Skip to main content

Advertisement

Log in

Endometrial and placental stem cells in successful and pathological pregnancies

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinol. 2018;159(2):1188–98.

    CAS  Google Scholar 

  2. Marikawa Y, Alarcon VB. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Mol Reprod Dev. 2009;76(11):1019–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Godbole G, Modi D. Regulation of decidualization, interleukin-11 and interleukin-15 by homeobox A 10 in endometrial stromal cells. J Reprod Immunol. 2010;85(2):130–9.

    CAS  PubMed  Google Scholar 

  4. James JL, Carter AM, Chamley LW. Human placentation from nidation to 5 weeks of gestation. Part I: what do we know about formative placental development following implantation? Placenta. 2012;33(5):327–34.

    CAS  PubMed  Google Scholar 

  5. Kimber SJ, Spanswick C. Blastocyst implantation: the adhesion cascade. Semin Cell Dev Biol. 2000;11(2):77–92.

    CAS  PubMed  Google Scholar 

  6. Barrientos G, et al. Defective trophoblast invasion underlies fetal growth restriction and preeclampsia-like symptoms in the stroke-prone spontaneously hypertensive rat. Mol Hum Reprod. 2017;23(7):509–19.

    CAS  PubMed  Google Scholar 

  7. Okada H, Tsuzuki T, Murata H. Decidualization of the human endometrium. Reproductive medicine and biology. 2018;17(3):220–7.

    PubMed  PubMed Central  Google Scholar 

  8. Sharma S, Godbole G, Modi D. Decidual control of trophoblast invasion. Am J Reprod Immunol. 2016;75(3):341–50.

    CAS  PubMed  Google Scholar 

  9. Godbole G, Suman P, Gupta SK, Modi D. Decidualized endometrial stromal cell derived factors promote trophoblast invasion. Fertil Steril. 2011;95(4):1278–83.

    CAS  PubMed  Google Scholar 

  10. Sfakianoudis K, et al. The role of uterine natural killer cells on recurrent miscarriage and recurrent implantation failure: from pathophysiology to treatment. Biomed. 2021;9(10):1425.

    CAS  Google Scholar 

  11. Ticconi C, Di Simone N, Campagnolo L, Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell. 2021;72:101586.

    CAS  PubMed  Google Scholar 

  12. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP, Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009;80(6):1136–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gorsek Sparovec T, et al. The fate of human SUSD2+ endometrial mesenchymal stem cells during decidualization. Stem Cell Res. 2022;60:102671.

    CAS  PubMed  Google Scholar 

  14. Masuda H, Anwar SS, Buhring HJ, Rao JR, Gargett CE. A novel marker of human endometrial mesenchymal stem-like cells. Cell Transplant. 2012;21(10):2201–14.

    PubMed  Google Scholar 

  15. Bianco P, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang S, Chan RWS, Ng EHY, Yeung WSB. The role of Notch signaling in endometrial mesenchymal stromal/stem-like cells maintenance. Commun Biol. 2022;5(1):1064.

    PubMed  PubMed Central  Google Scholar 

  17. Liu J, Sato C, Cerletti M, Wagers A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol. 2010;92:367–409.

    CAS  PubMed  Google Scholar 

  18. Cousins FL, Pandoy R, Jin S, Gargett CE. The elusive endometrial epithelial stem/progenitor cells. Front Cell Dev Biol. 2021;9:640319.

    PubMed  PubMed Central  Google Scholar 

  19. Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Su RW, et al. Decreased Notch pathway signaling in the endometrium of women with endometriosis impairs decidualization. J Clin Endocrinol Metab. 2015;100(3):E433–42.

    CAS  PubMed  Google Scholar 

  21. Moldovan GE, et al. Notch effector recombination signal binding protein for immunoglobulin kappa J signaling is required for the initiation of endometrial stromal cell decidualizationdagger. Biol Reprod. 2022;107(4):977–83.

