhang J, Duan Z, Zha X, Wang F, Cao Y, Zhu F. A novel homozygous missense mutation of PMFBP1 causes acephalic spermatozoa syndrome. J Assist Reprod Genet. 2021;38:949–55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research-a metabolomics-centric review. Anal Chim Acta. 2021;1141:144–62.

    Article  PubMed  Google Scholar 

  13. Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform. 2018;19:1370–81.

    CAS  PubMed  Google Scholar 

  14. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deng W, Murugan S, Lindberg J, Chellappa V, Shen X, Pawitan Y, Vu TN. Fusion gene detection using whole-exome sequencing data in cancer patients. Front Genet. 2022;13:820493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Göös H, Kinnunen M, Salokas K, Tan Z, Liu X, Yadav L, Zhang Q, Wei GH, Varjosalo M. Human transcription factor protein interaction networks. Nat Commun. 2022;13:766.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res. 2019;18:623–32.

    Article  CAS  PubMed  Google Scholar 

  19. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Mewes HW. CORUM: the comprehensive resource of mammalian protein complexes--2009. Nucleic Acids Res. 2010;38(Database issue):D497–501.

    Article  CAS  PubMed  Google Scholar 

  20. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–d612.

    Article  CAS  PubMed  Google Scholar 

  21. Oughtred R, Stark C, Breitkreutz BJ, Rust J, Boucher L, Chang C, Kolas N, O'Donnell L, Leung G, McAdam R, et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019;47:D529–d541.

    Article  CAS  PubMed  Google Scholar 

  22. von Knethen A, Tzieply N, Jennewein C, Brüne B. Casein-kinase-II-dependent phosphorylation of PPARgamma provokes CRM1-mediated shuttling of PPARgamma from the nucleus to the cytosol. J Cell Sci. 2010;123:192–201.

    Article  Google Scholar 

  23. Mlecnik B, Galon J, Bindea G. Automated exploration of gene ontology term and pathway networks with ClueGO-REST. Bioinformatics. 2019;35:3864–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–d613.

    Article  CAS  PubMed  Google Scholar 

  25. Otasek D, Morris JH, Bouças J, Pico AR, Demchak B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019;20(1):185.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Freund A, Zhong FL, Venteicher AS, Meng Z, Veenstra TD, Frydman J, Artandi SE. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell. 2014;159:1389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Seo S, Baye LM, Schulz NP, Beck JS, Zhang Q, Slusarski DC, Sheffield VC. BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly. Proc Natl Acad Sci U S A. 2010;107:1488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guenther MG, Yu J, Kao GD, Yen TJ, Lazar MA. Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev. 2002;16:3130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams SR, Aldred MA, Der Kaloustian VM, Halal F, Gowans G, McLeod DR, Zondag S, Toriello HV, Magenis RE, Elsea SH. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet. 2010;87:219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin H, Kang Z, Zhang Y, Gong Y, Liu M, Xue Y, He W, Wang Y, Zhang S, Xu Q, et al. HDAC3 controls male fertility through enzyme-independent transcriptional regulation at the meiotic exit of spermatogenesis. Nucleic Acids Res. 2021;49:5106–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, Cheng L, Tan H, Liu X, Guo Y, et al. Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development. 2018;145

  32. Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, Wang Y, Duo S, Feng Y, Zheng C, et al. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development. 2018;145

  33. Nozawa K, Fujihara Y, Devlin DJ, Deras RE, Kent K, Larina IV, Umezu K, Yu Z, Sutton CM, Ye Q, et al. The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice. BMC Biol. 2022;20:161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Zhang L, Li W, Huang Q, Yuan S, Li Y, Liu J, Zhang S, Pin G, Song S, et al. The sperm-associated antigen 6 interactome and its role in spermatogenesis. Reproduction. 2019;158:181–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berger J, Berger S, Li M, Jacoby AS, Arner A, Bavi N, Stewart AG, Currie PD. In vivo function of the chaperonin TRiC in α-actin folding during sarcomere assembly. Cell Rep. 2018;22:313–22.

