Skip to main content
Log in

Natural killer cell subsets in endometrial fluid: a pilot study of their association with the endometrial cycle and reproductive parameters

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To investigate if there are natural killer (NK) cells in endometrial fluid (EF) and their relationship with the endometrial cycle and reproductive parameters.

Methods

The population under study consisted of 43 women aged 18–40 undergoing infertility workup at our University Hospital in 2021–2022.

The EF samples were obtained at the first visit to our unit, on occasion of the mock embryo transfer. The day of the cycle was considered only in cycles of 27–29 days.

An immunophenotype study of NK in EF was performed by flow cytometry analysis. In a subgroup of women, on the same day, NK was studied in EF and peripheral blood.

Results

Our study is the first to evidence NK cells in EF. None of the NK cells observed corresponded to a mature peripheral blood NK cell population (stages 4–5), and neither endometrial nor decidual uNK cells were detected. Nevertheless, we found 2 patient groups with an NK cell subset with a higher expression of CD16+, which could belong to an intermediate or transient stage between the uNK and pbNK NK cell population in the EF. We found that CD16 was significantly increased in the mid-late luteal phase and its correlation with the day of the cycle. The NK immunophenotype was different in EF and peripheral blood.

Conclusion

We described a new component of the EF, the NK cells, whose CD16 activity is closely correlated with the day of the cycle. These cells could play a role in implantation/implantation failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Edgell TA, Rombauts LJ, Salamonsen LA. Assessing receptivity in the endometrium: the need for a rapid, non-invasive test. Reprod Biomed Online. 2013;27:486–96. https://doi.org/10.1016/j.rbmo.2013.05.014.

    Article  PubMed  Google Scholar 

  2. Burton GJ, Jauniaux E, Charnock-Jones DS. Human early placental development: potential roles of the endometrial glands. Placenta. 2007;28(Suppl A):S64–9. https://doi.org/10.1016/j.placenta.2007.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Casado-Vela J, Rodríguez-Suarez E, Iloro I, Ametzazurra A, Alkorta N, García-Velasco JA, Matorras R, Prieto B, González S, Nagore D, Simón L, Elortza F. Comprehensive proteomic analysis of human endometrial fluid aspirate. J Proteome Res. 2009;8:4622–32. https://doi.org/10.1021/pr9004426.

    Article  CAS  PubMed  Google Scholar 

  4. Azkargorta M, Escobes I, Iloro I, Osinalde N, Corral B, Ibañez-Perez J, Exposito A, Prieto B, Elortza F, Matorras R. Differential proteomic analysis of endometrial fluid suggests increased inflammation and impaired glucose metabolism in non-implantative IVF cycles and pinpoints PYGB as a putative implantation marker. Hum Reprod. 2018;33:1898–906. https://doi.org/10.1093/humrep/dey274.

    Article  CAS  PubMed  Google Scholar 

  5. Azkargorta M, Bregón-Villahoz M, Escobes I, Ibáñez-Pérez J, Iloro I, Iglesias M, Diez-Zapirain M, Rabanal A, Prieto B, Moragues MD, Matorras R, Elortza F. In-depth proteomics and natural peptidomics analyses reveal antibacterial peptides in human endometrial fluid. J Proteomics. 2020;216:103652. https://doi.org/10.1016/j.jprot.2020.103652.

    Article  CAS  PubMed  Google Scholar 

  6. Matorras R, Exposito A, Ferrando M, Mendoza R, Larreategui Z, Lainz L, Aranburu L, Andrade F, Aldámiz-Echevarria L, Ruiz-Larrea MG, Ruiz-Sanz JI. Oocytes of women who are obese or overweight have lower levels of n-3 polyunsaturated fatty acids compared with oocytes of women with normal weight. Fertil Steril. 2020;113:53–61. https://doi.org/10.1016/j.fertnstert.2019.08.059.