    PubMed  PubMed Central  Google Scholar 

  22. Ring A, Kim YM, Kahn M. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev Rep. 2014;10(4):512–25.

    CAS  PubMed  Google Scholar 

  23. Xu S, Chan RWS, Li T, Ng EHY, Yeung WSB. Correction to: Understanding the regulatory mechanisms of endometrial cells on activities of endometrial mesenchymal stem-like cells during menstruation. Stem Cell Res Ther. 2022;13(1):199.

    PubMed  PubMed Central  Google Scholar 

  24. Deutscher E, Hung-Chang Yao H. Essential roles of mesenchyme-derived beta-catenin in mouse Mullerian duct morphogenesis. Dev Biol. 2007;307(2):227–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mishra A, Ganguli N, Majumdar SS, Modi D. Loss of HOXA10 causes endometrial hyperplasia progressing to endometrial cancer. J Mol Endocrinol. 2022;69(3):431–44.

    CAS  PubMed  Google Scholar 

  26. Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update. 2019;25(1):114–33.

    CAS  PubMed  Google Scholar 

  27. Kirkwood PM, et al. Single-cell RNA sequencing and lineage tracing confirm mesenchyme to epithelial transformation (MET) contributes to repair of the endometrium at menstruation. eLife. 2022;11:e77663.

    PubMed  PubMed Central  Google Scholar 

  28. Blanks AM, Brosens JJ. Meaningful menstruation: cyclic renewal of the endometrium is key to reproductive success. BioEssays. 2013;35(5):412.

    PubMed  Google Scholar 

  29. Gargett CE, Nguyen HP, Ye L. Endometrial regeneration and endometrial stem/progenitor cells. Rev Endocr Metab Disord. 2012;13(4):235–51.

    CAS  PubMed  Google Scholar 

  30. Ulrich D, et al. Mesenchymal stem/stromal cells in post-menopausal endometrium. Hum Reprod. 2014;29(9):1895–905.

    CAS  PubMed  Google Scholar 

  31. Sahoo S, Ashraf B, Duddu AS, Biddle A, Jolly MK. Interconnected high-dimensional landscapes of epithelial-mesenchymal plasticity and stemness in cancer. Clin Exp Metastasis. 2022;39(2):279–90.

    CAS  PubMed  Google Scholar 

  32. Santos RA, et al. Intrinsic angiogenic potential and migration capacity of human mesenchymal stromal cells derived from menstrual blood and bone marrow. Int J Mol Sci. 2020;21(24):9563.

    PubMed  PubMed Central  Google Scholar 

  33. Nagori CB, Panchal SY, Patel H. Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman's syndrome. J Hum Reprod Sci. 2011;4(1):43–8.

    PubMed  PubMed Central  Google Scholar 

  34. Tandulwadkar S, Mishra S, Gupta S. Successful application of combined autologous bone marrow-derived stem cells and platelet-rich plasma in a case of severe Asherman syndrome and subsequent in vitro fertilization conception. J Hum Reprod Sci. 2021;14(4):446–9.

    PubMed  PubMed Central  Google Scholar 

  35. Kim JH, et al. Intrauterine infusion of human platelet-rich plasma improves endometrial regeneration and pregnancy outcomes in a murine model of Asherman's syndrome. Front Physiol. 2020;11:105.

    PubMed  PubMed Central  Google Scholar 

  36. Alawadhi F, Du H, Cakmak H, Taylor HS. Bone marrow-derived stem cell (BMDSC) transplantation improves fertility in a murine model of Asherman's syndrome. PLoS One. 2014;9(5):e96662.

    PubMed  PubMed Central  Google Scholar 

  37. Yamaguchi M, et al. Three-dimensional understanding of the morphological complexity of the human uterine endometrium. iScience. 2021;24(4):102258.

    PubMed  PubMed Central  Google Scholar 

  38. Gargett CE, Ye L. Endometrial reconstruction from stem cells. Fertil Steril. 2012;98(1):11–20.

    PubMed  Google Scholar 

  39. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update. 2016;22(2):137–63.

