Skip to main content

Advertisement

Log in

The origin and possible mechanism of embryonic cell-free DNA release in spent embryo culture media: a review

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

The presence of cell-free DNA in spent embryo culture media (SECM) has unveiled its possible utilization for embryonic ploidy determination, opening new frontiers for the development of a non-invasive pre-implantation genetic screening technique. While a growing number of studies have shown a high concordance between genetic screening using cell-free DNA (cfDNA) and trophectoderm (TE), the mechanism pertaining to the release of cfDNA in SECM is largely unknown. This review aims to evaluate research evidence on the origin and possible mechanisms for the liberations of embryonic DNA in SECM, including findings on the self-correction abilities of embryos which might contribute to the presence of cfDNA. Several databases including EMBASE, PUBMED, and SCOPUS were used to retrieve original articles, reviews, and opinion papers. The keywords used for the search were related to the origins and release mechanism of cfDNA. cfDNA in SECM originates from embryonic cells and, at some levels, non-embryonic cells such as maternal DNA and exogenous foreign DNA. The apoptotic pathway has been demonstrated to eliminate aneuploid cells in developing mosaic embryos which might culminate to the release of cfDNA in SECM. Nonetheless, there is a recognized need for exploring other pathways such as cross-talk molecules called extracellular vesicles (EVs) made of small, round bi-layer membranes. During in vitro development, embryos physiologically and actively expel EVs containing not only protein and microRNA but also embryonic DNA, hence, potentially releasing cfDNA of embryonic origin into SECM through EVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

cfDNA :

cell-free DNA

Evs :

extracellular vesicle(s)

HSA :

human serum albumin

ICM :

inner cell mass

ICSI :

intra-cytoplasmic sperm injection

IVF :

in vitro fertilization

niPGT-A :

non-invasive pre-implantation genetic testing for aneuploidy

NGS :

next-generation sequencing

PGD :

pre-implantation genetic diagnosis

PGS :

pre-implantation genetic screening

PGT-A :

pre-implantation genetic testing for aneuploidy

PGT-M :

pre-implantation genetic testing for monogenic disorders

PGT-SR :

pre-implantation genetic testing for chromosomal structural rearrangement

qPCR :

quantitative polymerase chain reaction

SAC :

spindle assembly checkpoint

SECM :

spent embryo culture media

TE :

trophectoderm cells

References

  1. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med. 2005;7(4):251–63. https://doi.org/10.1097/01.GIM.0000160075.96707.04.

    Article  PubMed  Google Scholar 

  2. Munné S, Chen S, Collis P, Garrisi J, Zheng X, Cekleniak N, et al. Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos. Reprod Biomed Online. 2007;14(5):628–34. https://doi.org/10.1016/S1472-6483(10)61057-7.

    Article  PubMed  Google Scholar 

  3. Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133(2–4):149–59. https://doi.org/10.1159/000323500.

    Article  CAS  PubMed  Google Scholar 

  4. Carvalho F, Coonen E, Goossens V, Kokkali G, Rubio C, Meijer-Hoogeveen M, et al. ESHRE PGT Consortium good practice recommendations for the organisation of PGT†. Hum Reprod Open. 2020;2020(3):1–12. https://doi.org/10.1093/hropen/hoaa021.

    Article  Google Scholar 

  5. Homer HA. Preimplantation genetic testing for aneuploidy (PGT-A): the biology, the technology and the clinical outcomes. Aust New Zeal J Obstet Gynaecol. 2019;59(2):317–24. https://doi.org/10.1111/ajo.12960.

    Article  Google Scholar 

  6. Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28(10):2652–60. https://doi.org/10.1093/humrep/det314.

    Article  CAS  PubMed  Google Scholar 

  7. Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10. https://doi.org/10.1016/j.rbmo.2013.02.012.

    Article  CAS  PubMed  Google Scholar 

  8. Huang L, Bogale B, Tang Y, Lu S, Xie XS, Racowsky C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci U S A. 2019;116(28):14105–12. https://doi.org/10.1073/pnas.1907472116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rubio C, Navarro-Sánchez L, García-Pascual CM, Ocali O, Cimadomo D, Venier W, et al. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1–751.e13. https://doi.org/10.1016/j.ajog.2020.04.035.

    Article  CAS  PubMed  Google Scholar 

  10. Orvieto R, Aizer A, Gleicher N. Is there still a rationale for non-invasive PGT-A by analysis of cell-free DNA released by human embryos into culture medium? Hum Reprod. 2021;36(5):1186–90. https://doi.org/10.1093/humrep/deab042.

