Skip to main content
Log in

Detection of spermatogonial stem/progenitor cells in prepubertal mouse testis with deep learning

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Rapid and easy detection of spermatogonial stem/progenitor cells (SSPCs) is crucial for clinicians dealing with male infertility caused by prepubertal testicular damage. Deep learning (DL) methods may offer visual tools for tracking SSPCs on testicular strips of prepubertal animal models. The purpose of this study is to detect and count the seminiferous tubules and SSPCs in newborn mouse testis sections using a DL method.

Methods

Testicular sections of the C57BL/6-type newborn mice were obtained and enumerated. Odd-numbered sections were stained with hematoxylin and eosin (H&E), and even-numbered sections were immune labeled (IL) with SSPC specific marker, SALL4. Seminiferous tubule and SSPC datasets were created using odd-numbered sections. SALL4-labeled sections were used as positive control. The YOLO object detection model based on DL was used to detect seminiferous tubules and stem cells.

Results

Test scores of the DL model in seminiferous tubules were obtained as 0.98 mAP, 0.93 precision, 0.96 recall, and 0.94 f1-score. The SSPC test scores were obtained as 0.88 mAP, 0.80 precision, 0.93 recall, and 0.82 f1-score.

Conclusion

Seminiferous tubules and SSPCs on prepubertal testicles were detected with a high sensitivity by preventing human-induced errors. Thus, the first step was taken for a system that automates the detection and counting process of these cells in the infertility clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

https://github.com/burakkahveci/Detection-of-Spermatogonial-Stem-Cells .

References

  1. Skaznik-Wikiel ME, Gilbert SB, Meacham RB, Kondapalli LA. Fertility preservation options for men and women with cancer. Rev Urol. 2015;17(4):211–9. https://doi.org/10.3909/riu0666.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wasilewski-Masker K, Seidel KD, Leisenring W, Mertens AC, Shnorhavorian M, Ritenour CW, Stovall M, Green DM, Sklar CA, Armstrong GT, Robison LL, Meacham LR. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv. 2014;8(3):437–47. https://doi.org/10.1007/s11764-014-0354-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Levine JM. Preserving fertility in children and adolescents with cancer. Children. 2014;1(2):166–85. https://doi.org/10.3390/children1020166.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Önen S, Köse S, Yersal N, Korkusuz P. Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep. 2022;12(1):11494. https://doi.org/10.1038/s41598-022-15358-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yersal N, Köse S, Horzum U, Özkavukcu S, Orwig KE, Korkusuz P. Leptin promotes proliferation of neonatal mouse stem/progenitor spermatogonia. J Assist Reprod Genet. 2020;37(11):2825–38. https://doi.org/10.1007/s10815-020-01929-w.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod. 2018;99(1):52–74. https://doi.org/10.1093/biolre/ioy077.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lovelace DL, Gao Z, Mutoji K, Song YC, Ruan J, Hermann BP. The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development. 2016;143(11):1893–906. https://doi.org/10.1242/dev.132761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korkusuz P, Köse S, Yersal N, Önen S. Magnetic-based cell isolation technique for the selection of stem cells. Methods Mol Biol. 2019;1879:153–63. https://doi.org/10.1007/7651_2018_151.

    Article  CAS  PubMed  Google Scholar 

  9. Köse S, Yersal N, Önen S, Korkusuz P. Comparison of hematopoietic and spermatogonial stem cell niches from the regenerative medicine aspect. Adv Exp Med Biol. 2018;1107:15–40. https://doi.org/10.1007/5584_2018_217.

    Article  CAS  PubMed  Google Scholar 

  10. Amisha, Malik P, Pathania M, Rathaur V. Overview of artificial intelligence in medicine. J Family Med Primary Care. 2019;8(7):2328–31. https://doi.org/10.4103/jfmpc.jfmpc_440_19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Louis CM, Erwin A, Handayani N, Polim AA, Boediono A, Sini I. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF. J Assist Reprod Genet. 2021. https://doi.org/10.1007/s10815-021-02123-2.

  12. Chan YK, Chen YF, Pham T, Chang WD, Hsieh MY. Artificial intelligence in medical applications. J Healthc Eng. 2018:2. https://doi.org/10.1155/2018/4827875.

  13. Xu J, Lu H, Li H, Wang X, Madabhushi A, Xu Y. Histopathological image analysis on mouse testes for automated staging of mouse seminiferous tubule. Cham: Springer International Publishing; 2019. https://doi.org/10.1007/978-3-030-23937-4_14.

    Book  Google Scholar 

  14. Xu J, Lu H, Li H, Yan C, Wang X, Zang M, Rooij DG, Madabhushi A, Xu EY. Computerized spermatogenesis staging (CSS) of mouse testis sections via quantitative histomorphological analysis. Med Image Anal. 2021;70:101835. https://doi.org/10.1016/j.media.2020.101835.

    Article  PubMed  Google Scholar 

  15. Kao C-Y, McMillan L. A novel deep learning architecture for testis histology image classification. arXiv preprint arXiv:1707.05809; 2017. https://doi.org/10.48550/arXiv.1707.05809.

    Book  Google Scholar 

  16. Creasy DM, Panchal ST, Garg R, Samanta P. Deep learning-based spermatogenic staging assessment for hematoxylin and eosin-stained sections of rat testes. Toxicol Pathol. 2021;49(4):872–87. https://doi.org/10.1177/0192623320969678.