    CAS  PubMed  Google Scholar 

  40. Jin S. Bipotent stem cells support the cyclical regeneration of endometrial epithelium of the murine uterus. Proc Natl Acad Sci U S A. 2019;116(14):6848–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    CAS  PubMed  Google Scholar 

  42. Nguyen HP, Sprung CN, Gargett CE. Differential expression of Wnt signaling molecules between pre- and postmenopausal endometrial epithelial cells suggests a population of putative epithelial stem/progenitor cells reside in the basalis layer. Endocrinol. 2012;153(6):2870–83.

    CAS  Google Scholar 

  43. Tulac S, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J Clin Endocrinol Metab. 2003;88(8):3860–6.

    CAS  PubMed  Google Scholar 

  44. Bui TD, Zhang L, Rees MC, Bicknell R, Harris AL. Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer. 1997;75(8):1131–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Masuda H, et al. Noninvasive and real-time assessment of reconstructed functional human endometrium in NOD/SCID/gamma c(null) immunodeficient mice. Proc Natl Acad Sci U S A. 2007;104(6):1925–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kato K, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22(5):1214–23.

    CAS  PubMed  Google Scholar 

  47. Cervello I, et al. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One. 2010;5(6):e10964.

    PubMed  PubMed Central  Google Scholar 

  48. Cervello I, et al. Reconstruction of endometrium from human endometrial side population cell lines. PLoS One. 2011;6(6):e21221.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Masuda H, et al. Stem cell-like properties of the endometrial side population: implication in endometrial regeneration. PLoS One. 2010;5(4):e10387.

    PubMed  PubMed Central  Google Scholar 

  50. Zhou S, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001;7(9):1028–34.

    CAS  PubMed  Google Scholar 

  51. Tsuji S, et al. Side population cells contribute to the genesis of human endometrium. Fertil Steril. 2008;90(4 Suppl):1528–37.

    PubMed  Google Scholar 

  52. Singh S, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer. 2012;11:73.

    PubMed  PubMed Central  Google Scholar 

  53. Ruan Z, Yang X, Cheng W. OCT4 accelerates tumorigenesis through activating JAK/STAT signaling in ovarian cancer side population cells. Cancer Manag Res. 2019;11:389–99.

    CAS  PubMed  Google Scholar 

  54. Zuba-Surma EK, et al. Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. J Cell Mol Med. 2008;12(1):292–303.

    PubMed  Google Scholar 

  55. Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Ratajczak J, Kucia M. Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Exp Hematol. 2008;36(6):742–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bhartiya D, Singh P, Sharma D, Kaushik A. Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Rev Rep. 2022;18(5):1718–27.

    CAS  PubMed  Google Scholar 

  57. Ratajczak MZ, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia. 2006;20(11):1915–24.

    CAS  PubMed  Google Scholar 

  58. Zuba-Surma EK, et al. Bone marrow-derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. J Mol Cell Cardiol. 2008;44(5):865–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hess DC, et al. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol. 2004;186(2):134–44.

    CAS  PubMed  Google Scholar 

  60. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290(5497):1779–82.

    CAS  PubMed  Google Scholar 

  61. Ratajczak MZ, Ratajczak J, Kucia M. Very small embryonic-like stem cells (VSELs). Circ Res. 2019;124(2):208–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Taichman RS, et al. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev. 2010;19(10):1557–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bhartiya D, et al. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update. 2016;23(1):41–76.

    PubMed  Google Scholar 

  64. Kucia M, et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia. 2006;20(1):18–28.

    CAS  PubMed  Google Scholar 

  65. Kucia M, Wysoczynski M, Ratajczak J, Ratajczak MZ. Identification of very small embryonic like (VSEL) stem cells in bone marrow. Cell Tissue Res. 2008;331(1):125–34.

    CAS  PubMed  Google Scholar 

  66. Zuba-Surma EK, Wu W, Ratajczak J, Kucia M, Ratajczak MZ. Very small embryonic-like stem cells in adult tissues-potential implications for aging. Mech Ageing Dev. 2009;130(1-2):58–66.

    CAS  PubMed  Google Scholar 

  67. Card DA, et al. Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells. Mol Cell Biol. 2008;28(20):6426–38.

    PubMed  Google Scholar 

  68. Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. Rna. 2010;16(2):324–37.

