Skip to main content
Log in

Association between endometrial senescent cells and immune cells in women with repeated implantation failure

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to compare women with recurrent implantation failure (RIF) and control group in terms of the associations between p16-positive senescent cells and certain types of immune cells in human endometrium during the mid-luteal phase

Methods

Immunohistochemical staining was performed in 116 endometrial biopsies taken from 57 women presenting RIF, and control group of 59 women who became pregnant after the first intracytoplasmic sperm injection. Endometrial tissue sections were stained immunohistochemically for p16 (Senescent cells), CD4 (T-helpers), CD8 (T-killers), CD14 (Monocytes), CD68 (Macrophages), CD56 (Natural killers), and CD79α (B-cells). The percentage of positively stained cells for each marker was calculated by HALO image analysis software. The quantity and the relationship between senescent cells and immune cells were assessed and compared between the two groups.

Results

The correlation coefficient was highest between senescent cells and CD4+ cells and was lowest between senescent cells and CD14+ cells in RIF women, similarly to the control group. However, most of the observed correlations among senescent and immune cells weaken notably or disappear in the RIF group. When comparing senescent cell-to-immune cell quantitative ratios, only p16+/CD4+ cell ratio was significantly higher in RIF women as compared with patients from the control group.

Conclusion

Our study indicates that the quantity of senescent cells in human endometrium during the mid-luteal phase has the strongest association with the amount of T helpers. Moreover, the specificity of this association might have an important impact on the occurrence of RIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum. Reprod. 2007;22:1506–12. https://doi.org/10.1093/humrep/dem046.

    Article  PubMed  Google Scholar 

  2. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reproductive biology and endocrinology RB&E. 2015;13:37. https://doi.org/https://doi.org/10.1186/s12958-015-0032-1

  3. European IVF Monitoring Consortium (EIM), for the European Society of Human Reproduction and Embryology (ESHRE), Wyns C, De Geyter C, Calhaz-Jorge C, Kupka MS, Motrenko T, Smeenk J, Bergh C, Tandler-Schneider A, Rugescu IA, Goossens V. ART in Europe, 2018: results generated from European registries by ESHRE. Human reproduction open. 2022(3):1–22. https://doi.org/10.1093/hropen/hoac022.

  4. Devroey P, Fauser BC, Diedrich K. Evian Annual Reproduction (EVAR) Workshop Group 2008. Approaches to improve the diagnosis and management of infertility. Hum. Reprod. Update. 2009;15(4):391–408. https://doi.org/10.1093/humupd/dmp012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szamatowicz M, Szamatowicz J. Proven and unproven methods for diagnosis and treatment of infertility. Adv. Med. Sci. 2020;65(1):93–6. https://doi.org/10.1016/j.advms.2019.12.008.

    Article  PubMed  Google Scholar 

  6. Su RW, Fazleabas AT. Implantation and Establishment of Pregnancy in Human and Nonhuman Primates. Adv. Anat. Embryol. Cell Biol. 2015;216:189–213. https://doi.org/10.1007/978-3-319-15856-3_10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kim SM, Kim JS. A Review of Mechanisms of Implantation. Development & reproduction. 2017;21(4):351–9. https://doi.org/10.12717/DR.2017.21.4.351.

    Article  Google Scholar 

  8. Sun Y, Zhang Y, Ma X, Jia W, Su Y. Determining diagnostic criteria of unexplained recurrent implantation failure: A ret-rospective study of two vs. three or more implantation failure. Front. Endocrinol. 2021;12:619437. https://doi.org/10.3389/fendo.2021.619437.

    Article  Google Scholar 

  9. Busnelli A, Reschini M, Cardellicchio L, Vegetti W, Somigliana E, Vercelllini P. How common is real repeated implantation failure? An indirect estimate of the prevalence. Reprod. Biomed. Online. 2020;40:91–7. https://doi.org/10.1016/j.rbmo.2019.10.014.

