Skip to main content
Log in

Endoplasmic reticulum in oocytes: spatiotemporal distribution and function

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract 

Endoplasmic reticulum in oocytes

The storage and release of calcium ions (Ca2 +) in oocyte maturation and fertilization are particularly noteworthy features of the endoplasmic reticulum (ER). The ER is the largest organelle in the cell composed of rough ER, smooth ER, and nuclear envelope, and is the main site of protein synthesis, transport and folding, and lipid and steroid synthesis. An appropriate calcium signaling response can initiate oocyte development and embryogenesis, and the ER is the central link that initiates calcium signaling. The transition from immature oocytes to zygotes also requires many coordinated organelle reorganizations and changes. Therefore, the purpose of this review is to generalize information on the function, structure, interaction with other organelles, and spatiotemporal localization of the ER in mammalian oocytes. Mechanisms related to maintaining ER homeostasis have been extensively studied in recent years. Resolving ER stress through the unfolded protein response (UPR) is one of them. We combined the clinical problems caused by the ER in in vitro maturation (IVM), and the mechanisms of ER have been identified by single-cell RNA-seq. This article systematically reviews the functions of ER and provides a reference for assisted reproductive technology (ART) research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data and material in this article are available.

References

  1. FagoneS. P. Jackowski, Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50:S311-6.

    Article  Google Scholar 

  2. Jan CH, Williams CC, Weissman JS. Principles of ER cotranslational translocation revealed by proximity-specific ribosome profiling. Science. 2014;346(6210):1257521.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Porter KR, Claude A, Fullam EF. A study of tissue culture cells by electron microscopy: methods and preliminary observations. J Exp Med. 1945;81(3):233–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. English AR, Voeltz GK. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb Perspect Biol. 2013;5(4): a013227.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shibata Y, Voeltz GK, Rapoport TA. Rough sheets and smooth tubules. Cell. 2006;126(3):435–9.

    Article  CAS  PubMed  Google Scholar 

  6. Zucker B, and Kozlov MM, Mechanism of shaping membrane nanostructures of endoplasmic reticulum. Proc Natl Acad Sci U S A, 2022; 119(1).

  7. Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79–94.

    Article  CAS  PubMed  Google Scholar 

  8. English AR, Zurek N, Voeltz GK. Peripheral ER structure and function. Curr Opin Cell Biol. 2009;21(4):596–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kepp O, and Galluzzi L. Preface: endoplasmic reticulum in health and disease. Int Rev Cell Mol Biol, 2020; 350: xiii-xvii.

  10. Kline D. Attributes and dynamics of the endoplasmic reticulum in mammalian eggs. Curr Top Dev Biol. 2000;50:125–54.

    Article  CAS  PubMed  Google Scholar 

  11. Homa ST, Carroll J, Swann K. The role of calcium in mammalian oocyte maturation and egg activation. Hum Reprod. 1993;8(8):1274–81.

    Article  CAS  PubMed  Google Scholar 

  12. Wakai T, Mehregan A, and Fissore RA. Ca(2+) Signaling and homeostasis in mammalian oocytes and eggs. Cold Spring Harb Perspect Biol, 2019; 11(12).

  13. Guzel E, et al. Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. Int J Mol Sci, 2017; 18(4).

  14. Takehara I, et al. Impact of endoplasmic reticulum stress on oocyte aging mechanisms. Mol Hum Reprod. 2020;26(8):567–75.

    Article  CAS  PubMed  Google Scholar 

  15. Pan MH, et al. Bisphenol A exposure disrupts organelle distribution and functions during mouse oocyte maturation. Front Cell Dev Biol. 2021;9: 661155.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin T, et al. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) in mammalian oocyte maturation and preimplantation embryo development. Int J Mol Sci, 2019. 20(2).

  17. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 2020;21(8):421–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goetz JG, Nabi IR. Interaction of the smooth endoplasmic reticulum and mitochondria. Biochem Soc Trans. 2006;34(Pt 3):370–3.

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, et al. A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum. Reproduction. 2021;163(1):45–56.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee B, Palermo G, Machaca K. Downregulation of store-operated Ca2+ entry during mammalian meiosis is required for the egg-to-embryo transition. J Cell Sci. 2013;126(Pt 7):1672–81.

    CAS  PubMed  Google Scholar 

  21. Machaty Z. Signal transduction in mammalian oocytes during fertilization. Cell Tissue Res. 2016;363(1):169–83.

    Article  CAS  PubMed  Google Scholar 

  22. Xu YR, Yang WX. Calcium influx and sperm-evoked calcium responses during oocyte maturation and egg activation. Oncotarget. 2017;8(51):89375–90.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Machaty Z, et al. Fertility: store-operated Ca(2+) entry in germ cells: role in egg activation. Adv Exp Med Biol. 2017;993:577–93.

