Skip to main content

Advertisement

Log in

The prospects of cell therapy for endometriosis

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Endometriosis is a chronic inflammatory estrogen-dependent disease characterized by the growth of endometrial-like tissue outside the physiological region. Despite the fact that this disease is common, laparoscopic surgery is currently the gold standard in the treatment of endometriosis. In this regard, it is necessary to develop new effective methods of minimally invasive therapy for endometriosis. One of the promising areas in the treatment of endometriosis is cell therapy. Cellular therapy is a vast branch of therapeutic methods with various agents. Potential cell therapies for endometriosis may be based on the principle of targeting aspects of the pathogenesis of the disease: suppression of estrogen receptor activity, angiogenesis, fibrosis, and a decrease in the content of stem cells in endometriosis foci. In addition, immune cells such as NK cells and macrophages may be promising agents for cell therapy of endometriosis. Standing apart in the methods of cell therapy is the replacement therapy of endometriosis. Thus, many studies in the field of the pathogenesis of endometriosis can shed light not only on the causes of the disease and may contribute to the development of new methods for personalized cell therapy of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han SJ, Jung SY, Wu SP, et al. Estrogen receptor β modulates apoptosis complexes and the inflammasome to drive the pathogenesis of endometriosis. Cell. 2015;163:960–74. https://doi.org/10.1016/j.cell.2015.10.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koninckx PR, Ph D, Ussia A, et al. Pathogenesis of endometriosis: the genetic/epigenetic theory. Fertil Steril. 2019;111:327–40. https://doi.org/10.1016/j.fertnstert.2018.10.013.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Xiong W, Xiong Y, et al. 17 β-Estradiol promotes vascular endothelial growth factor expression via the Wnt/β-catenin pathway during the pathogenesis of endometriosis. Mol Hum Reprod. 2016;22:526–35. https://doi.org/10.1093/molehr/gaw025.

    Article  CAS  PubMed  Google Scholar 

  4. Ding D, Liu X, Duan J, Guo SW. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30:812–32. https://doi.org/10.1093/humrep/dev025.

    Article  CAS  PubMed  Google Scholar 

  5. Nnoaham KE, Hummelshoj L, et al. Europe PMC Funders Group impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2013;96:366–73. https://doi.org/10.1016/j.fertnstert.2011.05.090.Impact.

    Article  Google Scholar 

  6. Matalliotakis M, Zervou MI, Matalliotaki C, et al. The role of gene polymorphisms in endometriosis. Mol Med Rep. 2017;16(5):5881–6. https://doi.org/10.3892/mmr.2017.7398.

  7. Menni K, Facchetti L, Cabassa P. Extragenital endometriosis: assessment with MR imaging. A pictorial review. Br J Radiol. 2016;89:1060. https://doi.org/10.1259/bjr.20150672.

    Article  Google Scholar 

  8. Kennedy S, Bergqvist A, Chapron C, et al. ESHRE guideline for the diagnosis and treatment of endometriosis. Hum Reprod. 2005;20:2698–704.

    Article  PubMed  Google Scholar 

  9. Chapron C, Marcellin L, Borghese B, Santulli P. Rethinking mechanisms, diagnosis and management of endometriosis. Nat Rev Endocrinol. 2019;15:666–82. https://doi.org/10.1038/s41574-019-0245-z.

    Article  PubMed  Google Scholar 

  10. Berker B, Seval M. Problems with the diagnosis of endometriosis. Women’s Heal. 2015;11:597–601. https://doi.org/10.2217/whe.15.44.

    Article  CAS  Google Scholar 

  11. Singh SS, Gude K, Perdeaux E, et al. Surgical outcomes in patients with endometriosis: a systematic review. J Obstet Gynaecol Canada. 2020;42:881-888.e11. https://doi.org/10.1016/j.jogc.2019.08.004.

    Article  Google Scholar 

  12. Avraham S, Seidman DS. Surgery versus pharmacological treatment for endometriosis. Women’s Health. 2014;10(2):161–6. https://doi.org/10.2217/WHE.13.77.