    Article  PubMed  Google Scholar 

  10. Mrozikiewicz AE, Ożarowski M, Jędrzejczak P. Biomolecular Markers of Recurrent Implantation Failure-A Review. Int. J. Mol. Sci. 2021;22(18):10082. https://doi.org/10.3390/ijms221810082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. Elife. 2017;6:e31274. https://doi.org/10.7554/eLife.31274.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Parvanov D, Ganeva R, Vidolova N, Stamenov G. Decreased number of p16-positive senescent cells in human endometrium as a marker of miscarriage. J. Assist. Reprod. Genet. 2021;38(8):2087–95. https://doi.org/10.1007/s10815-021-02182-5.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deryabin PI, Borodkina AV. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells. Hum. Reprod. 2022;37(7):1505–24. https://doi.org/10.1093/humrep/deac112.

    Article  CAS  PubMed  Google Scholar 

  14. Tang Y, Zhang X, Zhang Y, Feng H, Gao J, Liu H, Guo F, Chen Q. Senescent Changes and Endoplasmic Reticulum Stress May Be Involved in the Pathogenesis of Missed Miscarriage. Front. Cell Dev. Biol. 2021;9:656549. https://doi.org/10.3389/fcell.2021.656549.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee SK, Kim CJ, Kim DJ, Kang JH. Immune cells in the female reproductive tract. Immune Netw. 2015;15:16–26. https://doi.org/10.4110/in.2015.15.1.16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2019;20(21):5332. https://doi.org/10.3390/ijms20215332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Renaud SJ, Graham CH. The role of macrophages in utero-placental interactions during normal and pathological pregnancy. Immunol. Invest. 2008;37:535–64. https://doi.org/10.1080/08820130802191375.

    Article  CAS  PubMed  Google Scholar 

  18. Robertson SA, Jasper MJ, Bromfield JJ, Care AS, Ingman NH, WV. The Role of Macrophages in Implantation and Early Pregnancy Success. Biol. Reprod. 2008;78(Suppl 1):274–5. https://doi.org/10.1093/biolreprod/78.s1.274c.

    Article  Google Scholar 

  19. Woon EV, Greer O, Shah N, Nikolaou D, Johnson M, Male V. Number and function of uterine natural killer cells in recurrent miscarriage and implantation failure: a systematic review and meta-analysis. Hum. Reprod. Update. 2022;28(Issue 4):548–82. https://doi.org/10.1093/humupd/dmac006.

    Article  CAS  Google Scholar 

  20. Schumacher A, Sharkey DJ, Robertson SA, Zenclussen AC. Immune Cells at the Fetomaternal Interface: How the Microenvironment Modulates Immune Cells To Foster Fetal Development. J. Immunol. 2018;201(2):325–34. https://doi.org/10.4049/jimmunol.1800058.

    Article  CAS  PubMed  Google Scholar 

  21. Marron K, Harrity C. Endometrial lymphocyte concentrations in adverse reproductive outcome populations. J. Assist. Reprod. Genet. 2019;36(5):837–46. https://doi.org/10.1007/s10815-019-01427-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Polanski LT, Baumgarten MN, Quenby S, Brosens J, Campbell BK, Raine-Fenning NJ. What exactly do we mean by “recurrent implantation failure”? A systematic review and opinion. Reprod. Biomed. Online. 2014;28:409–23. https://doi.org/10.1016/j.rbmo.2013.12.006.

    Article  PubMed  Google Scholar 

  23. Bashiri A, Halper KI, Orvieto R. Recurrent Implantation Failure-Update Overview on Etiology, Diagnosis, Treatment and Future Directions. Reprod. Biol. Endocrinol. 2018;16:121. https://doi.org/10.1186/s12958-018-0414-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amjadi F, Zandieh Z, Mehdizadeh M, Aghajanpour S, Raoufi E, Aghamajidi A, Aflatoonian R. The Uterine Immunological Changes May Be Responsible for Repeated Implantation Failure. J. Reprod. Immunol. 2020;138:103080. https://doi.org/10.1016/j.jri.2020.103080.

    Article  CAS  PubMed  Google Scholar 

  25. Kolanska K, Bendifallah S, Cohen J, Placais L, Selleret L, Johanet C, Suner L, Delhommeau F, Chabbert-Buffet N, Darai E, et al. Unexplained Recurrent Implantation Failures: Predictive Factors of Pregnancy and Therapeutic Management from a French Multicentre Study. J. Reprod. Immunol. 2021;145:103313. https://doi.org/10.1016/j.jri.2021.103313.