    Article  CAS  PubMed  Google Scholar 

  11. Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107(1):220–228.e5. https://doi.org/10.1016/j.fertnstert.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  12. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33(4):745–56. https://doi.org/10.1093/humrep/dey028.

    Article  CAS  PubMed  Google Scholar 

  13. Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod Biomed Online. 2020;40(6):779–96. https://doi.org/10.1016/j.rbmo.2020.02.002.

    Article  CAS  PubMed  Google Scholar 

  14. Feichtinger M, Vaccari E, Carli L, Wallner E, Mädel U, Figl K, et al. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study. Reprod Biomed Online. 2017;34(6):583–9. https://doi.org/10.1016/j.rbmo.2017.03.015.

    Article  PubMed  Google Scholar 

  15. Chen Y, Gao Y, Jia J, Chang L, Liu P, Qiao J, et al. DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos. J Clin Invest. 2021;131(12). https://doi.org/10.1172/JCI146051.

  16. Navarro-Sánchez L, García-Pascual C, Rubio C, Simón C. Non-invasive preimplantation genetic testing for aneuploidies: an update. Reprod Biomed Online. 2022;44(5):817–28. https://doi.org/10.1016/j.rbmo.2022.01.012.

    Article  CAS  PubMed  Google Scholar 

  17. Capalbo A, Romanelli V, Patassini C, Poli M, Girardi L, Giancani A, et al. Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions. Fertil Steril. 2018;110(5):870–879.e5. https://doi.org/10.1016/j.fertnstert.2018.05.031.

    Article  CAS  PubMed  Google Scholar 

  18. Santos MA, Teklenburg G, MacKlon NS, Van Opstal D, Schuring-Blom GH, Krijtenburg PJ, et al. The fate of the mosaic embryo: chromosomal constitution and development of day 4, 5 and 8 human embryos. Hum Reprod. 2010;25(8):1916–26. https://doi.org/10.1093/humrep/deq139.

    Article  PubMed  Google Scholar 

  19. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92(3):890–6. https://doi.org/10.1016/j.fertnstert.2008.07.1761.

    Article  CAS  PubMed  Google Scholar 

  20. Coticchio G, Barrie A, Lagalla C, Borini A, Fishel S, Griffin D, et al. Plasticity of the human preimplantation embryo: Developmental dogmas, variations on themes and self-correction. Hum Reprod Update. 2021;27(5):848–65. https://doi.org/10.1093/humupd/dmab016.

    Article  PubMed  Google Scholar 

  21. Campbell A. Self-correction in human preimplantation development: what do we know? Hum Reprod. 2021;36(July 2021):2021.

  22. Lin PY, Lee CI, Cheng EH, Huang CC, Lee TH, Shih HH, et al. Clinical outcomes of single mosaic embryo transfer: high-level or low-level mosaic embryo, does it matter? J Clin Med. 2020;9(6):1–11. https://doi.org/10.3390/jcm9061695.

    Article  CAS  Google Scholar 

  23. Popovic M, Dhaenens L, Boel A, Menten B, Heindryckx B. Chromosomal mosaicism in human blastocysts: the ultimate diagnostic dilemma. Hum Reprod Update. 2020;26(3):313–34. https://doi.org/10.1093/humupd/dmz050.

    Article  CAS  PubMed  Google Scholar 

  24. Yang M, Rito T, Metzger J, Naftaly J, Soman R, Hu J, et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23(4):314–21. https://doi.org/10.1038/s41556-021-00660-7.

    Article  CAS  PubMed  Google Scholar 

  25. Lagalla C, Tarozzi N, Sciajno R, Wells D, Di Santo M, Nadalini M, et al. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod Biomed Online. 2017;34(2):137–46. https://doi.org/10.1016/j.rbmo.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  26. Orvieto R, Shimon C, Rienstein S, Jonish-Grossman A, Shani H, Aizer A. Do human embryos have the ability of self-correction. Reprod Biol Endocrinol. 2020;18(1). https://doi.org/10.1186/s12958-020-00650-8.

  27. Bolton H, Graham SJL, Van Der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, et al. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7(November):1–12. https://doi.org/10.1038/ncomms11165.

    Article  CAS  Google Scholar 

  28. Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun. 2020;11(1):1–16. https://doi.org/10.1038/s41467-020-16796-3.