    Article  CAS  PubMed  Google Scholar 

  36. Liu W, Lu Y, Yan X, Lu Q, Sun Y, Wan X, Li Y, Zhao J, Li Y, Jiang G. Current understanding on the role of CCT3 in cancer research. Front Oncol. 2022;12:961733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Millán-Zambrano G, Rodríguez-Gil A, Peñate X, de Miguel-Jiménez L, Morillo-Huesca M, Krogan N, Chávez S. The prefoldin complex regulates chromatin dynamics during transcription elongation. PLoS Genet. 2013;9:e1003776.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Banks CAS, Miah S, Adams MK, Eubanks CG, Thornton JL, Florens L, Washburn MP. Differential HDAC1/2 network analysis reveals a role for prefoldin/CCT in HDAC1/2 complex assembly. Sci Rep. 2018;8:13712.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wei W, Liu X, Chen J, Gao S, Lu L, Zhang H, Ding G, Wang Z, Chen Z, Shi T, et al. Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res. 2017;27:898–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chini CC, Escande C, Nin V, Chini EN. HDAC3 is negatively regulated by the nuclear protein DBC1. J Biol Chem. 2010;285:40830–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Emmett MJ, Lim HW, Jager J, Richter HJ, Adlanmerini M, Peed LC, Briggs ER, Steger DJ, Ma T, Sims CA, et al. Histone deacetylase 3 prepares brown adipose tissue for acute thermogenic challenge. Nature. 2017;546:544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, Zumbo P, Kirouac K, Bhaskara S, Polo JM, et al. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 2013;4:578–88.

    Article  CAS  PubMed  Google Scholar 

  43. Zakrzewski P, Lenartowski R, Rędowicz MJ, Miller KG, Lenartowska M. Expression and localization of myosin VI in developing mouse spermatids. Histochem Cell Biol. 2017;148:445–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018;29:207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nozawa K, Zhang Q, Miyata H, Devlin DJ, Yu Z, Oura S, Koyano T, Matsuyama M, Ikawa M, Matzuk MM. Knockout of serine-rich single-pass membrane protein 1 (Ssmem1) causes globozoospermia and sterility in male mice†. Biol Reprod. 2020;103:244–53.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nian H, Fan C, Liao S, Shi Y, Zhang K, Liu Y, Han C. RNF151, a testis-specific RING finger protein, interacts with dysbindin. Arch Biochem Biophys. 2007;465:157–63.

    Article  CAS  PubMed  Google Scholar 

  47. Fang J, Zhang J, Zhu F, Yang X, Cui Y, Liu J. Patients with acephalic spermatozoa syndrome linked to SUN5 mutations have a favorable pregnancy outcome from ICSI. Hum Reprod. 2018;33:372–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yin H. et al., Bai S. et al., and Zhang D. et al. for the transcriptomic data and ChIP-seq data (numbers GSE153065 and GSE113073) and the National Omics Data Encyclopedia (accession number OEP000012). The ChIP-seq data in this study were generated from Sox30−/− RS using the Hdac3 antibody and wild-type mouse RS using the Sox30 antibody and downloaded from the Gene Expression Omnibus (GSE153065) database. We thank Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (81972641 to F.W.; 82071701 to F.Z.), the Scientific Research Foundation of the Institute for Translational Medicine of Anhui Province (2021zhyx-C25), the Basic and Clinical Cooperative Research Promotion Program of Anhui Medical University (2022xkjT015), and the Natural Science Research Project for Anhui Universities (KJ2021A0242).

Author information

Authors and Affiliations

Authors

Contributions

F. Wang, F. Zhu, and H. Zhang designed the research. W. Xu, Y. Li, Z. Yao, and K. Wang performed the research. S. Kong, Y. Wang, and M. Xiang analyzed data. H. Zhang and W. Xu wrote the paper. F. Wang and F. Zhu revised the manuscript.

Corresponding authors

Correspondence to Fuxi Zhu, Fengsong Wang or Hui Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1158 kb)

ESM 2

(PDF 158 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Yao, Z., Li, Y. et al. Loss of PMFBP1 Disturbs Mouse Spermatogenesis by Downregulating HDAC3 Expression. J Assist Reprod Genet 40, 1865–1879 (2023). https://doi.org/10.1007/s10815-023-02874-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02874-0

Keywords

Navigation