    Article  CAS  PubMed  Google Scholar 

  7. Ibañez-Perez J, Díaz-Nuñez M, Clos-García M, Lainz L, Iglesias M, Díez-Zapirain M, Rabanal A, Bárcena L, González M, Lozano JJ, Marigorta UM, González E, Royo F, Aransay AM, Subiran N, Matorras R, Falcón-Pérez JM. microRNA-based signatures obtained from endometrial fluid identify implantative endometrium. Hum Reprod. 2022;37:2375–91. https://doi.org/10.1093/humrep/deac184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matorras R, Quevedo S, Corral B, Prieto B, Exposito A, Mendoza R, Rabanal A, Diaz-Nuñez M, Ferrando M, Elortza F, Ametzazurra A, Nagore D. Proteomic pattern of implantative human endometrial fluid in in vitro fertilization cycles. Arch Gynecol Obstet. 2018;297:1577–86. https://doi.org/10.1007/s00404-018-4753-1.

    Article  CAS  PubMed  Google Scholar 

  9. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF, Jimenez-Almazán J, Alonso R, Alamá P, Remohí J, Pellicer A, Ramon D, Simon C. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am J Obstet Gynecol. 2016;215:684–703. https://doi.org/10.1016/j.ajog.2016.09.075.

    Article  PubMed  Google Scholar 

  10. Bregón-Villahoz M, Moragues MD, Arrieta-Aguirre I, Azkargorta M, Lainz L, Diez-Zapirain M, Iglesias M, Prieto B, Matorras A, Exposito A, Elortza F, Matorras R. Antibacterial and antifungal activity of the human endometrial fluid during the natural cycle. Infect Dis Obstet Gynecol. 2021;2021:8849664. https://doi.org/10.1155/2021/8849664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990;76:2421–38.

    Article  CAS  PubMed  Google Scholar 

  12. Herrera L, Salcedo JM, Santos S, Vesga MA, Borrego F, Eguizabal C. op9 feeder cells are superior to M2-10B4 cells for the generation of mature and functional natural killer cells from umbilical cord hematopoietic progenitors. Front Immunol. 2017;8:755. https://doi.org/10.3389/fimmu.2017.00755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guerrero B, Hassouneh F, Delgado E, Casado JG, Tarazona R. Natural killer cells in recurrent miscarriage: an overview. J Reprod Immunol. 2020;142:103209. https://doi.org/10.1016/j.jri.2020.103209.

    Article  CAS  PubMed  Google Scholar 

  14. Seshadri S, Sunkara SK. Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update. 2014;20:429–38. https://doi.org/10.1093/humupd/dmt056.

    Article  PubMed  Google Scholar 

  15. Eriksson M, Meadows SK, Wira CR, Sentman CL. Unique phenotype of human uterine NK cells and their regulation by endogenous TGF-beta. J Leukoc Biol. 2004;76:667–75. https://doi.org/10.1189/jlb.0204090.

    Article  CAS  PubMed  Google Scholar 

  16. Searle RF, Jones RK, Bulmer JN. Phenotypic analysis and proliferative responses of human endometrial granulated lymphocytes during the menstrual cycle. Biol Reprod. 1999;60:871–8. https://doi.org/10.1095/biolreprod60.4.871.

    Article  CAS  PubMed  Google Scholar 

  17. Bulmer JN, Lash GE. Human uterine natural killer cells: a reappraisal. Mol Immunol. 2005;42:511–21. https://doi.org/10.1016/j.molimm.2004.07.035.

    Article  CAS  PubMed  Google Scholar 

  18. Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005;26:44–62. https://doi.org/10.1210/er.2003-0021.

    Article  CAS  PubMed  Google Scholar 

  19. Kitaya K, Yamaguchi T, Yasuo T, Okubo T, Honjo H. Post-ovulatory rise of endometrial CD16(-) natural killer cells: in situ proliferation of residual cells or selective recruitment from circulating peripheral blood? J Reprod Immunol. 2007;76:45–53. https://doi.org/10.1016/j.jri.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  20. Bulmer JN, Morrison L, Longfellow M, Ritson A, Pace D. Granulated lymphocytes in human endometrium: histochemical and immunohistochemical studies. Hum Reprod. 1991;6:791–8. https://doi.org/10.1093/oxfordjournals.humrep.a137430.