    Article  CAS  PubMed  Google Scholar 

  17. Liang S, Lu H, Zang M, Wang X, Jiao Y, Zhao T, Xu EY, Xu J. Deep SED-Net with interactive learning for multiple testicular cell types segmentation and cell composition analysis in mouse seminiferous tubules. Cytometry A. 2022. https://doi.org/10.1002/cyto.a.24556.

  18. Ito Y, Unagami M, Yamabe F, Mitsui Y, Nakajima K, Nagao K, Kobayashi H. A method for utilizing automated machine learning for histopathological classification of testis based on Johnsen scores. Sci Rep. 2021;11(1):9962. https://doi.org/10.1038/s41598-021-89369-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ghoshal B, Hikmet F, Pineau C, Tucker A, Lindskog C. DeepHistoClass: a novel strategy for confident classification of immunohistochemistry images using deep learning. Mol Cell Proteomics. 2021;20:100140. https://doi.org/10.1016/j.mcpro.2021.100140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riordon J, McCallum C, Sinton D. Deep learning for the classification of human sperm. Comput Biol Med. 2019;111:103342. https://doi.org/10.1016/j.compbiomed.2019.103342.

    Article  PubMed  Google Scholar 

  21. Movahed RA, Mohammadi E, Orooji M. Automatic segmentation of sperm’s parts in microscopic images of human semen smears using concatenated learning approaches. Comput Biol Med. 2019;109:242–53. https://doi.org/10.1016/j.compbiomed.2019.04.032.

    Article  PubMed  Google Scholar 

  22. Javadi S, Mirroshandel SA. A novel deep learning method for automatic assessment of human sperm images. Comput Biol Med. 2019;109:182–94. https://doi.org/10.1016/j.compbiomed.2019.04.030.

    Article  PubMed  Google Scholar 

  23. Bilgic E, Guzel E, Kose S, Aydin MC, Karaismailoglu E, Akar I, Usubutun A, Korkusuz P. Endocannabinoids modulate apoptosis in endometriosis and adenomyosis. Acta Histochem. 2017;119(5):523–32. https://doi.org/10.1016/j.acthis.2017.05.005.

    Article  CAS  PubMed  Google Scholar 

  24. Tzutalin, LabelImg. 2015. https://github.com/tzutalin/labelImg.

  25. Roboflow. Roboflow. 2020; https://roboflow.com/about.

    Google Scholar 

  26. Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G. Progress and future prospect of in vitro spermatogenesis. Oncotarget. 2017;8(39):66709–27. https://doi.org/10.18632/oncotarget.19640.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sziva RE, Ács J, Tőkés AM, Korsós-Novák Á, Nádasy GL, Ács N, Horváth PG, Szabó A, Ke H, Horváth EM, Kopa Z, Várbíró S. Accurate quantitative histomorphometric-mathematical image analysis methodology of rodent testicular tissue and its possible future research perspectives in andrology and reproductive medicine. Life. 2022;12(2). https://doi.org/10.3390/life12020189.

  28. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceed IEEE Conference Comput Vision Pattern Recognition; 2016. https://doi.org/10.1109/CVPR.2016.91.

    Chapter  Google Scholar 

  29. Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res. 2018;29:207–14. https://doi.org/10.1016/j.scr.2018.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silber S. Histology of the testis and spermatogenesis. In: Silber S, editor. Fundamentals of Male Infertility. Cham: Springer International Publishing; 2018. p. 29–37. https://doi.org/10.1007/978-3-319-76523-5.

    Chapter  Google Scholar 

  31. Du Y, Zhang R, Zargari A, Thai TC, Gunderson CC, Moxley KM, Liu H, Zheng B, Qiu Y. Classification of tumor epithelium and stroma by exploiting image features learned by deep convolutional neural networks. Ann Biomed Eng. 2018;46(12):1988–99. https://doi.org/10.1007/s10439-018-2095-6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu M, Yan C, Liu H, Liu Q. Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks. Biosci Rep. 2018;38(3). https://doi.org/10.1042/BSR20180289.

Download references

Funding

This work was financially supported by Hacettepe University Scientific Research Project Coordination Unit; the (#TYL-2019-18375) TUBİTAK (The Scientific and Technological Research Council of Turkey) 1001 program supported Burak Kahveci as a scholar (#218S421).

Author information

Authors and Affiliations

Authors

Contributions

Burak Kahveci and Petek Korkusuz generated the hypothesis. Sections were taken by Selin Önen and Burak Kahveci. Selin Önen guided and they both performed the histochemical and immunohistochemical staining. Burak Kahveci created the datasets. Burak Kahveci and Fuat Akal created the DL models and carried out the experiments. Petek Korkusuz and Fuat Akal edited the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Petek Korkusuz.

Ethics declarations

Ethics approval

Animal materials used in the experiments were approved by Hacettepe University Animal Experiments Local Ethics Committee (#2018, 52338575-96).

Consent to participate

Not applicable .

Consent for publication

Not applicable .

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahveci, B., Önen, S., Akal, F. et al. Detection of spermatogonial stem/progenitor cells in prepubertal mouse testis with deep learning. J Assist Reprod Genet 40, 1187–1195 (2023). https://doi.org/10.1007/s10815-023-02784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02784-1

Keywords

Navigation