  13. Olive DL, Pritts EA. Treatment of endometriosis. N Engl J Med. 2001;345:266–75.

    Article  CAS  PubMed  Google Scholar 

  14. Blumenfeld Z. Hormonal suppressive therapy for endometriosis may not improve patient health. Fertil Steril. 2004;81:487–92. https://doi.org/10.1016/j.fertnstert.2003.07.038.

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Wang Y, Yang J, et al. Original study adolescent endometriosis in China: a retrospective analysis of 63 cases. J Pediatr Adolesc Gynecol. 2012;25:295–9. https://doi.org/10.1016/j.jpag.2012.03.002.

    Article  PubMed  Google Scholar 

  16. Takagi H, Takata E, Sakamoto J, et al. Malignant transformation of an ovarian endometrioma during endometriosis treatment: a case report. Case Rep Obstet Gynecol. 2018;2018:6210172. https://doi.org/10.1155/2018/6210172.

  17. Mechsner S, Bartley J, Halis G, et al. Endometrial carcinoma using GnRH analogues therapy in endometriosis. Zentralbl Gynakol. 2002;124:478–81. https://doi.org/10.1055/s-2002-38912.

    Article  CAS  PubMed  Google Scholar 

  18. Kiisholts K, Kurrikoff K, Arukuusk P, et al. Cell-penetrating peptide and siRNA-mediated therapeutic effects on endometriosis and cancer in vitro models. Pharmaceutics. 2021;13(10):1618. https://doi.org/10.3390/pharmaceutics13101618.

  19. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98:1–7. https://doi.org/10.1016/j.fertnstert.2012.06.029.Pathogenesis.

    Article  Google Scholar 

  20. Chantalat E, Valera M-C, Vaysse C, et al. Estrogen receptors and endometriosis. Int J Mol Sci. 2020;21:1–17. https://doi.org/10.3390/ijms21082815.

    Article  CAS  Google Scholar 

  21. Huhtinen K, Desai R, Ståhle M, et al. Endometrial and endometriotic concentrations of estrone and estradiol are determined by local metabolism rather than circulating levels. J Clin Endocrinol Metab. 2012;97:4228–35. https://doi.org/10.1210/jc.2012-1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pellegrini C, Gori I, Achtari C, et al. The expression of estrogen receptors as well as GREB1, c-MYC, and cyclin D1, estrogen-regulated genes implicated in proliferation, is increased in peritoneal endometriosis. Fertil Steril. 2012;98:1200–8. https://doi.org/10.1016/j.fertnstert.2012.06.056.

    Article  CAS  PubMed  Google Scholar 

  23. Burns KA, Rodriguez KF, Hewitt SC, et al. Role of estrogen receptor signaling required for endometriosis-like lesion establishment in a mouse model. Endocrinology. 2012;153:3960–71. https://doi.org/10.1210/en.2012-1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel BG, Rudnicki M, Yu J, et al. Progesterone resistance in endometriosis: origins, consequences and interventions. Acta Obstet Gynecol Scand. 2017;96:623–32. https://doi.org/10.1111/aogs.13156.

    Article  CAS  PubMed  Google Scholar 

  25. Machairiotis N, Vasilakaki S, Thomakos N. Inflammatory mediators and pain in endometriosis: a systematic review. Biomedicines. 2021;9(1):54. https://doi.org/10.3390/biomedicines9010054.

  26. Lin Y-H, Chen Y-H, Chang H-Y, et al. Chronic niche inflammation in endometriosis-associated infertility: current understanding and future therapeutic strategies. Int J Mol Sci. 2018;19(8):2385. https://doi.org/10.3390/ijms19082385.

  27. Wang X, Jia Y, Li D, et al. The abundance and function of neutrophils in the endometriosis systemic and pelvic microenvironment. Mediators Inflamm. 2023;2023:1481489. https://doi.org/10.1155/2023/1481489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang Y, Li Q, Hu R, et al. Five immune-related genes as diagnostic markers for endometriosis and their correlation with immune infiltration. Front Endocrinol (Lausanne). 2022;13:1011742. https://doi.org/10.3389/fendo.2022.1011742.