    Article  CAS  PubMed  Google Scholar 

  26. Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, Kokkali G, Pappas A, Lambropoulou M, Sfakianoudis K, Simopoulou M. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int. J. Mol. Sci. 2022;23(4):2198. https://doi.org/10.3390/ijms23042198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rawlings TM, Makwana K, Taylor DM, Molè MA, Fishwick KJ, Tryfonos M, Odendaal J, Hawkes A, Zernicka-Goetz M, Hartshorne GM, Brosens JJ, Lucas ES. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife. 2021;10:e69603. https://doi.org/10.7554/eLife.69603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lédée N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, Dubanchet S, Gahéry H, Bensussan A, Chaouat G. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am. J. Reprod. Immunol. 2016;75(3):388–401. https://doi.org/10.1111/aji.12483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gieseck RL, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 2018;18(1):62–76. https://doi.org/10.1038/nri.2017.90.

    Article  CAS  PubMed  Google Scholar 

  30. Strutt TM, McKinstry KK, Marshall NB, Vong AM, Dutton RW, Swain SL. Multipronged CD4(+) T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol. Rev. 2013;255(1):149–64. https://doi.org/10.1111/imr.12088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A, Iken M, Vucur M, Weiss S, Heikenwalder M, Khan S, Gil J, Bruder D, Manns M, Schirmacher P, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011;479:547–51. https://doi.org/10.1038/nature10599.

    Article  CAS  PubMed  Google Scholar 

  32. Riberdy JM, Christensen JP, Branum K, Doherty PC. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice. J. Virol. 2000;74(20):9762–5. https://doi.org/10.1128/jvi.74.20.9762-9765.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lorenzo EC, Torrance BL, Keilich SR, Al-Naggar I, Harrison A, Xu M, Bartley JM, Haynes L. Senescence-induced changes in CD4 T cell differentiation can be alleviated by treatment with senolytics. Aging Cell. 2022;21(1):e13525. https://doi.org/10.1111/acel.13525.

    Article  CAS  PubMed  Google Scholar 

  34. Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immunity & ageing. 2020;17(16):1–9. https://doi.org/10.1186/s12979-020-00187-9.

    Article  Google Scholar 

  35. Muñoz DP, Yannone SM, Daemen A, Sun Y, Vakar-Lopez F, Kawahara M, et al. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight. 2019;5:e124716. https://doi.org/10.1172/jci.insight.124716.

    Article  PubMed  Google Scholar 

  36. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat. Rev. Immunol. 2006;6:940–52. https://doi.org/10.5114/ceji.2014.42135.

    Article  CAS  PubMed  Google Scholar 

  37. Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, Virasami A, Sebire NJ, Kinsler V, Valdovinos A, LeSaux CJ, Passos JF, Antoniou A, Rustin MHA, Campisi J, Akbar AN. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 2019;10(1):2387. https://doi.org/10.1038/s41467-019-10335-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mevorach D, Trahtemberg U, Krispin A, Attalah M, Zazoun J, Tabib A, Grau A, Verbovetski-Reiner I. What do we mean when we write “senescence,” “apoptosis,” “necrosis,” or “clearance of dying cells”? Ann. N. Y. Acad. Sci. 2010;1209:1–9. https://doi.org/10.1111/j.1749-6632.2010.05774.x.

    Article  CAS  PubMed  Google Scholar 

  39. Yun MH, Davaapil H, Brockes JP. Recurrent turnover of senescent cells during regeneration of a complex structure. Elife. 2015;4:e05505. https://doi.org/10.7554/eLife.05505.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Egashira M, Hirota Y, Shimizu-Hirota R, Saito-Fujita T, Haraguchi H, Matsumoto L, Matsuo M, Hiraoka T, Tanaka T, Akaeda S, Takehisa C, Saito-Kanatani M, Maeda K-I, Fujii T, Osuga Y. F4/80+ macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology. 2017;158:2344–53. https://doi.org/10.1210/en.2016-1886.