    PubMed  PubMed Central  Google Scholar 

  69. Asahara T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    CAS  PubMed  Google Scholar 

  70. Shi Q, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92(2):362–7.

    CAS  PubMed  Google Scholar 

  71. Masuda H, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res. 2007;101(6):598–606.

    CAS  PubMed  Google Scholar 

  72. Fina L, et al. Expression of the CD34 gene in vascular endothelial cells. Blood. 1990;75(12):2417–26.

    CAS  PubMed  Google Scholar 

  73. Shalaby F, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376(6535):62–6.

    CAS  PubMed  Google Scholar 

  74. Kalka C, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res. 2000;86(12):1198–202.

    CAS  PubMed  Google Scholar 

  75. Young PP, Hofling AA, Sands MS. VEGF increases engraftment of bone marrow-derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients. Proc Natl Acad Sci U S A. 2002;99(18):11951–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Li L, et al. VEGF promotes endothelial progenitor cell differentiation and vascular repair through connexin 43. Stem Cell Res Ther. 2017;8(1):237.

    PubMed  PubMed Central  Google Scholar 

  77. Wang HH, et al. Reduction of connexin43 in human endothelial progenitor cells impairs the angiogenic potential. Angiogenesis. 2013;16(3):553–60.

    CAS  PubMed  Google Scholar 

  78. Behrens J, Kameritsch P, Wallner S, Pohl U, Pogoda K. The carboxyl tail of Cx43 augments p38 mediated cell migration in a gap junction-independent manner. Eur J Cell Biol. 2010;89(11):828–38.

    CAS  PubMed  Google Scholar 

  79. Gargett CE, Rogers PA. Human endometrial angiogenesis. Reprod. 2001;121(2):181–6.

    CAS  Google Scholar 

  80. Asahara T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85(3):221–8.

    CAS  PubMed  Google Scholar 

  81. Sugawara J, et al. Circulating endothelial progenitor cells during human pregnancy. J Clin Endocrinol Metab. 2005;90(3):1845–8.

    CAS  PubMed  Google Scholar 

  82. Robb AO, Mills NL, Newby DE, Denison FC. Endothelial progenitor cells in pregnancy. Reprod. 2007;133(1):1–9.

    CAS  Google Scholar 

  83. Tal R, Dong D, Shaikh S, Mamillapalli R, Taylor HS. Bone-marrow-derived endothelial progenitor cells contribute to vasculogenesis of pregnant mouse uterusdagger. Biol Reprod. 2019;100(5):1228–37.

    PubMed  PubMed Central  Google Scholar 

  84. Matsubara K, Abe E, Matsubara Y, Kameda K, Ito M. Circulating endothelial progenitor cells during normal pregnancy and pre-eclampsia. Am J Reprod Immunol. 2006;56(2):79–85.

    CAS  PubMed  Google Scholar 

  85. James JL, Srinivasan S, Alexander M, Chamley LW. Can we fix it? Evaluating the potential of placental stem cells for the treatment of pregnancy disorders. Placenta. 2014;35(2):77–84.

    CAS  PubMed  Google Scholar 

  86. Gamage TK, et al. Side-population trophoblasts exhibit the differentiation potential of a trophoblast stem cell population, persist to term, and are reduced in fetal growth restriction. Stem Cell Rev Rep. 2020;16(4):764–75.

    CAS  PubMed  Google Scholar 

  87. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science. 1998;282(5396):2072–5.

    CAS  PubMed  Google Scholar 

  88. Nichols J, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95(3):379–91.

    CAS  PubMed  Google Scholar 

  89. Erlebacher A, Price KA, Glimcher LH. Maintenance of mouse trophoblast stem cell proliferation by TGF-beta/activin. Dev Biol. 2004;275(1):158–69.

    CAS  PubMed  Google Scholar 

  90. Roberts RM, Ezashi T, Sheridan MA, Yang Y. Specification of trophoblast from embryonic stem cells exposed to BMP4. Biol Reprod. 2018;99(1):212–24.