    Article  CAS  PubMed  Google Scholar 

  21. Tang AW, Alfirevic Z, Quenby S. Natural killer cells and pregnancy outcomes in women with recurrent miscarriage and infertility: a systematic review. Hum Reprod. 2011;8:1971–80. https://doi.org/10.1093/humrep/der164.

    Article  CAS  Google Scholar 

  22. Kwak-Kim J, Gilman-Sachs A. Clinical implication of natural killer cells and reproduction. Am J Reprod Immunol. 2008;59:388–400. https://doi.org/10.1111/j.1600-0897.2008.00596.x.

    Article  CAS  PubMed  Google Scholar 

  23. White D, Jones DB, Cooke T, Kirkham N. Natural killer (NK) activity in peripheral blood lymphocytes of patients with benign and malignant breast disease. Br J Cancer. 1982;46:611–6. https://doi.org/10.1038/bjc.1982.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thyss A, Caldani C, Bourcier C, Benita G, Schneider M. Comparison of natural killer activity during the first and second halves of the menstrual cycle in women. Br J Cancer. 1984;50:127–8. https://doi.org/10.1038/bjc.1984.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sulke AN, Jones DB, Wood PJ. Variation in natural killer activity in peripheral blood during the menstrual cycle. Br Med J. 1985;290:884–6. https://doi.org/10.1136/bmj.290.6472.884.

    Article  CAS  Google Scholar 

  26. Mills PJ, Ziegler MG, Dimsdale JE, Parry BL. Enumerative immune changes following acute stress: effect of the menstrual cycle. Brain Behav Immun. 1995;9:190–5. https://doi.org/10.1006/brbi.1995.1018.

    Article  CAS  PubMed  Google Scholar 

  27. Yovel G, Shakhar K, Ben-Eliyahu S. The effects of sex, menstrual cycle, and oral contraceptives on the number and activity of natural killer cells. Gynecol Oncol. 2001;81:254–62. https://doi.org/10.1006/gyno.2001.6153.

    Article  CAS  PubMed  Google Scholar 

  28. Lobo SC, Huang ST, Germeyer A, Dosiou C, Vo KC, Tulac S, Nayak NR, Giudice LC. The immune environment in human endometrium during the window of implantation. Am J Reprod Immunol. 2004;52:244–51. https://doi.org/10.1111/j.1600-0897.2004.00217.x.

    Article  PubMed  Google Scholar 

  29. Ametzazurra A, Matorras R, García-Velasco JA, Prieto B, Simón L, Martínez A, Nagore D. Endometrial fluid is a specific and non-invasive biological sample for protein biomarker identification in endometriosis. Hum Reprod. 2009;24:954–65. https://doi.org/10.1093/humrep/den450.

    Article  CAS  PubMed  Google Scholar 

  30. Gaynor LM, Colucci F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. Front Immunol. 2017;8:467. https://doi.org/10.3389/fimmu.2017.00467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franasiak JM, Werner MD, Juneau CR, Tao X, Landis J, Zhan Y, Treff NR, Scott RT. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assist Reprod Genet. 2016;33:129–36. https://doi.org/10.1007/s10815-015-0614-z.

    Article  CAS  PubMed  Google Scholar 

  32. Li T, Greenblatt EM, Shin ME, Brown TJ, Chan C. Cargo small non-coding RNAs of extracellular vesicles isolated from uterine fluid associate with endometrial receptivity and implantation success. Fertil Steril. 2021;115:1327–36. https://doi.org/10.1016/j.fertnstert.2020.10.046.

    Article  CAS  PubMed  Google Scholar 

  33. King A, Birkby C, Loke YW. Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell Immunol. 1989;118:337–44. https://doi.org/10.1016/0008-8749(89)90382-1.