    Article  PubMed  Google Scholar 

  29. Chen L, Wang X, Shu J, et al. Diagnostic value of serum D-dimer, CA125, and neutrophil-to-lymphocyte ratio in differentiating ovarian cancer and endometriosis. Int J Gynecol Obstet. 2019;147:212–8. https://doi.org/10.1002/ijgo.12949.

    Article  CAS  Google Scholar 

  30. Arici A. Local cytokines in endometrial tissue: the role of interleukin-8 in the pathogenesis of endometriosis. Ann N Y Acad Sci. 2009;955:101–9.

    Article  Google Scholar 

  31. Di Carlo C, Bonifacio M, Tommaselli GA, et al. Metalloproteinases, vascular endothelial growth factor, and angiopoietin 1 and 2 in eutopic and ectopic endometrium. Fertil Steril. 2009;91:2315–23. https://doi.org/10.1016/j.fertnstert.2008.03.079.

    Article  CAS  PubMed  Google Scholar 

  32. Selam B, Kayisli UA, Garcia-Velasco JA, et al. Regulation of Fas ligand expression by IL-8 in human endometrium. J Clin Endocrinol Metab. 2002;87:3921–7. https://doi.org/10.1210/jcem.87.8.8713.

    Article  CAS  PubMed  Google Scholar 

  33. Shi JL, Zheng ZM, Chen M, et al. IL-17: an important pathogenic factor in endometriosis. Int J Med Sci. 2022;19:769–78. https://doi.org/10.7150/ijms.71972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaillon S, Ponzetta A, Di Mitri D, et al. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20:485–503. https://doi.org/10.1038/s41568-020-0281-y.

    Article  CAS  PubMed  Google Scholar 

  35. Berbic M, Hey-Cunningham AJ, Ng C, et al. The role of Foxp3+ regulatory T-cells in endometriosis: a potential controlling mechanism for a complex, chronic immunological condition. Hum Reprod. 2010;25:900–7. https://doi.org/10.1093/humrep/deq020.

    Article  CAS  PubMed  Google Scholar 

  36. Abramiuk M, Grywalska E, Małkowska P, et al. The role of the immune system in the development of endometriosis. Cells. 2022;11:1–23. https://doi.org/10.3390/cells11132028.

    Article  CAS  Google Scholar 

  37. Tanaka Y, Mori T, Ito F, et al. Exacerbation of endometriosis due to regulatory t-cell dysfunction. J Clin Endocrinol Metab. 2017;102:3206–17. https://doi.org/10.1210/jc.2017-00052.

    Article  PubMed  Google Scholar 

  38. Xiao F, Liu X, Guo SW. Platelets and regulatory T cells may induce a type 2 immunity that is conducive to the progression and fibrogenesis of endometriosis. Front Immunol. 2020;11:610963. https://doi.org/10.3389/fimmu.2020.610963.

  39. Wu M-H, Hsiao K-Y, Tsai S-J. Endometriosis and possible inflammation markers. Gynecol Minim Invasive Ther. 2015;4:61–7. https://doi.org/10.1016/j.gmit.2015.05.001.

    Article  Google Scholar 

  40. Matsuzaki S, Pouly JL, Canis M. Dose-dependent pro- or anti-fibrotic responses of endometriotic stromal cells to interleukin-1β and tumor necrosis factor α. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-66298-x.

    Article  CAS  Google Scholar 

  41. Braga TT, Agudelo JSH, Camara NOS. Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol. 2015;6:1–8. https://doi.org/10.3389/fimmu.2015.00602.

    Article  CAS  Google Scholar 

  42. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214:199–210. https://doi.org/10.1002/path.2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang Q, Duan J, Liu X, Guo S-W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16. https://doi.org/10.1016/j.mce.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  44. Vigano P, Candiani M, Monno A, et al. Time to redefine endometriosis including its pro-fibrotic nature. Hum Reprod. 2018;33:347–52. https://doi.org/10.1093/humrep/dex354.