    PubMed  PubMed Central  Google Scholar 

  91. Vandevoort CA, Thirkill TL, Douglas GC. Blastocyst-derived trophoblast stem cells from the rhesus monkey. Stem Cells Dev. 2007;16(5):779–88.

    CAS  PubMed  Google Scholar 

  92. Douglas GC, CA VV, Kumar P, Chang TC, Golos TG. Trophoblast stem cells: models for investigating trophectoderm differentiation and placental development. Endocr Rev. 2009;30(3):228–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee CQ, et al. What is trophoblast? A combination of criteria define human first-trimester trophoblast. Stem cell reports. 2016;6(2):257–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kidder BL, Palmer S. Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance. Genome Res. 2010;20(4):458–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature. 1997;386(6620):84–7.

    CAS  PubMed  Google Scholar 

  96. Roberts RM, Fisher SJ. Trophoblast stem cells. Biol Reprod. 2011;84(3):412–21.

    CAS  PubMed  Google Scholar 

  97. Nishioka N, et al. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell. 2009;16(3):398–410.

    CAS  PubMed  Google Scholar 

  98. Ralston A, et al. Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development. 2010;137(3):395–403.

    CAS  PubMed  Google Scholar 

  99. Georgiades P, Rossant J. Ets2 is necessary in trophoblast for normal embryonic anteroposterior axis development. Development. 2006;133(6):1059–68.

    CAS  PubMed  Google Scholar 

  100. Yamamoto H, et al. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev. 1998;12(9):1315–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ng RK, et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol. 2008;10(11):1280–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Okae H, et al. Derivation of human trophoblast stem cells. Cell Stem Cell. 2018;22(1):50–63. e56

    CAS  PubMed  Google Scholar 

  103. Kidima WB. Syncytiotrophoblast functions and fetal growth restriction during placental malaria: updates and implication for future interventions. Biomed Res Int. 2015;2015:451735.

    PubMed  PubMed Central  Google Scholar 

  104. Chang CW, Parast MM. Human trophoblast stem cells: Real or not real? Placenta. 2017;60(Suppl 1):S57–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983;4(4):397–413.

    CAS  PubMed  Google Scholar 

  106. Sato Y, Fujiwara H, Konishi I. Mechanism of maternal vascular remodeling during human pregnancy. Reprod Med Biol. 2012;11(1):27–36.

    CAS  PubMed  Google Scholar 

  107. James JL, et al. Isolation and characterisation of a novel trophoblast side-population from first trimester placentae. Reprod. 2015;150(5):449–62.

    CAS  Google Scholar 

  108. Ryan JM, Pettit AR, Guillot PV, Chan JK, Fisk NM. Unravelling the pluripotency paradox in fetal and placental mesenchymal stem cells: Oct-4 expression and the case of The Emperor's New Clothes. Stem Cell Rev Rep. 2013;9(4):408–21.

    CAS  PubMed  Google Scholar 

  109. Castrechini NM, et al. Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche. Placenta. 2010;31(3):203–12.

    CAS  PubMed  Google Scholar 

  110. Fukuchi Y, et al. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22(5):649–58.

    CAS  PubMed  Google Scholar 

  111. Wulf GG, et al. Mesengenic progenitor cells derived from human placenta. Tissue Eng. 2004;10(7-8):1136–47.

    CAS  PubMed  Google Scholar 

  112. Matic I, et al. Expression of OCT-4 and SOX-2 in bone marrow-derived human mesenchymal stem cells during osteogenic differentiation. Open Access Maced J Med Sci. 2016;4(1):9–16.

    PubMed  PubMed Central  Google Scholar 

  113. Demir R, et al. Sequential expression of VEGF and its receptors in human placental villi during very early pregnancy: differences between placental vasculogenesis and angiogenesis. Placenta. 2004;25(6):560–72.

    CAS  PubMed  Google Scholar 

  114. Demir R, Kaufmann P, Castellucci M, Erbengi T, Kotowski A. Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat. 1989;136(3):190–203.

