Skip to main content

Advertisement

Log in

Is artificial endometrial preparation more associated with early-onset or late-onset preeclampsia after frozen embryo transfer?

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To explore whether the risks of early- or late-onset preeclampsia vary among frozen embryo transfer (FET) with different regimens for endometrial preparation and fresh embryo transfer (FreET).

Methods

We retrospectively included a total of 24129 women who achieved singleton delivery during their first cycles of in vitro fertilization (IVF) between January 2012 and March 2020. The risks of early- and late-onset preeclampsia after FET with endometrial preparation by natural ovulation cycles (FET-NC) or by artificial cycles (FET-AC) were compared to that after FreET.

Results

After adjustment via multivariable logistic regression, the total risk of preeclampsia was higher in the FET-AC group compared to the FreET group [2.2% vs. 0.9%; adjusted odds ratio (aOR): 2.00; 95% confidence interval (CI): 1.45–2.76] and FET-NC group (2.2% vs. 0.9%; aOR: 2.17; 95% CI: 1.59–2.96).When stratified by the gestational age at delivery based on < 34 weeks or ≥ 34 weeks, the risk of late-onset preeclampsia remained higher in the FET-AC group than that in the and FreET group (1.8% vs. 0.6%; aOR: 2.56; 95% CI: 1.83–3.58) and the FET-NC group (1.8% vs. 0.6%; aOR: 2.63; 95% CI: 1.86–3.73). We did not find a statistically significant difference in the risk of early-onset preeclampsia among the three groups.

Conclusions

An artificial regimen for endometrial preparation was more associated with an increased risk of late-onset preeclampsia after FET. Given that FET-AC is widely used in clinical practice, the potential maternal risk factors for late-onset preeclampsia when using the FET-AC regimen should be further explored, considering the maternal origin of late-onset preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The corresponding authors can be contacted on reasonable data request.

Code availability

Not applicable

References

  1. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer. Fertil Steril. 2014;102(1):3–9. https://doi.org/10.1016/j.fertnstert.2014.04.018.

    Article  PubMed  Google Scholar 

  2. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33. https://doi.org/10.1056/NEJMoa1513873.

    Article  PubMed  Google Scholar 

  3. Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JQ, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. Lancet. 2019;393(10178):1310–8. https://doi.org/10.1016/S0140-6736(18)32843-5.

    Article  PubMed  Google Scholar 

  4. Sites CK, Wilson D, Barsky M, Bernson D, Bernstein IM, Boulet S, et al. Embryo cryopreservation and preeclampsia risk. Fertil Steril. 2017;108(5):784–90. https://doi.org/10.1016/j.fertnstert.2017.08.035.

    Article  PubMed  Google Scholar 

  5. Ginstrom Ernstad E, Wennerholm UB, Khatibi A, Petzold M, Bergh C. Neonatal and maternal outcome after frozen embryo transfer: increased risks in programmed cycles. Am J Obstet Gynecol. 2019;221(2):126 e1-e18. https://doi.org/10.1016/j.ajog.2019.03.010.

    Article  PubMed  Google Scholar 

  6. Jing S, Li XF, Zhang S, Gong F, Lu G, Lin G. Increased pregnancy complications following frozen-thawed embryo transfer during an artificial cycle. J Assist Reprod Genet. 2019;36(5):925–33. https://doi.org/10.1007/s10815-019-01420-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zaat TR, Brink AJ, de Bruin JP, Goddijn M, Broekmans FJM, Cohlen BJ, et al. Increased obstetric and neonatal risks in artificial cycles for frozen embryo transfers? Reprod Biomed Online. 2021;42(5):919–29. https://doi.org/10.1016/j.rbmo.2021.01.015.

    Article  PubMed  Google Scholar 

  8. Hu KL, Zhang D, Li R. Endometrium preparation and perinatal outcomes in women undergoing single-blastocyst transfer in frozen cycles. Fertil Steril. 2021;115(6):1487–94. https://doi.org/10.1016/j.fertnstert.2020.12.016.

    Article  PubMed  Google Scholar 

  9. Saito K, Kuwahara A, Ishikawa T, Morisaki N, Miyado M, Miyado K, et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod. 2019;34(8):1567–75. https://doi.org/10.1093/humrep/dez079.

    Article  PubMed  Google Scholar 

  10. Asserhoj LL, Spangmose AL, Aaris Henningsen AK, Clausen TD, Ziebe S, Jensen RB, et al. Adverse obstetric and perinatal outcomes in 1,136 singleton pregnancies conceived after programmed frozen embryo transfer (FET) compared with natural cycle FET. Fertil Steril. 2021;115(4):947–56. https://doi.org/10.1016/j.fertnstert.2020.10.039.