    Article  CAS  PubMed  Google Scholar 

  24. Szpila M, et al. Postovulatory ageing modifies sperm-induced Ca(2+) oscillations in mouse oocytes through a conditions-dependent, multi-pathway mechanism. Sci Rep. 2019;9(1):11859.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wakai T, et al. Regulation of endoplasmic reticulum Ca(2+) oscillations in mammalian eggs. J Cell Sci. 2013;126(Pt 24):5714–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim B, et al. The role of MATER in endoplasmic reticulum distribution and calcium homeostasis in mouse oocytes. Dev Biol. 2014;386(2):331–9.

    Article  CAS  PubMed  Google Scholar 

  27. La Rovere RM, et al. Intracellular Ca(2+) signaling and Ca(2+) microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium. 2016;60(2):74–87.

    Article  PubMed  Google Scholar 

  28. Mann JS, Lowther KM, Mehlmann LM. Reorganization of the endoplasmic reticulum and development of Ca2+ release mechanisms during meiotic maturation of human oocytes. Biol Reprod. 2010;83(4):578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stricker SA. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol. 1999;211(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  30. Coticchio G, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54.

    Article  CAS  PubMed  Google Scholar 

  31. Mehlmann LM, et al. Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev Biol. 1995;170(2):607–15.

    Article  CAS  PubMed  Google Scholar 

  32. FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol. 2007;305(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang CH, et al. Maternal diabetes causes abnormal dynamic changes of endoplasmic reticulum during mouse oocyte maturation and early embryo development. Reprod Biol Endocrinol. 2013;11:31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Esposito G, et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol Cell Endocrinol. 2007;273(1–2):25–31.

    Article  CAS  PubMed  Google Scholar 

  35. Kan R, et al. Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices. Dev Biol. 2011;350(2):311–22.

    Article  CAS  PubMed  Google Scholar 

  36. Kim B, et al. Potential role for MATER in cytoplasmic lattice formation in murine oocytes. PLoS ONE. 2010;5(9): e12587.

    Article  PubMed  PubMed Central  Google Scholar 

  37. De Santis L, et al. Expression and intracytoplasmic distribution of staufen and calreticulin in maturing human oocytes. J Assist Reprod Genet. 2015;32(4):645–52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mehlmann LM, Mikoshiba K, Kline D. Redistribution and increase in cortical inositol 1,4,5-trisphosphate receptors after meiotic maturation of the mouse oocyte. Dev Biol. 1996;180(2):489–98.

    Article  CAS  PubMed  Google Scholar 

  39. Stricker SA. Structural reorganizations of the endoplasmic reticulum during egg maturation and fertilization. Semin Cell Dev Biol. 2006;17(2):303–13.

    Article  CAS  PubMed  Google Scholar 

  40. Mao L, et al. Behaviour of cytoplasmic organelles and cytoskeleton during oocyte maturation. Reprod Biomed Online. 2014;28(3):284–99.

    Article  PubMed  Google Scholar 

  41. Duan X, et al. Dynamic organelle distribution initiates actin-based spindle migration in mouse oocytes. Nat Commun. 2020;11(1):277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yi K, et al. Sequential actin-based pushing forces drive meiosis I chromosome migration and symmetry breaking in oocytes. J Cell Biol. 2013;200(5):567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dumollard R, et al. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development. 2004;131(13):3057–67.

    Article  CAS  PubMed  Google Scholar 

  44. Hajnóczky G, et al. The machinery of local Ca2+ signalling between sarco-endoplasmic reticulum and mitochondria. J Physiol. 2000;529(1):69–81.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Udagawa O, Ishihara N. Mitochondrial dynamics and interorganellar communication in the development and dysmorphism of mammalian oocytes. J Biochem. 2020;167(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  46. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11(5):797–813.

    Article  PubMed  Google Scholar 

  47. Wakai T, et al. Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation. Mol Hum Reprod. 2014;20(11):1090–100.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao L, et al. Enriched endoplasmic reticulum-mitochondria interactions result in mitochondrial dysfunction and apoptosis in oocytes from obese mice. J Anim Sci Biotechnol. 2017;8:62.

    Article  PubMed  PubMed Central  Google Scholar 

  49. The Istanbul consensus workshop on embryo assessment. proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83.

    Article  Google Scholar 

  50. Ebner T, et al. Prognosis of oocytes showing aggregation of smooth endoplasmic reticulum. Reprod Biomed Online. 2008;16(1):113–8.

    Article  PubMed  Google Scholar 

  51. Nikiforov D, et al. Clusters of smooth endoplasmic reticulum are absent in oocytes from unstimulated women. Reprod Biomed Online. 2021;43(1):26–32.

    Article  PubMed  Google Scholar 

  52. Fang T, et al. The impact of oocytes containing smooth endoplasmic reticulum aggregates on assisted reproductive outcomes: a cohort study. BMC Pregnancy Childbirth. 2022;22(1):838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Otsuki J, et al. A higher incidence of cleavage failure in oocytes containing smooth endoplasmic reticulum clusters. J Assist Reprod Genet. 2018;35(5):899–905.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dal Canto M, et al. Dysmorphic patterns are associated with cytoskeletal alterations in human oocytes. Hum Reprod. 2017;32(4):750–7.

