Skip to main content
Log in

The association of APOH and NCF1 polymorphisms on susceptibility to recurrent pregnancy loss in women with antiphospholipid syndrome

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Recurrent pregnancy loss (RPL) is the main manifestation of pathological pregnancy in antiphospholipid syndrome (APS) women. The immune state plays a significant role in the occurrence/development of APS and RPL susceptibility, but there is little research on genetic factors.

Method

Previous studies have described the important role of APOH and NCF1 in APS and pregnancy. To explore the association of APOH and NCF1 gene variants with RPL susceptibility in APS patients, we collected and analyzed 871 controls, 182 APS and RPL, and 231 RPL patients. Four single nucleotide polymorphisms (SNPs) (rs1801690, rs52797880, and rs8178847 of APOH and rs201802880 of NCF1) were selected and genotyped.

Results

We found rs1801690 (p = 0.001, p = 0.003), rs52797880 (p = 8.73e-04, p = 0.001), and rs8178847 (p = 0.001, p = 0.001) of APOH and rs201802880 (p = 3.77e-26, p = 1.31e-26) of NCF1 showed significant differences between APS and RPL patients and controls in allelic and genotype frequencies respectively. Moreover, rs1801690, rs52797880, and rs8178847 showed strong linkage disequilibrium. Especially, our results revealed a complete linkage disequilibrium (D’ = 1) between rs52797880 and rs8178847. Furthermore, higher serum TP (total protein) level was described in APOH rs1801690 CG/GG (p = 0.007), rs52797880 AG/GG (p = 0.033), and rs8178847 CT/TT (p = 0.033), while the higher frequency of positive serum ACA-IgM was found in NCF1 rs201802880 GA (p = 0.017) in APS and RPL patients.

Conclusion

Rs1801690, rs52797880, and rs8178847 of APOH and rs201802880 of NCF1 were associated with RPL susceptibility in APS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera RHWM, Derksen RH, de Groot PG, Koike T, Meroni PL, Reber G. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    CAS  PubMed  Google Scholar 

  2. Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss. Fertil Steril. 2013;90:S60.

    Google Scholar 

  3. Schreiber K, Sciascia S, de Groot PG, Devreese K, Jacobsen S, Ruiz-Irastorza G, Salmon JE, Shoenfeld Y, Shovman O, Hunt BJ. Antiphospholipid syndrome. Nat Rev Dis Primers. 2018;4:17103.

    PubMed  Google Scholar 

  4. Rodrigues V, Soligo AD, Pannain GD. Antiphospholipid antibody syndrome and infertility. Rev Bras Ginecol. 2019;41:621–7.

    Google Scholar 

  5. Rai RS, Clifford K, Cohen H, Regan LJHR. High prospective fetal loss rate in untreated pregnancies of women with recurrent miscarriage and antiphospholipid antibodies. Hum Reprod. 1995;10(12):3301–4.

    CAS  PubMed  Google Scholar 

  6. Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Sáez-Comet L, Lefkou E, Mekinian A, Belizna C, Ruffatti A, Tincani A, Marozio L, Espinosa G, Cervera R, Ríos-Garcés R, De Carolis S, Latino O, LL E, Chighizola CB, Gerosa M, Pengo V, et al. The European Registry on Obstetric Antiphospholipid Syndrome (EUROAPS): a survey of 1000 consecutive cases. Autoimmun Rev. 2019;18:406–14.

    PubMed  Google Scholar 

  7. Barinotti A, Radin M, Cecchi I, Foddai S, Rubini E, Roccatello D, Sciascia S, Menegatti E. Genetic factors in antiphospholipid syndrome: preliminary experience with whole exome sequencing. Int J Mol Sci. 2020;21(24):9551.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bilal M, Katara G, Dambaeva S, Kwak-Kim J, Gilman‐Sachs A, Beaman KD. Clinical molecular genetics evaluation in women with reproductive failures. 2021;85(4):e13313.

  9. Yin H, Borghi MO, Delgado-Vega AM, Tincani A, Meroni PL, Alarcon-Riquelme ME. Association of STAT4 and BLK, but not BANK1 or IRF5, with primary antiphospholipid syndrome. Arthritis Rheum. 2009;60:2468–71.

    CAS  PubMed  Google Scholar 

  10. Horita T, Atsumi T, Yoshida N, Nakagawa H, Kataoka H, Yasuda S, Koike T. STAT4 single nucleotide polymorphism, rs7574865 G/T, as a risk for antiphospholipid syndrome. Ann Rheum Dis. 2009;68:1366–7.