    CAS  PubMed  Google Scholar 

  115. Meraviglia V, et al. Human chorionic villus mesenchymal stromal cells reveal strong endothelial conversion properties. Differ. 2012;83(5):260–70.

    CAS  Google Scholar 

  116. Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    CAS  PubMed  Google Scholar 

  117. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    CAS  PubMed  Google Scholar 

  118. Shohara R, et al. Mesenchymal stromal cells of human umbilical cord Wharton's jelly accelerate wound healing by paracrine mechanisms. Cytotherapy. 2012;14(10):1171–81.

    CAS  PubMed  Google Scholar 

  119. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Mirotsou M, et al. Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A. 2007;104(5):1643–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Timeva T, Shterev A, Kyurkchiev S. Recurrent implantation failure: the role of the endometrium. J Reprod Infertil. 2014;15(4):173–83.

    PubMed  PubMed Central  Google Scholar 

  122. Al-Lamee H, et al. The role of endometrial stem/progenitor cells in recurrent reproductive failure. J Pers Med. 2022;12(5):775.

    PubMed  PubMed Central  Google Scholar 

  123. Esmaeilzadeh S, Mohammadi A, Mahdinejad N, Ghofrani F, Ghasemzadeh-Hasankolaei M. Receptivity markers in endometrial mesenchymal stem cells of recurrent implantation failure and non-recurrent implantation failure women: a pilot study. J Obstet Gynaecol Res. 2020;46(8):1393–402.

    CAS  PubMed  Google Scholar 

  124. Karaer A, Cigremis Y, Celik E, Urhan Gonullu R. Prokineticin 1 and leukemia inhibitory factor mRNA expression in the endometrium of women with idiopathic recurrent pregnancy loss. Fertil Steril. 2014;102(4):1091–5. e1091

    CAS  PubMed  Google Scholar 

  125. Salker MS, et al. Disordered IL-33/ST2 activation in decidualizing stromal cells prolongs uterine receptivity in women with recurrent pregnancy loss. PLoS One. 2012;7(12):e52252.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Murakami K, et al. Deficiency in clonogenic endometrial mesenchymal stem cells in obese women with reproductive failure--a pilot study. PLoS One. 2013;8(12):e82582.

    PubMed  PubMed Central  Google Scholar 

  127. Knofler M, et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96.

    PubMed  PubMed Central  Google Scholar 

  128. Mishra A, Galvankar M, Vaidya S, Chaudhari U, Modi D. Mouse model for endometriosis is characterized by proliferation and inflammation but not epithelial-to-mesenchymal transition and fibrosis. J Biosci. 2020;45:1–5.

    Google Scholar 

  129. Hufnagel D, Li F, Cosar E, Krikun G, Taylor HS. The role of stem cells in the etiology and pathophysiology of endometriosis. Semin Reprod Med. 2015;33(5):333–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Becker CM, et al. Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am J Pathol. 2011;178(4):1782–91.

    PubMed  PubMed Central  Google Scholar 

  131. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–6.

    CAS  PubMed  Google Scholar 

  132. Cousins FL, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res Clin Obstet Gynaecol. 2018;50:27–38.

    PubMed  Google Scholar 

  133. Gao Y, Wu G, Xu Y, Zhao D, Zheng L. Stem cell-based therapy for Asherman syndrome: promises and challenges. Cell Transplant. 2021;30:9636897211020734.

    PubMed  Google Scholar 

  134. Mishra A, Galvankar M, Singh N, Modi D. Spatial and temporal changes in the expression of steroid hormone receptors in mouse model of endometriosis. J Assist Reprod Genet. 2020;37(5):1069–81.

    PubMed  PubMed Central  Google Scholar 

  135. Gargett CE, Healy DL. Generating receptive endometrium in Asherman's syndrome. J Hum Reprod Sci. 2011;4(1):49–52.

    PubMed  PubMed Central  Google Scholar 

  136. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.

    PubMed  Google Scholar 

  137. Obermair A, et al. Improved surgical safety after laparoscopic compared to open surgery for apparent early stage endometrial cancer: results from a randomised controlled trial. Eur J Cancer. 2012;48(8):1147–53.