    Article  PubMed  Google Scholar 

  11. Wang Z, Liu H, Song H, Li X, Jiang J, Sheng Y, et al. Increased risk of pre-eclampsia after frozen-thawed embryo transfer in programming cycles. Front Med (Lausanne). 2020;7:104. https://doi.org/10.3389/fmed.2020.00104.

    Article  PubMed  Google Scholar 

  12. Zong L, Liu P, Zhou L, Wei D, Ding L, Qin Y. Increased risk of maternal and neonatal complications in hormone replacement therapy cycles in frozen embryo transfer. Reprod Biol Endocrinol. 2020;18(1):36. https://doi.org/10.1186/s12958-020-00601-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barsky M, St Marie P, Rahil T, Markenson GR, Sites CK. Are perinatal outcomes affected by blastocyst vitrification and warming? Am J Obstet Gynecol. 2016;215(5):603 e1-e5. https://doi.org/10.1016/j.ajog.2016.06.002.

    Article  PubMed  Google Scholar 

  14. Makhijani R, Bartels C, Godiwala P, Bartolucci A, Nulsen J, Grow D, et al. Maternal and perinatal outcomes in programmed versus natural vitrified-warmed blastocyst transfer cycles. Reprod Biomed Online. 2020;41(2):300–8. https://doi.org/10.1016/j.rbmo.2020.03.009.

    Article  PubMed  Google Scholar 

  15. Busnelli A, Schirripa I, Fedele F, Bulfoni A, Levi-Setti PE. Obstetric and perinatal outcomes following programmed compared to natural frozen-thawed embryo transfer cycles: a systematic review and meta-analysis. Hum Reprod. 2022. https://doi.org/10.1093/humrep/deac073.

    Article  PubMed  Google Scholar 

  16. Li C, He YC, Xu JJ, Wang Y, Liu H, Duan CC, et al. Perinatal outcomes of neonates born from different endometrial preparation protocols after frozen embryo transfer: a retrospective cohort study. BMC Pregnancy Childbirth. 2021;21(1):341. https://doi.org/10.1186/s12884-021-03791-9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roelens C, Blockeel C. Impact of different endometrial preparation protocols before frozen embryo transfer on pregnancy outcomes: a review. Fertil Steril. 2022;118(5):820–7. https://doi.org/10.1016/j.fertnstert.2022.09.003.

    Article  PubMed  Google Scholar 

  18. Bortoletto P, Prabhu M, Baker VL. Association between programmed frozen embryo transfer and hypertensive disorders of pregnancy. Fertil Steril. 2022;118(5):839–48. https://doi.org/10.1016/j.fertnstert.2022.07.025.

    Article  PubMed  Google Scholar 

  19. Garovic VD, Dechend R, Easterling T, Karumanchi SA, McMurtry Baird S, Magee LA, et al. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American Heart Association. Hypertension. 2022;79(2):e21–41. https://doi.org/10.1161/hyp.0000000000000208.

    Article  CAS  PubMed  Google Scholar 

  20. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–13. https://doi.org/10.2215/CJN.12081115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019;366:l2381. https://doi.org/10.1136/bmj.l2381.

    Article  PubMed  Google Scholar 

  22. Roberts JM, Rich-Edwards JW, McElrath TF, Garmire L, Myatt L, Global pregnancy C. Subtypes of preeclampsia: recognition and determining clinical usefulness. Hypertension. 2021;77(5):1430–41. https://doi.org/10.1161/HYPERTENSIONAHA.120.14781.

    Article  CAS  PubMed  Google Scholar 

  23. Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011;66(8):497–506. https://doi.org/10.1097/OGX.0b013e3182331028.

    Article  PubMed  Google Scholar 

  24. Staff AC, Redman CWG. The differences between early- and late-onset pre-eclampsia. In: Saito S, editor. Preeclampsia: basic, genomic, and clinical. Singapore: Springer Singapore; 2018. p. 157–72.

    Chapter  Google Scholar 

  25. Staff AC. The two-stage placental model of preeclampsia: an update. J Reprod Immunol. 2019;134–135:1–10. https://doi.org/10.1016/j.jri.2019.07.004.