    CAS  PubMed  Google Scholar 

  11. Sugiura-Ogasawara M, Omae Y, Kawashima M, Toyo-Oka L, Khor S, Sawai H, Horita T, Atsumi T, Murashima A, Fujita D, Fujita T, Morimoto S, Morishita E, Katsuragi S, Kitaori T, Katano K, Ozaki Y, Tokunaga KJ. The first genome-wide association study identifying new susceptibility loci for obstetric antiphospholipid syndrome. J Hum Genet. 2017;62:831–8.

    CAS  PubMed  Google Scholar 

  12. Ochoa E, Iriondo M, Bielsa A, Ruiz-Irastorza G, Estonba A, Zubiaga AM. Thrombotic antiphospholipid syndrome shows strong haplotypic association with SH2B3-ATXN2 locus. PLoS One. 2013;8:e67897.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Prieto GA, Cabral AR, Zapata-Zuniga M, Simon AJ, Villa AR, Alarcon-Segovia D, Cabiedes J. Valine/valine genotype at position 247 of the beta2-glycoprotein I gene in Mexican patients with primary antiphospholipid syndrome: association with anti-beta2-glycoprotein I antibodies. Arthritis Rheum. 2003;48:471–4.

    CAS  PubMed  Google Scholar 

  14. Muller-Calleja N, Rossmann H, Muller C, Wild P, Blankenberg S, Pfeiffer N, Binder H, Beutel ME, Manukyan D, Zeller T, Lackner KJ. Antiphospholipid antibodies in a large population-based cohort: genome-wide associations and effects on monocyte gene expression. Thromb Haemost. 2016;116:115–23.

    PubMed  Google Scholar 

  15. Athanasiadis G, Sabater-Lleal M, Buil A, Souto JC, Borrell M, Lathrop M, Watkins H, Almasy L, Hamsten A, Soria JM. Genetic determinants of plasma β2-glycoproteinI levels: a genome-wide association study in extended pedigrees from Spain. J Thromb Haemost. 2013;11:521–8.

    CAS  PubMed  Google Scholar 

  16. Kolialexi A, Tsangaris G, Sifakis S, Gourgiotis D, Katsafadou A, Lykoudi A, Marmarinos A, Mavreli D, Pergialiotis V, Fexi D, Mavrou A, Papaioanou G, Papantoniou NJ. Plasma biomarkers for the identification of women at risk for early-onset preeclampsia. Expert Rev Proteom. 2017;14:269–76.

    CAS  Google Scholar 

  17. Provost P, Tremblay YJ. Elevated expression of four apolipoprotein genes during the 32-35 week gestation window in the human developing lung. Early Hum Dev. 2010;86:529–34.

    CAS  PubMed  Google Scholar 

  18. Kopylov A, Papysheva O, Gribova I, Kotaysch G, Kharitonova L, Mayatskaya T, Sokerina E, Kaysheva A, Morozov SJ. Molecular pathophysiology of diabetes mellitus during pregnancy with antenatal complications. Sci Rep. 2020;10:19641.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao J, Ma J, Deng Y, Kelly J, Kim K, Bang S, Lee H, Li Q, Wakeland E, Qiu R, Liu M, Guo J, Li Z, Tan W, Rasmussen A, Lessard C, Sivils K, Hahn B, Grossman J, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet. 2017;49:433–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Olsson L, Johansson Å, Gullstrand B, Jönsen A, Saevarsdottir S, Rönnblom L, Leonard D, Wetterö J, Sjöwall C, Svenungsson E, Gunnarsson I, Bengtsson A, Holmdahl RJ. NCF1A single nucleotide polymorphism in the gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis. 2017;76:1607–13.

    CAS  PubMed  Google Scholar 

  21. Hultqvist M, Olofsson P, Holmberg J, Bäckström B, Tordsson J, Holmdahl R. Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci USA. 2004;101:12646–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kelkka T, Kienhöfer D, Hoffmann M, Linja M, Wing K, Sareila O, Hultqvist M, Laajala E, Chen Z, Vasconcelos J, Neves E, Guedes M, Marques L, Krönke G, Helminen M, Kainulainen L, Olofsson P, Jalkanen S, Lahesmaa R, et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid Redox Signal. 2014;21:2231–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Olsson LM, Johansson ÅC, Gullstrand B, Jönsen A, Saevarsdottir S, Rönnblom L, Leonard D, Wetterö J, Sjöwall C, Svenungsson EJ. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann Rheum Dis. 2017;76(9):1607–13.