    Article  CAS  PubMed  Google Scholar 

  41. Covarrubias AJ, Kale A, Perrone R, Lopez-Dominguez JA, Pisco AO, Kasler HG, Schmidt MS, Wiley CD, Iyer SS, Basisty N, Wu Q, Kwok R, Heckenbach I, Shin K-O, Lee Y-M, Ben-Sahra I, Ott M, Schilling B, Ishihara K, et al. Aging-related inflammation driven by cellular senescence enhances NAD consumption via activation of CD38+ pro-inflammatory macrophages. bioRxiv. 2019:609438. https://doi.org/10.1101/609438.

  42. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, Lowe SW. Non-cell-autonomous tumor suppression by p53. Cell. 2013;153:449–60. https://doi.org/10.1016/j.cell.2013.03.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Irvine KM, Skoien R, Bokil NJ, Melino M, Thomas GP, Loo D, Gabrielli B, Hill MM, Sweet MJ, Clouston AD, Powell EE. Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J. Gastroenterol. 2014;20(47):17851–62. https://doi.org/10.3748/wjg.v20.i47.17851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iannello A, Thompson TW, Ardolino M, Lowe SW, Raulet DH. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 2013;210:2057–69. https://doi.org/10.1084/jem.20130783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur. J. Immunol. 2021;51(6):1334–47. https://doi.org/10.1002/eji.202048976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh J, Thachil T, Eapen MS, Lim A, Sufyan W, Rawson R, Duncan H, De Ieso P, Sohal SS. Immunohistochemical investigation of cytokine expression levels as biomarkers in transrectal ultrasound-guided needle biopsy specimens of prostate adenocarcinoma. Mol Clin Oncol. 2021;15(3):191. https://doi.org/10.3892/mco.2021.2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Parra ER, Zhai J, Tamegnon A, Zhou N, Pandurengan RK, Barreto C, Jiang M, Rice DC, Creasy C, Vaporciyan AA, Hofstetter WL, Tsao AS, Wistuba II, Sepesi B, Haymaker C. Identification of distinct immune landscapes using an automated nine-color multiplex immunofluorescence staining panel and image analysis in paraffin tumor tissues. Sci. Rep. 2021;11(1):4530. https://doi.org/10.1038/s41598-021-83858-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amsen D, de Visser KE, Town T. Approaches to determine expression of inflammatory cytokines. Methods Mol. Biol. 2009;511:107–42. https://doi.org/10.1007/978-1-59745-447-6_5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ricaud G, Vaillancourt C, Blais V, Disdier M, Joao F, Johnson B, Benkhalifa M, Miron P, Bernier J. Role of T cells in intrauterine administration of activated peripheral blood mononuclear cells in recurrent implantation failure. bioRxiv. 2021. https://doi.org/10.1101/2021.01.06.425452.

  50. Fan L, Sha M, Li W, Kang Q, Wu J, Chen S, Yu N. Intrauterine administration of peripheral blood mononuclear cells (PBMCs) improves embryo implantation in mice by regulating local Treg/Th17 cell balance. J. Reprod. Dev. 2021;67(6):359–68. https://doi.org/10.1262/jrd.2021-006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 2022;28(8):1556–68. https://doi.org/10.1038/s41591-022-01923-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. Geroscience. 2022;44(4):1925–40. https://doi.org/10.1007/s11357-022-00542-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Yoana Baleva for proofreading and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors qualify for authorship by contributing substantially to this article. DP, RG, FS and GS developed the original concept and design of the study. DP, RG, KA, ID, MR, MK, and NV collected the data, DP, KA, and ID performed the statistical analysis and DP, RG, FS, DM and GS provided input to the interpretation of the data. All authors have contributed to critical discussion, reviewed the final version of the article, and approved it for publication.

Corresponding author

Correspondence to D. Parvanov.

Ethics declarations

This experimental study and the collection of endometrial tissue were approved by the hospital’s Ethics committee and were carried out according to the principles in the Declaration of Helsinki. Written informed consent was obtained from all recruited participants.

Conflict of interest

There are no competing interests related to this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvanov, D., Ganeva, R., Arsov, K. et al. Association between endometrial senescent cells and immune cells in women with repeated implantation failure. J Assist Reprod Genet 40, 1631–1638 (2023). https://doi.org/10.1007/s10815-023-02821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02821-z

Keywords

Navigation