  29. Griffin DK, Brezina PR, Tobler K, Zhao Y, Silvestri G, Mccoy RC, et al. The human embryonic genome is karyotypically complex, with chromosomally abnormal cells preferentially located away from the developing fetus. Hum Reprod. 2023;38(1):180–8. https://doi.org/10.1093/humrep/deac238.

    Article  CAS  PubMed  Google Scholar 

  30. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;165(4):1012–26. https://doi.org/10.1016/j.cell.2016.03.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou F, Wang R, Yuan P, Ren Y, Mao Y, Li R, et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature. 2019;572(7771):660–4. https://doi.org/10.1038/s41586-019-1500-0.

    Article  CAS  PubMed  Google Scholar 

  32. Perumalsamy A, Fernandes R, Lai I, Detmar J, Varmuza S, Casper RF, et al. Developmental consequences of alternative Bcl-x splicing during preimplantation embryo development. FEBS J. 2010;227:1219–33.

    Article  Google Scholar 

  33. Apter S, Ebner T, Freour T, Guns Y, Kovacic B, Le Clef N, et al. Good practice recommendations for the use of time-lapse technology†. Hum Reprod Open. 2020;2020(2):1–26. https://doi.org/10.1093/hropen/hoaa008.

    Article  Google Scholar 

  34. Huang Y, Ha S, Li Z, Li J, Xiao W. CHK1-CENP B/MAD2 is associated with mild oxidative damage-induced sex chromosome aneuploidy of male mouse embryos during in vitro fertilization. Free Radic Biol Med. 2019;137(March):181–93. https://doi.org/10.1016/j.freeradbiomed.2019.04.037.

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Ha S, Li Z, Huang Y, Lin E, Xiao W. Aurora B prevents aneuploidy via MAD2 during the first mitotic cleavage in oxidatively damaged embryos. Cell Prolif. 2019;52(5):1–15. https://doi.org/10.1111/cpr.12657.

    Article  Google Scholar 

  36. Gleicher N, Barad DH. Not even noninvasive cell-free DNA can rescue preimplantation genetic testing. Proc Natl Acad Sci U S A. 2019;116(44):21976–7. https://doi.org/10.1073/pnas.1911710116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tobler KJ, Zhao Y, Ross R, Benner AT, Xu X, Du L, et al. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil Steril. 2015;104(2):418–25. https://doi.org/10.1016/j.fertnstert.2015.04.028.

    Article  CAS  PubMed  Google Scholar 

  38. Heitzer E, Auinger L, Speicher MR. Cell-free DNA and apoptosis: how dead cells inform about the living. Trends Mol Med. 2020;26(5):519–28. https://doi.org/10.1016/j.molmed.2020.01.012.

    Article  CAS  PubMed  Google Scholar 

  39. Chi HJ, Koo JJ, Choi SY, Jeong HJ, Il RS. Fragmentation of embryos is associated with both necrosis and apoptosis. Fertil Steril. 2011;96(1):187–92. https://doi.org/10.1016/j.fertnstert.2011.04.020.

    Article  PubMed  Google Scholar 

  40. Hu Z, Chen H, Long Y, Li P, Gu Y. The main sources of circulating cell-free DNA: apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol. 2021;157(October 2020):103166. https://doi.org/10.1016/j.critrevonc.2020.103166.

  41. Fabian D, Il’ Ková G, Rehák P, Czikková S, Baran V, Koppel J. Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro. Theriogenology. 2004;61(4):745–55. https://doi.org/10.1016/S0093-691X(03)00254-1.

    Article  CAS  PubMed  Google Scholar 

  42. Fabian D, Koppel J, Maddox-Hyttel P. Apoptotic processes during mammalian preimplantation development. Theriogenology. 2005;64(2):221–31. https://doi.org/10.1016/j.theriogenology.2004.11.022.

    Article  PubMed  Google Scholar 

  43. Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod. 1996;2(2):93–8. https://doi.org/10.1093/molehr/2.2.93.

    Article  CAS  PubMed  Google Scholar 

  44. Hawke DC, Watson AJ, Betts DH. Extracellular vesicles, microRNA and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online. 2021;42(1):39–54. https://doi.org/10.1016/j.rbmo.2020.11.011.

    Article  CAS  PubMed  Google Scholar 

  45. Tomic M, Vrtacnik Bokal E, Stimpfel M. Non-invasive preimplantation genetic testing for aneuploidy and the mystery of genetic material: a review article. Int J Mol Sci. 2022;23(7). https://doi.org/10.3390/ijms23073568.