    Article  CAS  PubMed  Google Scholar 

  45. Lebovic DI, Bentzien F, Chao VA, et al. Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1beta. Mol Hum Reprod. 2000;6:269–75. https://doi.org/10.1093/molehr/6.3.269.

    Article  CAS  PubMed  Google Scholar 

  46. Chung MS, Han SJ. Endometriosis-associated angiogenesis and anti-angiogenic therapy for endometriosis. Front Glob Women’s Heal. 2022;3:1–11. https://doi.org/10.3389/fgwh.2022.856316.

    Article  Google Scholar 

  47. Rocha ALL, Reis FM, Taylor RN. Angiogenesis and endometriosis. Endometr Sci Pract. 2013;2013:190–9. https://doi.org/10.1002/9781444398519.ch19.

    Article  Google Scholar 

  48. Liu H, Zhang Z, Xiong W, et al. Hypoxia-inducible factor-1α promotes endometrial stromal cells migration and invasion by upregulating autophagy in endometriosis. Reproduction. 2017;153:809–20. https://doi.org/10.1530/REP-16-0643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li J, Li SX, Gao XH, et al. HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol Res Pract. 2019;215:644–52. https://doi.org/10.1016/j.prp.2018.12.022.

    Article  CAS  PubMed  Google Scholar 

  50. Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res. 2007;101:598–606. https://doi.org/10.1161/CIRCRESAHA.106.144006.

    Article  CAS  PubMed  Google Scholar 

  51. Dhesi AS, Morelli SS. Endometriosis: a role for stem cells. Women’s Health. 2015;11(1):35–49. https://doi.org/10.2217/WHE.14.57.

    Article  CAS  PubMed  Google Scholar 

  52. Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA. 2004;292(1):81–5. https://doi.org/10.1001/jama.292.1.81.

    Article  CAS  PubMed  Google Scholar 

  53. Faramarzi H, Mehrabani D, Fard M, et al. The potential of menstrual blood-derived stem cells in differentiation to epidermal lineage: a preliminary report. 2016.

  54. Song Y, Xiao L, Fu J, et al. Increased expression of the pluripotency markers sex-determining region Y-box 2 and Nanog homeobox in ovarian endometriosis. Reprod Biol Endocrinol. 2014;12(1):42. https://doi.org/10.1186/1477-7827-12-42.

  55. Pacchiarotti A, Caserta D, Sbracia M, Moscarini M. Expression of oct-4 and c-kit antigens in endometriosis. Fertil Steril. 2011;95:1171–3. https://doi.org/10.1016/j.fertnstert.2010.10.029.

    Article  CAS  PubMed  Google Scholar 

  56. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25(8):2082–6. https://doi.org/10.1634/stemcells.2006-0828.

  57. Taniguchi F, Kaponis A, Izawa M, et al. Apoptosis and endometriosis. Front Biosci (Elite Ed). 2011;3:648–62. https://doi.org/10.2741/e277.

    Article  PubMed  Google Scholar 

  58. Beliard A, Noёl A, Foidart J-M. Reduction of apoptosis and proliferation in endometriosis. Fertil Steril. 2004;82(1):80–5. https://doi.org/10.1016/j.fertnstert.2003.11.048.

  59. Braun DP, Ding J, Shaheen F, et al. Quantitative expression of apoptosis-regulating genes in endometrium from women with and without endometriosis. Fertil Steril. 2007;87(2):263–268. https://doi.org/10.1016/j.fertnstert.2006.06.026.

  60. Bohl J, Goebel HH, Esinger W, et al. Komplikationen nach Zelltherapie *’ * *. Rechtsmedizin. 1989;1988:1–20.

    Google Scholar 

  61. Bordignon C, Carlo-Stella C, Colombo M, et al. Cell therapy: achievements and perspectives. Haematologica. 1999;84(12):1110–49. 