    Article  PubMed  Google Scholar 

  26. Pereira MM, Mainigi M, Strauss JF. Secretory products of the corpus luteum and preeclampsia. Hum Reprod Update. 2021;27(4):651–72. https://doi.org/10.1093/humupd/dmab003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conrad KP, Petersen JW, Chi YY, Zhai X, Li M, Chiu KH, et al. Maternal cardiovascular dysregulation during early pregnancy after in vitro fertilization cycles in the absence of a corpus luteum. Hypertension. 2019;74(3):705–15. https://doi.org/10.1161/HYPERTENSIONAHA.119.13015.

    Article  CAS  PubMed  Google Scholar 

  28. von Versen-Hoynck F, Schaub AM, Chi YY, Chiu KH, Liu J, Lingis M, et al. Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension. 2019;73(3):640–9. https://doi.org/10.1161/HYPERTENSIONAHA.118.12043.

    Article  CAS  Google Scholar 

  29. von Versen-Hoynck F, Narasimhan P, Selamet Tierney ES, Martinez N, Conrad KP, Baker VL, et al. Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy. Hypertension. 2019;73(3):680–90. https://doi.org/10.1161/HYPERTENSIONAHA.118.12046.

    Article  CAS  Google Scholar 

  30. Tay J, Foo L, Masini G, Bennett PR, McEniery CM, Wilkinson IB, et al. Early and late preeclampsia are characterized by high cardiac output, but in the presence of fetal growth restriction, cardiac output is low: insights from a prospective study. Am J Obstet Gynecol. 2018;218(5):517.e1-e12. https://doi.org/10.1016/j.ajog.2018.02.007.

    Article  PubMed  Google Scholar 

  31. Masini G, Foo LF, Tay J, Wilkinson IB, Valensise H, Gyselaers W, et al. Preeclampsia has two phenotypes which require different treatment strategies. Am J Obstet Gynecol. 2022;226(2s):S1006–18. https://doi.org/10.1016/j.ajog.2020.10.052.

    Article  CAS  PubMed  Google Scholar 

  32. Puissant F, Van Rysselberge M, Barlow P, Deweze J, Leroy F. Embryo scoring as a prognostic tool in IVF treatment. Hum Reprod. 1987;2(8):705–8. https://doi.org/10.1093/oxfordjournals.humrep.a136618.

    Article  CAS  PubMed  Google Scholar 

  33. Gardner DK, Lane M, Schoolcraft WB. Physiology and culture of the human blastocyst. J Reprod Immunol. 2002;55(1–2):85–100. https://doi.org/10.1016/s0165-0378(01)00136-x.

    Article  CAS  PubMed  Google Scholar 

  34. Webster K, Fishburn S, Maresh M, Findlay SC, Chappell LC. Diagnosis and management of hypertension in pregnancy: summary of updated NICE guidance. BMJ. 2019;366:l5119. https://doi.org/10.1136/bmj.l5119.

    Article  PubMed  Google Scholar 

  35. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33. https://doi.org/10.1002/ijgo.12802.

    Article  PubMed  PubMed Central  Google Scholar 

  36. The American College of Obstetricians and Gynecologists Committee on Obstetric Practice Society for Maternal-Fetal Medicine. ACOG Committee Opinion No 579: Definition of term pregnancy. Obstet Gynecol. 2013;122(5):1139–40. https://doi.org/10.1097/01.AOG.0000437385.88715.4a

  37. Luke B, Brown MB, Eisenberg ML, Callan C, Botting BJ, Pacey A, et al. In vitro fertilization and risk for hypertensive disorders of pregnancy: associations with treatment parameters. Am J Obstet Gynecol. 2020;222(4):350 e1-e13. https://doi.org/10.1016/j.ajog.2019.10.003.

    Article  PubMed  Google Scholar 

  38. Engle WA, Tomashek KM, Wallman C. “Late-preterm” infants: a population at risk. Pediatrics. 2007;120(6):1390–401. https://doi.org/10.1542/peds.2007-2952.

    Article  PubMed  Google Scholar 

  39. Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta. 2009;30(6):473–82. https://doi.org/10.1016/j.placenta.2009.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ogge G, Chaiworapongsa T, Romero R, Hussein Y, Kusanovic JP, Yeo L, et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J Perinat Med. 2011;39(6):641–52. https://doi.org/10.1515/jpm.2011.098.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sebire NJ, Goldin RD, Regan L. Term preeclampsia is associated with minimal histopathological placental features regardless of clinical severity. J Obstet Gynaecol. 2005;25(2):117–8. https://doi.org/10.1080/014436105400041396.