    PubMed  Google Scholar 

  138. Banz-Jansen C, Helweg LP, Kaltschmidt B. Endometrial cancer stem cells: where do we stand and where should we go? Int J Mol Sci. 2022;23(6):3412.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. McCarthy AL, Woolfson RG, Raju SK, Poston L. Abnormal endothelial cell function of resistance arteries from women with preeclampsia. Am J Obstet Gynecol. 1993;168(4):1323–30.

    CAS  PubMed  Google Scholar 

  140. Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496.

    PubMed  PubMed Central  Google Scholar 

  141. Sugawara J, et al. Decrease and senescence of endothelial progenitor cells in patients with preeclampsia. J Clin Endocrinol Metab. 2005;90(9):5329–32.

    CAS  PubMed  Google Scholar 

  142. Hristov M, Weber C. Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res. 2008;58(2):148–51.

    CAS  PubMed  Google Scholar 

  143. Gammill HS, Lin C, Hubel CA. Endothelial progenitor cells and preeclampsia. Front Biosci. 2007;12:2383–94.

    CAS  PubMed  Google Scholar 

  144. Atakul T. Serum levels of angiogenic factors distinguish between women with preeclampsia and normotensive pregnant women but not severity of preeclampsia in an obstetric center in Turkey. Med Sci Monit. 2019;25:6935–42.

    PubMed  Google Scholar 

  145. Luppi P, et al. Maternal circulating CD34+VEGFR-2+ and CD133+VEGFR-2+ progenitor cells increase during normal pregnancy but are reduced in women with preeclampsia. Reprod Sci. 2010;17(7):643–52.

    PubMed  Google Scholar 

  146. Santamaria X, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman's syndrome and endometrial atrophy: a pilot cohort study. Hum Reprod. 2016;31(5):1087–96.

    CAS  PubMed  Google Scholar 

  147. Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. 2020;77(2):253–65.

    CAS  PubMed  Google Scholar 

  148. Moll G, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines. Trends Mol Med. 2019;25(2):149–63.

    PubMed  Google Scholar 

  149. Moll G, et al. Different procoagulant activity of therapeutic mesenchymal stromal cells derived from bone marrow and placental decidua. Stem Cells Dev. 2015;24(19):2269–79.

    CAS  PubMed  Google Scholar 

  150. Moll G, et al. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells. 2012;30(7):1565–74.

    CAS  PubMed  Google Scholar 

  151. Moll G, Ankrum JA, Olson SD, Nolta JA. Improved MSC minimal criteria to maximize patient safety: a call to embrace tissue factor and hemocompatibility assessment of MSC products. Stem Cells Transl Med. 2022;11(1):2–13.

    PubMed  PubMed Central  Google Scholar 

  152. Masuda H, et al. Endometrial side population cells: potential adult stem/progenitor cells in endometrium. Biol Reprod. 2015;93(4):84.

    PubMed  Google Scholar 

  153. Bansal AS, et al. Mechanism of human chorionic gonadotrophin-mediated immunomodulation in pregnancy. Expert Rev Clin Immunol. 2012;8(8):747–53.

    CAS  PubMed  Google Scholar 

  154. Horii M, et al. Modeling preeclampsia using human induced pluripotent stem cells. Sci Rep. 2021;11(1):5877.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Umapathy A, et al. Mesenchymal stem/stromal cells from the placentae of growth restricted pregnancies are poor stimulators of angiogenesis. Stem Cell Rev Rep. 2020;16(3):557–68.

    CAS  PubMed  Google Scholar 

Download references

Funding

The manuscript bears the NIRRCH ID:REV/1502/02-2023. DM lab and is supported by grants from the Indian Council of Medical Research (ICMR, Govt of India). JG is a recipient of the DBT/Wellcome Trust India Alliance Early Career Fellowship

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jayeeta Giri or Deepak Modi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, J., Modi, D. Endometrial and placental stem cells in successful and pathological pregnancies. J Assist Reprod Genet 40, 1509–1522 (2023). https://doi.org/10.1007/s10815-023-02856-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02856-2

Keywords

Navigation