  62. El-kadiry AE, Rafei M, Shammaa R. Cell therapy: types, regulation, and clinical benefits. Front Med. 2021;8:1–24. https://doi.org/10.3389/fmed.2021.756029.

    Article  Google Scholar 

  63. Brown C, Mckee C, Bakshi S, et al. Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med. 2019;1738–1755. https://doi.org/10.1002/term.2914.

  64. Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250–61. https://doi.org/10.20517/2394-4722.2017.41.

    Article  CAS  Google Scholar 

  65. Miliotou AN, Papadopoulou LC. CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol. 2018;19:5–18. https://doi.org/10.2174/1389201019666180418095526.

    Article  CAS  PubMed  Google Scholar 

  66. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther - Oncolytics. 2016;3:16011. https://doi.org/10.1038/mto.2016.11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17:1025–36. https://doi.org/10.1038/ni.3518.

    Article  CAS  PubMed  Google Scholar 

  68. Artemova D, Vishnyakova P, Khashchenko E, et al. Endometriosis and cancer: exploring the role of macrophages. Int J Mol Sci. 2021;22:1–16. https://doi.org/10.3390/ijms22105196.

    Article  CAS  Google Scholar 

  69. ClinicalTrials.gov Endometriosis/cell therapy. https://clinicaltrials.gov/ct2/results?cond=Endometriosis&term=cell+therapy. Accessed 27 Dec 2022.

  70. Mechsner S. Endometriosis, an ongoing pain—step‐by‐step treatment. J Clin Med. 2022;11(2):467. https://doi.org/10.3390/jcm11020467.

  71. Cho YJ, Lee JE, Park MJ, et al. Bufalin suppresses endometriosis progression by inducing pyroptosis and apoptosis. J Endocrinol. 2018;237:255–69. https://doi.org/10.1530/JOE-17-0700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kulak JJ, Fischer C, Komm B, Taylor HS. Treatment with bazedoxifene, a selective estrogen receptor modulator, causes regression of endometriosis in a mouse model. Endocrinology. 2011;152:3226–32. https://doi.org/10.1210/en.2010-1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu D, Lu P, Mi X, Miao J. Exosomal miR-214 from endometrial stromal cells inhibits endometriosis fibrosis. Mol Hum Reprod. 2018;24:357–65. https://doi.org/10.1093/molehr/gay019.

    Article  CAS  PubMed  Google Scholar 

  74. Viganò P, Ottolina J, Bartiromo L, et al. Cellular components contributing to fibrosis in endometriosis: a literature review. J Minim Invasive Gynecol. 2020;27:287–95. https://doi.org/10.1016/j.jmig.2019.11.011.

    Article  PubMed  Google Scholar 

  75. Leask A, Abraham DJ. TGF-β signaling and the fibrotic response. FASEB J. 2004;18:816–27. https://doi.org/10.1096/fj.03-1273rev.

    Article  CAS  PubMed  Google Scholar 

  76. Fan Y, Chen B, Ma X, Su M. Detection of expression of endometriosis-related cytokine and their receptor genes by cDNA microarray technique. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2005;21:489–92.

    CAS  PubMed  Google Scholar 

  77. Young VJ, Ahmad SF, Duncan WC, Horne AW. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update. 2017;23:548–59. https://doi.org/10.1093/HUMUPD/DMX016.

    Article  CAS  PubMed  Google Scholar 

  78. Bernacchioni C, Capezzuoli T, Vannuzzi V, et al. Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β-induced fibrosis. Fertil Steril. 2021;115:501–11. https://doi.org/10.1016/j.fertnstert.2020.08.012.

    Article  CAS  PubMed  Google Scholar 

  79. Hanada T, Tsuji S, Nakayama M, et al. Suppressive regulatory T cells and latent transforming growth factor-β-expressing macrophages are altered in the peritoneal fluid of patients with endometriosis. Reprod Biol Endocrinol. 2018;16:1–8. https://doi.org/10.1186/s12958-018-0325-2.