    Article  CAS  PubMed  Google Scholar 

  42. Guo F, Zhang B, Yang H, Fu Y, Wang Y, Huang J, et al. Systemic transcriptome comparison between early- and late-onset pre-eclampsia shows distinct pathology and novel biomarkers. Cell Prolif. 2021;54(2):e12968. https://doi.org/10.1111/cpr.12968.

    Article  CAS  PubMed  Google Scholar 

  43. Ren Z, Gao Y, Gao Y, Liang G, Chen Q, Jiang S, et al. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. Theranostics. 2021;11(10):5028–44. https://doi.org/10.7150/thno.56141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Conrad KP. Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Physiol Regul Integr Comp Physiol. 2011;301(2):R267–75. https://doi.org/10.1152/ajpregu.00156.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Post Uiterweer ED, Koster MPH, Jeyabalan A, Kuc S, Siljee JE, Stewart DR, et al. Circulating pregnancy hormone relaxin as a first trimester biomarker for preeclampsia. Pregnancy Hypertens. 2020;22:47–53. https://doi.org/10.1016/j.preghy.2020.07.008.

    Article  PubMed  Google Scholar 

  46. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44. https://doi.org/10.1016/s0140-6736(10)60279-6.

    Article  PubMed  Google Scholar 

  47. Staff AC, Benton SJ, von Dadelszen P, Roberts JM, Taylor RN, Powers RW, et al. Redefining preeclampsia using placenta-derived biomarkers. Hypertension. 2013;61(5):932–42. https://doi.org/10.1161/hypertensionaha.111.00250.

    Article  CAS  PubMed  Google Scholar 

  48. Umapathy A, Chamley LW, James JL. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis. 2020;23(2):105–17. https://doi.org/10.1007/s10456-019-09694-w.

    Article  PubMed  Google Scholar 

  49. Conrad KP, Graham GM, Chi YY, Zhai X, Li M, Williams RS, et al. Potential influence of the corpus luteum on circulating reproductive and volume regulatory hormones, angiogenic and immunoregulatory factors in pregnant women. Am J Physiol Endocrinol Metab. 2019;317(4):E677–85. https://doi.org/10.1152/ajpendo.00225.2019.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Centers for Disease Control and Prevention. 2019 assisted reproductive technology fertility clinic and national summary report. US Dept of Health and Human Services; 2021. https://www.cdc.gov/art/reports/2019/fertility-clinic.html Accessed.

  51. Wyns C, De Geyter C, Calhaz-Jorge C, Kupka MS, Motrenko T, Smeenk J, et al. ART in Europe, 2018: results generated from European registries by ESHRE. Hum Reprod Open. 2022;2022(3):hoac022. https://doi.org/10.1093/hropen/hoac022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garovic VD, White WM, Vaughan L, Saiki M, Parashuram S, Garcia-Valencia O, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol. 2020;75(18):2323–34. https://doi.org/10.1016/j.jacc.2020.03.028.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Palomba S, de Wilde MA, Falbo A, Koster MP, La Sala GB, Fauser BC. Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update. 2015;21(5):575–92. https://doi.org/10.1093/humupd/dmv029.

    Article  PubMed  Google Scholar 

  54. Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet. 2016;387(10022):999–1011. https://doi.org/10.1016/s0140-6736(15)00070-7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients and staff of the Center for Reproductive Medicine of Shandong University for their cooperation and support.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82071718 and 82101784).

Author information

Authors and Affiliations

Authors

Contributions

D.M.W., Y.L., and Z.J.C. supervised the entire study, including the procedures, conception, design, and completion; Y.N., L.S., and D.Y.Z. analyzed the data and drafted the manuscript; Y.N., L.S., D.Y.Z., Y.H.W., R.L.M., J.L.Z., and X.W.H. collected the data; D.M.W. and Y.L. revised the manuscript. All authors have been involved in interpreting the data and have approved the final version.

Corresponding authors

Correspondence to Yan Li or Daimin Wei.

Ethics declarations

Ethics approval

All methods in this study were carried out in accordance with the guidelines and regulations in the Declaration of Helsinki. The Institutional Ethics Committee of the Center for Reproductive Medicine of Shandong University approved the study (Ethical Review No.04, 2022).

Consent to participate

Not application

Consent for publication

Not application

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19.2 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Suo, L., Zhao, D. et al. Is artificial endometrial preparation more associated with early-onset or late-onset preeclampsia after frozen embryo transfer?. J Assist Reprod Genet 40, 1045–1054 (2023). https://doi.org/10.1007/s10815-023-02785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02785-0

Keywords

Navigation