    Article  CAS  PubMed  Google Scholar 

  34. Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, Masch R, Lockwood CJ, Schachter AD, Park PJ, Strominger JL. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003 Oct 20;198:1201–12. https://doi.org/10.1084/jem.20030305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12:1065–74. https://doi.org/10.1038/nm1452.

    Article  CAS  PubMed  Google Scholar 

  36. Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF, Robson SC, Bulmer JN. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol. 2006;80:572–80. https://doi.org/10.1189/jlb.0406250.

    Article  CAS  PubMed  Google Scholar 

  37. Sulke AN, Jones DB, Wood PJ. Hormonal modulation of human natural killer cell activity in vitro. J Reprod Immunol. 1985;7:105–10. https://doi.org/10.1016/0165-0378(85)90064-6.

    Article  CAS  PubMed  Google Scholar 

  38. Petitto JM, Folds JD, Ozer H, Quade D, Evans DL. Abnormal diurnal variation in circulating natural killer cell phenotypes and cytotoxic activity in major depression. Am J Psychiatry. 1992;149:694–6. https://doi.org/10.1176/ajp.149.5.694.

    Article  CAS  PubMed  Google Scholar 

  39. Gabrilovac J, Zadjelović J, Osmak M, Suchanek E, Zupanović Z, Boranić M. NK cell activity and estrogen hormone levels during normal human pregnancy. Gynecol Obstet Invest. 1988;25:165–72. https://doi.org/10.1159/000293766.

    Article  CAS  PubMed  Google Scholar 

  40. Benschop RJ, Geenen R, Mills PJ, Naliboff BD, Kiecolt-Glaser JK, Herbert TB, van der Pompe G, Miller GE, Matthews KA, Godaert GL, Gilmore SL, Glaser R, Heijnen CJ, Dopp JM, Bijlsma JW, Solomon GF, Cacioppo JT. Cardiovascular and immune responses to acute psychological stress in young and old women: a meta-analysis. Psychosom Med. 1998;60:290–6. https://doi.org/10.1097/00006842-199805000-00015.

    Article  CAS  PubMed  Google Scholar 

  41. Reichert T, DeBruyère M, Deneys V, Tötterman T, Lydyard P, Yuksel F, Chapel H, Jewell D, Van Hove L, Linden J, Buchner L. Lymphocyte subset reference ranges in adult Caucasians. Clin Immunol Immunopathol. 1991;60:190–208. https://doi.org/10.1016/0090-1229(91)90063-g.

    Article  CAS  PubMed  Google Scholar 

  42. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol. 2004;76:291–9. https://doi.org/10.1189/jlb.1103592.

    Article  CAS  PubMed  Google Scholar 

  43. Carson SA, Kallen AN. Diagnosis and management of infertility: a review. JAMA. 2021;326:65–76. https://doi.org/10.1001/jama.2021.4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Soares SR, Troncoso C, Bosch E, Serra V, Simón C, Remohí J, Pellicer A. Age and uterine receptiveness: predicting the outcome of oocyte donation cycles. J Clin Endocrinol Metab. 2005;90:4399–404. https://doi.org/10.1210/jc.2004-2252.

    Article  CAS  PubMed  Google Scholar 

  45. Centers for Disease Control and Prevention. 2015 Assisted Reproductive Technology Fertility Clinic Success Rates Report. https://www.cdc.gov/art/reports/2015/fertility-clinic.html. Accessed 21 Jan 2023.

  46. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25. https://doi.org/10.1016/S0015-0282(16)30062-0.

    Article  Google Scholar 

  47. Lee S, Kim J, Jang B, Hur S, Jung U, Kil K, et al. Fluctuation of peripheral blood T, B, and NK cells during a menstrual cycle of normal healthy women. J Immunol. 2010;185:756–62. https://doi.org/10.4049/jimmunol.0904192.