  46. Giacomini E, Vago R, Sanchez AM, Podini P, Zarovni N, Murdica V, et al. Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci Rep. 2017;7(1):1–14. https://doi.org/10.1038/s41598-017-05549-w.

    Article  CAS  Google Scholar 

  47. Grabuschnig S, Bronkhorst AJ, Holdenrieder S, Rodriguez IR, Schliep KP, Schwendenwein D, et al. Putative origins of cell-free DNA in humans: a review of active and passive nucleic acid release mechanisms. Int J Mol Sci. 2020;21(21):1–24. https://doi.org/10.3390/ijms21218062.

    Article  CAS  Google Scholar 

  48. Cai J, Wu G, Jose PA, Zeng C. Functional transferred DNA within extracellular vesicles. Exp Cell Res. 2016;349(1):179–83. https://doi.org/10.1016/j.yexcr.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  49. Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One. 2012;7(4):1–8. https://doi.org/10.1371/journal.pone.0034653.

    Article  CAS  Google Scholar 

  50. Cai J, Han Y, Ren H, Chen C, He D, Zhou L, et al. Extracellular vesicle-mediated transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J Mol Cell Biol. 2013;5(4):227–38. https://doi.org/10.1093/jmcb/mjt011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kalluri R, Lebleu VS. Discovery of double-stranded genomic DNA in circulating exosomes. Cold Spring Harb Symp Quant Biol. 2016;81(1):275–80. https://doi.org/10.1101/sqb.2016.81.030932.

    Article  PubMed  Google Scholar 

  52. Veraguas D, Aguilera C, Henriquez C, Velasquez AE, Melo-Baez B, Silva-Ibañez P, et al. Evaluation of extracellular vesicles and gDNA from culture medium as a possible indicator of developmental competence in human embryos. Zygote. 2020. https://doi.org/10.1017/S0967199420000593.

  53. Vyas P, Balakier H, Librach CL. Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med. 2019;65(4):273–80. https://doi.org/10.1080/19396368.2019.1619858.

    Article  PubMed  Google Scholar 

  54. Lal A, Roudebush WE, Chosed RJ. Embryo biopsy can offer more information than just ploidy status. Front Cell. Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.00078.

  55. Marcatti M, Saada J, Okereke I, Wade CE, Bossmann SH, Motamedi M, et al. Quantification of circulating cell free mitochondrial DNA in extracellular vesicles with PicoGreenTM in liquid biopsies: fast assessment of disease/trauma severity. Cells. 2021;10(4):1–14. https://doi.org/10.3390/cells10040819.

    Article  CAS  Google Scholar 

  56. Lledo B, Morales R, Ortiz JA, Rodriguez-Arnedo A, Ten J, Castillo JC, et al. Consistent results of non-invasive PGT-A of human embryos using two different techniques for chromosomal analysis. Reprod Biomed Online. 2021;42(3):555–63. https://doi.org/10.1016/j.rbmo.2020.10.021.

    Article  CAS  PubMed  Google Scholar 

  57. Voelkel S, Schoolcraft WB, Warren K, Swain JE. Use of cell-free DNA for non-invasive Pgta on previously biopsied blastocysts that yielded a no result call: a method to avoid rebiopsy. Fertil Steril. 2022;118(5):e37. https://doi.org/10.1016/j.fertnstert.2022.09.284.

    Article  Google Scholar 

  58. Hardy K, Spanos S, Becker D, Iannelli P, RML W, Stark J. From cell death to embryo arrest: mathematical models of human preimplantation embryo development. Proc Natl Acad Sci U S A. 2001;98(4):1655–60. https://doi.org/10.1073/pnas.98.4.1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

GB Danardono has provided valuable assistance in helping the authors draw the image.

Funding

The authors received PUTI Grant from the Universitas Indonesia (NKB-1293/UN2.RST/HKP.05.00/2022).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception. Database searching and journal selection were performed by Nining Handayani. Anom Bowolaksono and Daniel Abidin Aubry checked scientific content accuracy. The first draft of the manuscript was written by Nining Handayani, and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Anom Bowolaksono.

Ethics declarations

Ethical approval and informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

(video).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handayani, N., Aubry, D., Boediono, A. et al. The origin and possible mechanism of embryonic cell-free DNA release in spent embryo culture media: a review. J Assist Reprod Genet 40, 1231–1242 (2023). https://doi.org/10.1007/s10815-023-02813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02813-z

Keywords

Navigation