    Article  CAS  Google Scholar 

  80. Gurung S, Williams S, Deane JA, et al. The transcriptome of human endometrial mesenchymal stem cells under TGFβR inhibition reveals improved potential for cell-based therapies. Front Cell Dev Biol. 2018;6:1–15. https://doi.org/10.3389/fcell.2018.00164.

    Article  CAS  Google Scholar 

  81. Zhou Y, Zhou G, Tian C, et al. Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA. 2016;7:758–71. https://doi.org/10.1002/wrna.1363.

    Article  CAS  PubMed  Google Scholar 

  82. Ibrahim MG, Delarue E, Abesadze E, et al. Abdominal wall endometriosis: myofibroblasts as a possible evidence of metaplasia: a case report. Gynecol Obstet Invest. 2017;82:96–101. https://doi.org/10.1159/000452101.

    Article  CAS  PubMed  Google Scholar 

  83. Hu B, Phan SH. Myofibroblasts. Curr Opin Rheumatol. 2013;25:71–7. https://doi.org/10.1097/BOR.0b013e32835b1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-β1-induced fibrosis via regulation of the TGF-β1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13(5):4229–37. https://doi.org/10.3892/mmr.2016.5062.

  85. Kobayashi H. Somatic driver mutations in endometriosis as possible regulators of fibrogenesis (Review). World Acad Sci J. 2019;1(3):105–12. https://doi.org/10.3892/wasj.2019.12.

  86. Yang J, Huang F. Stem cell and endometriosis: new knowledge may be producing novel therapies. Int J Clin Exp Med. 2014;7:3853–8.

    PubMed  PubMed Central  Google Scholar 

  87. Sakr S, Naqvi H, Komm B, Taylor HS. Endometriosis impairs bone marrow-derived stem cell recruitment to the uterus whereas bazedoxifene treatment leads to endometriosis regression and improved uterine stem cell engraftment. Endocrinology. 2014;155:1489–97. https://doi.org/10.1210/en.2013-1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Laschke MW, Giebels C, Nickels RM, et al. Endothelial progenitor cells contribute to the vascularization of endometriotic lesions. AJPA. 2011;178:442–50. https://doi.org/10.1016/j.ajpath.2010.11.037.

    Article  Google Scholar 

  89. Wang X, Mamillapalli R, Mutlu L, et al. Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression. Stem Cell Res. 2015;15:14–22. https://doi.org/10.1016/j.scr.2015.04.004.Chemoattraction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hufnagel D, Li F, Cosar E, et al. The role of stem cells in the etiology and pathophysiology of endometriosis. Semin Reprod Med. 2015;33:333–40. https://doi.org/10.1055/s-0035-1564609.The.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kim YS, Kim YJ, Kim MJ, et al. Novel medicine for endometriosis and its therapeutic effect in a mouse model. Biomedicines. 2020;8:1–13.

    Article  Google Scholar 

  92. Hull ML, Charnock-Jones DS, Chan CLK, et al. Antiangiogenic agents are effective inhibitors of endometriosis. J Clin Endocrinol Metab. 2003;88:2889–99. https://doi.org/10.1210/jc.2002-021912.

    Article  CAS  PubMed  Google Scholar 

  93. Khoufache K, Bazin S, Girard K, et al. Macrophage migration inhibitory factor antagonist blocks the development of endometriosis in vivo. PLoS One. 2012;7(5):e37264. https://doi.org/10.1371/journal.pone.0037264.

  94. Pavone ME, Malpani S, Dyson M, Bulun SE. Fenretinide: a potential treatment for endometriosis. Fertil Steril. 2014;102:e11. https://doi.org/10.1016/j.fertnstert.2014.07.044.

    Article  Google Scholar 

  95. Hapangama DK, Turner MA, Drury JA, et al. Endometriosis is associated with aberrant endometrial expression of telomerase and increased telomere length. Hum Reprod. 2008;23:1511–9.