    CAS  PubMed  Google Scholar 

  24. Linge P, Arve S, Olsson LM, Leonard D, Sjöwall C, Frodlund M, Gunnarsson I, Svenungsson E, Tydén H, Jönsen A, Kahn R, Johansson Å, Rönnblom L, Holmdahl R, Bengtsson A. NCF1-339 polymorphism is associated with altered formation of neutrophil extracellular traps, high serum interferon activity and antiphospholipid syndrome in systemic lupus erythematosus. Ann Rheum Dis. 2020;79:254–61.

    CAS  PubMed  Google Scholar 

  25. De Boer M, Gavrieli R, van Leeuwen K, Wolf H, Dushnitzki M, Bar-Yosef Y, Bar-Ziv A, Behar D, Lipitz S, Miller T, Tool A, Kuijpers T, van den Berg T, Wolach B, Roos D, Pras E. A false-carrier state for the c.579G>A mutation in the NCF1 gene in Ashkenazi Jews. J Med Genet. 2018;55:166–72.

    PubMed  Google Scholar 

  26. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15:97–8.

    CAS  PubMed  Google Scholar 

  27. Pozzi N, Acquasaliente L, Frasson R, Cristiani A, Moro S, Banzato A, Pengo V, Scaglione G, Arcovito A, De Cristofaro R, De Filippis V. β2 -Glycoprotein I binds to thrombin and selectively inhibits the enzyme procoagulant functions. J Thromb Haemost. 2013;11:1093–102.

    CAS  PubMed  Google Scholar 

  28. Athanasiadis G, Sabater-Lleal M, Buil A, Souto J, Borrell M, Lathrop M, Watkins H, Almasy L, Hamsten A, Soria JM. Genetic determinants of plasma β2-glycoprotein I levels: a genome-wide association study in extended pedigrees from Spain. J Thromb Haemost. 2013;11:521–8.

    CAS  PubMed  Google Scholar 

  29. Miyakis S, Giannakopoulos B, Krilis S. Beta 2 glycoprotein I--function in health and disease. Thromb Res. 2004;114:335–46.

    CAS  PubMed  Google Scholar 

  30. Tan Y, Bian Y, Song Y, Zhang Q, Wan X. Exosome-contained APOH associated with antiphospholipid syndrome. Front Immunol. 2021;12:604222.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang L, Zeng W, Lu X, Wang Q, Liu H, Cheng Z, Wu Y, Hu B, Jian X, Guo T, Wang H, Hu Y. Identification of APOH polymorphisms as common genetic risk factors for venous thrombosis in the Chinese population. J Thromb Haemost. 2014;12:1616–25.

    CAS  PubMed  Google Scholar 

  32. Guo T, Yin RX, Li H, Wang YM, Wu JZ, Yang DZ. Association of the Trp316Ser variant (rs1801690) near the apolipoprotein H (β2 glycoprotein-I) gene and serum lipid levels. Int J Clin Exp Pathol. 2015;8(6):7291.

    PubMed  PubMed Central  Google Scholar 

  33. Ruano G, Bernene J, Windemuth A, Bower B, Wencker D, Seip RL, Kocherla M, Holford TR, Petit WA, Hanks S. Physiogenomic comparison of edema and BMI in patients receiving rosiglitazone or pioglitazone. Clin Chim Acta. 2009;400:48–55.

    CAS  PubMed  Google Scholar 

  34. Hasstedt SJ, Coon H, Xin Y, Adams TD, Hunt SC. APOH interacts with FTO to predispose to healthy thinness. Hum Genet. 2016;135:201–7.

    PubMed  Google Scholar 

  35. Mehdi H, Aston C, Sanghera D, Hamman R, Kamboh M. Genetic variation in the apolipoprotein H (beta2-glycoprotein I) gene affects plasma apolipoprotein H concentrations. Hum Genet. 1999;105:63–71.

    CAS  PubMed  Google Scholar 

  36. Chamorro AJ, Marcos M, Mirón-Canelo JA, Cervera R, Espinosa G. Val247Leu β2-glycoprotein-I allelic variant is associated with antiphospholipid syndrome: systematic review and meta-analysis. 2012;11:705–12.

  37. Horita T, Merrill JT. Genetics of antiphospholipid syndrome. Curr Rheumatol Rep. 2004;6:458.

    PubMed  Google Scholar 

  38. Liu Z, Sun S, Xu H, Zhang X, Chen C, Fu R, Li C, Guo F, Zhao A. Prognostic analysis of antibody typing and treatment for antiphospholipid syndrome-related recurrent spontaneous abortion. Int J Gynaecol Obstet. 2021;156(1):107–11.