    Google Scholar 

  55. Sfontouris IA, et al. Complex chromosomal aberrations in a fetus originating from oocytes with smooth endoplasmic reticulum (SER) aggregates. Syst Biol Reprod Med. 2018;64(4):283–90.

    Article  PubMed  Google Scholar 

  56. Akarsu C, et al. Smooth endoplasmic reticulum aggregations in all retrieved oocytes causing recurrent multiple anomalies: case report. Fertil Steril. 2009;92(4):1496.e1-1496.e3.

    Article  PubMed  Google Scholar 

  57. Otsuki J, et al. The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod. 2004;19(7):1591–7.

    Article  CAS  PubMed  Google Scholar 

  58. Gurunath S, et al. Live birth rates in in vitro fertilization cycles with oocytes containing smooth endoplasmic reticulum aggregates and normal oocytes. J Hum Reprod Sci. 2019;12(2):156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xu J, et al. Oocytes with smooth endoplasmic reticulum aggregates are not associated with impaired reproductive outcomes: a matched retrospective cohort study. Front Endocrinol (Lausanne). 2021;12: 688967.

    Article  PubMed  Google Scholar 

  60. Ferreux L, et al. Is it time to reconsider how to manage oocytes affected by smooth endoplasmic reticulum aggregates? Hum Reprod. 2019;34(4):591–600.

    Article  PubMed  Google Scholar 

  61. Stigliani S, et al. Presence of aggregates of smooth endoplasmic reticulum in MII oocytes affects oocyte competence: molecular-based evidence. Mol Hum Reprod. 2018;24(6):310–7.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang T, et al. Mitochondrial dysfunction and endoplasmic reticulum stress involved in oocyte aging: an analysis using single-cell RNA-sequencing of mouse oocytes. J Ovarian Res. 2019;12(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barbe A, et al. Mechanisms of adiponectin action in fertility: an overview from gametogenesis to gestation in humans and animal models in normal and pathological conditions. Int J Mol Sci, 2019; 20(7).

  64. Zhao H, et al. Single-cell transcriptomics of human oocytes: environment-driven metabolic competition and compensatory mechanisms during oocyte maturation. Antioxid Redox Signal. 2019;30(4):542–59.

    Article  CAS  PubMed  Google Scholar 

  65. Wang F, et al. Effects of mitochondria-associated Ca(2+) transporters suppression on oocyte activation. Cell Biochem Funct. 2021;39(2):248–57.

    Article  CAS  PubMed  Google Scholar 

  66. Shoshan-Barmatz V, et al. VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med. 2010;31(3):227–85.

    Article  CAS  PubMed  Google Scholar 

  67. Yuan J, et al. MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy. 2015;11(7):1081–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang D, et al. The inositol 1,4,5-trisphosphate receptor (Itpr) gene family in Xenopus: identification of type 2 and type 3 inositol 1,4,5-trisphosphate receptor subtypes. Biochem J. 2007;404(3):383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Grabmayr H, Romanin C, and Fahrner M. STIM Proteins: an ever-expanding family. Int J Mol Sci, 2020; 22(1).

  70. Zhou Y, et al. The STIM-Orai coupling interface and gating of the Orai1 channel. Cell Calcium. 2017;63:8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Penna A, et al. The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature. 2008;456(7218):116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Green KN, et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol. 2008;181(7):1107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bernhardt ML, et al. Store-operated Ca(2+) entry is not required for fertilization-induced Ca(2+) signaling in mouse eggs. Cell Calcium. 2017;65:63–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burton KA, McKnight GS. PKA, germ cells, and fertility. Physiology (Bethesda). 2007;22:40–6.

    CAS  PubMed  Google Scholar 

  75. Bornslaeger EA, Wilde MW, Schultz RM. Regulation of mouse oocyte maturation: involvement of cyclic AMP phosphodiesterase and calmodulin. Dev Biol. 1984;105(2):488–99.

    Article  CAS  PubMed  Google Scholar 

  76. Nutt LK, et al. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell. 2005;123(1):89–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yanxiang Zhao for her excellent beautification of figure.

Funding

This work was funded by the Beijing Municipal Science and Technology Commission (Z191100006619075, Z191100006619073) , Project funded by China Postdoctoral Science Foundation (2021M690257) and National Natural Science Foundation of China (82201828, 82125013, 31871447 and 31871482).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Xin Kang and Jing Wang performed the literature search and wrote the manuscript and prepared the figure. LiyingYan revised the manuscript.

Corresponding author

Correspondence to Liying Yan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., Wang, J. & Yan, L. Endoplasmic reticulum in oocytes: spatiotemporal distribution and function. J Assist Reprod Genet 40, 1255–1263 (2023). https://doi.org/10.1007/s10815-023-02782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02782-3

Keywords

Navigation