    Article  CAS  PubMed  Google Scholar 

  96. Alnafakh R, Choi F, Bradfield A, et al. Endometriosis is associated with a significant increase in hTERC and altered telomere/telomerase associated genes in the eutopic endometrium, an ex-vivo and in silico study. Biomedicines. 2020;8(12):588. https://doi.org/10.3390/biomedicines8120588.

  97. Sofiyeva N, Ekizoglu S, Gezer A, et al. Does telomerase activity have an effect on infertility in patients with endometriosis? Eur J Obstet Gynecol Reprod Biol. 2017;213:116–22. https://doi.org/10.1016/j.ejogrb.2017.04.027.

    Article  CAS  PubMed  Google Scholar 

  98. Mormile R, Vittori G. MAPK signaling pathway and endometriosis: what is the link? Arch Gynecol Obstet. 2013;287:837–8.

    Article  PubMed  Google Scholar 

  99. Yotova IY, Quan P, Leditznig N, et al. Abnormal activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in eutopic endometrial stromal cells of patients with endometriosis. Hum Reprod. 2011;26:885–97. https://doi.org/10.1093/humrep/der010.

    Article  CAS  PubMed  Google Scholar 

  100. Zhou W-D, Yang H-M, Wang Q, et al. SB203580, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis by down-regulating proinflammatory cytokines and proteolytic factors in a mouse model. Hum Reprod. 2010;25:3110–6. https://doi.org/10.1093/humrep/deq287.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Y, Yan J, Pan X. miR-141-3p affects apoptosis and migration of endometrial stromal cells by targeting KLF-12. Pflugers Arch. 2019;471:1055–63. https://doi.org/10.1007/s00424-019-02283-2.

    Article  CAS  PubMed  Google Scholar 

  102. Wang S, Zhang M, Zhang T, et al. microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signalling pathway in endometriosis. Arch Gynecol Obstet. 2020;301:707–14. https://doi.org/10.1007/s00404-019-05429-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lebovic DI, Mueller MD, Taylor RN. Immunobiology of endometriosis. Fertil Steril. 2001;75:1–10. https://doi.org/10.1016/S0015-0282(00)01630-7.

    Article  CAS  PubMed  Google Scholar 

  104. Evert JH, Paap R, Nap A, Molen R Van Der. The promises of natural killer cell therapy in endometriosis. Int J Mol Sci. 2022;23(10):5539. https://doi.org/10.3390/ijms23105539.

  105. Jeung I, Cheon K, Kim M-R. Decreased cytotoxicity of peripheral and peritoneal natural killer cell in endometriosis. Biomed Res Int. 2016;2016:2916070. https://doi.org/10.1155/2016/2916070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol. 2017; 8:1124. https://doi.org/10.3389/fimmu.2017.01124.

  107. Li Y, Sun R. Tumor immunotherapy: new aspects of natural killer cells. Chin J Cancer Res. 2018;30:173–96. https://doi.org/10.21147/j.issn.1000-9604.2018.02.02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pan P, Kang S, Wang Y, et al. Black raspberries enhance natural killer cell infiltration into the colon and suppress the progression of colorectal cancer. Front Immunol. 2017;8:997. https://doi.org/10.3389/fimmu.2017.00997.

  109. Du Y, Liu X, Guo S-W. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum Reprod. 2017;32:794–810. https://doi.org/10.1093/humrep/dex014.

    Article  CAS  PubMed  Google Scholar 

  110. ClinicalTrials.gov. Hui Qi Clinical study of NK cells in the treatment of severe endometriosis. 2019. https://clinicaltrials.gov/ct2/show/NCT03948828?cond=endometriosis+nk+cell+therapy&draw=2&rank=1. Accessed 30 Dec 2022.

  111. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1777–83. https://doi.org/10.1161/ATVBAHA.111.242859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lukács L, Kovács AR, Pál L, et al. Evaluating the phagocytic index of peripheral leukocytes in endometriosis by plasma experiments. Medicina. 2022;58(7):925. https://doi.org/10.3390/medicina58070925.