    PubMed  Google Scholar 

  39. Kamboh MI, Wang X, Kao AH, Barmada MM, Clarke A, Ramsey-Goldman R, Manzi S, Demirci FY. Genome-wide association study of antiphospholipid antibodies. Autoimmune Dis. 2013;2013:761046.

    PubMed  PubMed Central  Google Scholar 

  40. Sanghera DK, Wagenknecht DR, Mcintyre JA, Ilyas K. Identification of structural mutations in the fifth domain of apolipoprotein H (β2-glycoprotein I) which affect phospholipid binding. Hum Mol Genet. 1997;6(2):311–6.

    CAS  PubMed  Google Scholar 

  41. Myatt L, Cui XJH. Oxidative stress in the placenta. Histochem Cell Biol. 2004;122:369.

    CAS  PubMed  Google Scholar 

  42. Gagioti S, Colepicolo P, Bevilacqua E. Reactive oxygen species and the phagocytosis process of hemochorial trophoblast. Ciencia e Cultura. 1996;48:37–42.

    CAS  Google Scholar 

  43. Gagioti S, Colepicolo P, Bevilacqua E. Post-implantation mouse embryos have the capability to generate and release reactive oxygen species. Reprod Fertil Dev. 1995;7:1111–6.

    CAS  PubMed  Google Scholar 

  44. Jayasena C, Radia U, Figueiredo M, Revill L, Dimakopoulou A, Osagie M, Vessey W, Regan L, Rai R, Dhillo WS. Reduced testicular steroidogenesis and increased semen oxidative stress in male partners as novel markers of recurrent miscarriage. Clin Chem. 2019;65:161–9.

    CAS  PubMed  Google Scholar 

  45. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16:80.

    PubMed  PubMed Central  Google Scholar 

  46. Zhong J, Olsson LM, Urbonaviciute V, Yang M, Backdahl L, Holmdahl R. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med. 2018;125:72–80.

    CAS  PubMed  Google Scholar 

  47. Olsson LM, Nerstedt A, Lindqvist AK, Johansson ÅC, Medstrand P, Olofsson P, Holmdahl R. Copy number variation of the gene NCF1 is associated with rheumatoid arthritis. Antioxid Redox Signal. 2012;16(1):71–8.

    CAS  PubMed  Google Scholar 

  48. Yokoyama N, Kawasaki A, Matsushita T, Furukawa H, Kondo Y, Hirano F, Sada KE, Matsumoto I, Kusaoi M, Amano H, Nagaoka S, Setoguchi K, Nagai T, Shimada K, Sugii S, Hashimoto A, Matsui T, Okamoto A, Chiba N, et al. Association of NCF1 polymorphism with systemic lupus erythematosus and systemic sclerosis but not with ANCA-associated vasculitis in a Japanese population. Sci Rep. 2019;9:16366.

    PubMed  PubMed Central  Google Scholar 

  49. Al-Balushi MS, Hasson SS, Said EA, Al-Busaidi JZ, Al-Daihani MS, Othman MS, Sallam TA, Idris MA, Al-Kalbani M, Woodhouse N, Al-Jabri AA. Fluctuation in the levels of immunoglobulin M and immunoglobulin G antibodies for cardiolipin and β2-glycoprotein among healthy pregnant women. Sultan Qaboos Univ Med J. 2014;14:e478–85.

    PubMed  PubMed Central  Google Scholar 

  50. Amin M, Ibrahim A, Fahmy E, Yassin A, Abu-Elhassan SG, Abd-Elsadik A. Prognostic value of serum antiphospholipid antibodies in patients with ST-segment elevation myocardial infarction. Egypt J Immunol. 2018;25:143–51.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank all participants in this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Shihua Bao plays a guiding role in the conceptualization and the final review, Xujing Deng takes charge of data collection and writing of the paper, Jian Mu is responsible for methodology and revision of the paper, Qing Sang was chiefly accountable for data analysis, and Ruixiu Zhang is responsible for revising the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian Mu or Shihua Bao.

Ethics declarations

Ethics approval

This study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Shanghai First Maternity and Infant Hospital.

Informed consent

Written informed consent has been obtained from the patients to publish this paper.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Sang, Q., Zhang, R. et al. The association of APOH and NCF1 polymorphisms on susceptibility to recurrent pregnancy loss in women with antiphospholipid syndrome. J Assist Reprod Genet 40, 1703–1712 (2023). https://doi.org/10.1007/s10815-023-02829-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02829-5

Keywords

Navigation