    Article  CAS  PubMed  Google Scholar 

  48. Souza SS, Castro FA, Mendonça HC, Palma PV, Morais FR, Ferriani RA, Voltarelli JC. Influence of menstrual cycle on NK activity. J Reprod Immunol. 2001;50:151–9. https://doi.org/10.1016/s0165-0378(00)00091-7.

    Article  CAS  PubMed  Google Scholar 

  49. King K, Smith S, Chapman M, Sacks G. Detailed analysis of peripheral blood natural killer (NK) cells in women with recurrent miscarriage. Hum Reprod. 2010;25:52–8. https://doi.org/10.1093/humrep/dep349.

    Article  CAS  PubMed  Google Scholar 

  50. Diaz-Nuñez M, Rabanal A, Expósito A, Ferrando M, Quintana F, Soria JM, Matorras R. Recurrent miscarriage and implantation failure of unknown cause studied by a panel of thrombophilia conditions: increased frequency of FXIII Val34Leu polymorphism. J Reprod Infertil. 2019;20:76–82.

    PubMed  PubMed Central  Google Scholar 

  51. Kuon RJ, Weber M, Heger J, Santillán I, Vomstein K, Bär C, Strowitzki T, Markert UR, Toth B. Uterine natural killer cells in patients with idiopathic recurrent miscarriage. Am J Reprod Immunol. 2017;78. https://doi.org/10.1111/aji.12721.

  52. Kolanska K, Suner L, Cohen J, Ben Kraiem Y, Placais L, Fain O, Bornes M, Selleret L, Delhommeau F, Feger F, d’Argent EM, Darai E, Chabbert-Buffet N, Antoine JM, Kayem G, Mekinian A. Proportion of cytotoxic peripheral blood natural killer cells and T-cell large granular lymphocytes in recurrent miscarriage and repeated implantation failure: case-control study and meta-analysis. Arch Immunol Ther Exp (Warsz). 2019;67:225–36. https://doi.org/10.1007/s00005-019-00546-5.

    Article  CAS  PubMed  Google Scholar 

  53. Achilli C, Duran-Retamal M, Saab W, Serhal P, Seshadri S. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: a systematic review and meta-analysis. Fertil Steril. 2018;110:1089–100. https://doi.org/10.1016/j.fertnstert.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  54. Woon EV, Day A, Bracewell-Milnes T, Male V, Johnson M. Immunotherapy to improve pregnancy outcome in women with abnormal natural killer cell levels/activity and recurrent miscarriage or implantation failure: a systematic review and meta-analysis. J Reprod Immunol. 2020;142:103189. https://doi.org/10.1016/j.jri.2020.103189.

    Article  CAS  PubMed  Google Scholar 

  55. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood. 2010;116:3865–74. https://doi.org/10.1182/blood-2010-04-282301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang J, Lye SJ. The immune potential of decidua-resident CD16+CD56+ NK cells in human pregnancy. Hum Immunol. 2021;82:332–9. https://doi.org/10.1016/j.humimm.2021.01.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to our colleagues whose work was not cited due to space limitations. We would like to thank the Basque Biobank for Research (Biobanco Vasco) for the collection of the samples.

Funding

This work was supported by grants 2020111058, 2020333032, 2019111068, and 2022111067 from the Health Department of the Basque Government; Merck-Salud Foundation (FSALUD17/004), Inocente, Inocente Foundation (FII22/001) and Jesus de Gangoiti Barrera Foundation, and the Grant for Fertility Innovation (GFI, 2011) from Merck (Darmstadt, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Vendrell.

Ethics declarations

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and its later amendments. The study was approved by our Institutional Ethical and Investigation Board (CEIC code E21/63).

Informed consent

Written informed consent was given to women and, in the case of couples, also to their partners.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, L., Martin-Inaraja, M., Bengoetxea, A. et al. Natural killer cell subsets in endometrial fluid: a pilot study of their association with the endometrial cycle and reproductive parameters. J Assist Reprod Genet 40, 2241–2250 (2023). https://doi.org/10.1007/s10815-023-02862-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02862-4

Keywords

Navigation