  113. Bao C, Wang H, Fang H. Genomic evidence supports the recognition of endometriosis as an inflammatory systemic disease and reveals disease-specific therapeutic potentials of targeting neutrophil degranulation. Front Immunol. 2022;13:1–17. https://doi.org/10.3389/fimmu.2022.758440.

    Article  CAS  Google Scholar 

  114. He J, Xu Y, Yi M, et al. Involvement of natural killer cells in the pathogenesis of endometriosis in patients with pelvic pain. J Int Med Res. 2020;48(7):030006051987140. https://doi.org/10.1177/0300060519871407

  115. Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175:547–56. https://doi.org/10.2353/ajpath.2009.081011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nisolle M, Alvarez M-L, Colombo M, Foidart J-M. Pathogenèse de l’endométriose. Gynécologie Obs Fertil. 2007;35:898–903. https://doi.org/10.1016/j.gyobfe.2007.07.021.

    Article  CAS  Google Scholar 

  117. Zhang F, Ayaub EA, Wang B, et al. Reprogramming of profibrotic macrophages for treatment of bleomycin-induced pulmonary fibrosis. EMBO Mol Med. 2020;12(8):e12034. https://doi.org/10.15252/emmm.202012034.

  118. Doss MX, Koehler CI, Gissel C, et al. Embryonic stem cells: a promising tool for cell replacement therapy. J Cellural Mol Med. 2004;8:465–73.

    Article  Google Scholar 

  119. Efrat S. Cell replacement therapy for type 1 diabetes. Trends Mol Med. 2002;8:334–40. https://doi.org/10.1016/S1471-4914(02)02365-1.

    Article  CAS  PubMed  Google Scholar 

  120. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002;91:501–8. https://doi.org/10.1161/01.RES.0000035254.80718.91.

    Article  CAS  PubMed  Google Scholar 

  121. Barberi T, Klivenyi P, Calingasan NY, et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol. 2003;21:1200–7. https://doi.org/10.1038/nbt870.

    Article  CAS  PubMed  Google Scholar 

  122. Miyazaki K, Dyson MT, Coon VJS, et al. Generation of progesterone-responsive endometrial stromal fibroblasts from human induced pluripotent stem cells: role of the WNT/CTNNB1 pathway. Stem Cell Reports. 2018;11:1136–55. https://doi.org/10.1016/j.stemcr.2018.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tinker AV, Hirte HW, Provencher D, et al. Dose-ranging and cohort-expansion study of monalizumab (IPH2201) in patients with advanced gynecologic malignancies: a trial of the Canadian Cancer Trials Group (CCTG): IND221. Clin Cancer Res. 2019;25(20):6052–60. https://doi.org/10.1158/1078-0432.CCR-19-0298.

    Article  CAS  PubMed  Google Scholar 

  124. Laganà AS, Garzon S, Götte M, Viganò P, Franchi M, Ghezzi FMD. The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci. 2019;20(22):5615. https://doi.org/10.3390/ijms20225615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Part of the work concerning endometriosis was supported by a grant for young Russian scientists MK-1573.2022.3. This paper has been supported by the PFUR University Strategic Academic Leadership Program. Part of the work concerning macrophages was supported by Russian Science Foundation [grant number 22-14-00152].

Author information

Authors and Affiliations

Authors

Contributions

Daria Artemova, Polina Vishnyakova, Elena Gantsova, Andrey Elchaninov, Timur Fatkhudinov, Gennady Sukhikh had the idea for the article. Daria Artemova, Polina Vishnyakova performed the literature search and data analysis. Daria Artemova, Polina Vishnyakova, Elena Gantsova, Andrey Elchaninov drafted the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Timur Fatkhudinov.

Ethics declarations

Conflict of interest

The all authors claim no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemova, D., Vishnyakova, P., Gantsova, E. et al. The prospects of cell therapy for endometriosis. J Assist Reprod Genet 40, 955–967 (2023). https://doi.org/10.1007/s10815-023-02772-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02772-5

Keywords

Navigation